EHR-1IS Interoperability Enhancement Project

Transport Layer Protocol Recommendation
Formal Specification

Version 1.2
September 4, 2015

Transport Layer Expert Panel
EHR-IIS Interoperability Enhancement Project
Immunization Information Systems Support Branch (I1SSB)
National Center for Immunization and Respiratory Disease (NCIRD)
Centers for Disease Control and Prevention (CDC)

Transport Layer Protocol Specification 1 Created 9/4/2015
Last Reviewed 2/1/2016

Table of Contents

1 BACKGIOUNGottt bbb 3
A 11 5] o0 o S USRI 3
3 SBOUITEY ittt ettt bbbkttt bbb bbb bbb s 3
4 SOAP WED SEIVICE.....uiiiiiiiiiieieie ettt sttt bbb enes 3
L R o1 (0] £ T TP P PR PP PPN 3
4.2 WOTKFIOW ..o bbb 4
4.3 OPEIALIONS ...ttt ettt ettt bbbt bbbt bbb 4
A4 PATBIMETETSeeeieeeiee ettt n e e e b e n e reenneas 4
A5 FAUIS ..t es 5
4.6 Formal SPECITICALIONceeiieiiiie e 7
N R o =7 Vo -] USRS 7
4.6.2 SChEemMa fOr tYPES.....ccviiieeiece et 7
4.6.3 Message defiNItIONScceiiiiiiiiniiieee e 8
4.6.4 Operation/transaction declarations.............c.cccceeeveevieeiesic s 8
4.6.5 SOAP 1.2 BINING ...eeouiiiiieiiiieiiesieeieee e 9
4.6.6 Service definition and fOOTEN..........ccouiiiiiiiieie e 9

S5 Document ManagemMENT..........coiuiiiieiiiiie e 10
6 Appendix A: SOAP-Based Asynchronous/Batch EXchangecccccocvevevveiieennenn, 11
TN A @ V=T VT ST SPR 11
6.2 Asynchronous Exchange and SOAP ... 11
6.3 Defining a Standard INtErfaceccocvieiiiiii i 11
6.4 ACLION PIAN ..ottt 12

7 Appendix B: Implementation NOTESccoiiiiiiiiiiieesrre e 13
7.1 SOAP, HL7, and End-of-Line Terminatorsccccoovurireereerienenene e seseanens 13

Tables and Figures

TaDIE 1L OPEIALIONSecuviieieiie ettt ettt et et esreesre et e araesbeeneesreenas 4
Table 2 Connectivity Test Operation Parameterscoeveiereninenieieenese s 4
Table 3 Submit Single Message Operation Parameters............ccccecveveieeveeieseese e 4
Table 4 SOAP Fault Parametersccooueiieiieieieese e sie et eas 6
Table 5 Document ManagemeNnt...........cceiieiierieiieieesie ettt sre e 10

Transport Layer Protocol Specification 2 9/4/2015

1 Background

The Transport Layer Expert Panel has recommended a SOAP-based transport
methodology for health system-to-health system HL7 immunization messaging
interoperability. This document describes the underlying transport, security, and SOAP
operations of the recommended approach.

The scope of this document is limited to transport, security, and SOAP operations,
parameters, and faults for SOAP-based HL7 transmissions to an I1S. Although the
transport layer is message agnostic, the expected use of the methodology is to send HL7
version 2.x messages (e.g.: 2.3.1, 2.5.1, etc...) presently used in the Immunization
Information System (11S) setting.

The web service specification described in this document is designed to transmit single
HL7 messages synchronously, i.e., a single HL7 message is transmitted and a response is
generated immediately. Batch messages and asynchronous responses are out of scope for
this specification, but are discussed in more detail in the appendix (see Section 6).

2 Transport

The Sender and Receiver SHALL conform to SOAP 1.2 over HTTPS (HTTP over TLS
1.1 or newer) using the authentication and web service specification described in the
following subsections.

3 Security

Transport layer encryption is provided by TLS; authentication and authorization of the
sender must be performed by the receiver either using username and password credentials
passed as part of the SOAP operations (see Section 4.4), or using client certificate
authentication via TLS, or both. The authentication and authorization methods supported
by a receiving IIS are typically published in a local HL7 implementation guide for the
IS.

4 SOAP Web Service

4.1 Actors
There are two actors in the sending of HL7 messages via SOAP in the 1IS setting:

1. Sender — typically an Electronic Health Record system (EHR-S) operated by an
immunization provider, or an entity acting on behalf of an immunization provider.
The sender operates a SOAP client to send HL7 messages to an I1S.

2. Receiver —typically an 11S operated by a state or local health department. The
receiver operates a SOAP Web Service to receive HL7 messages from the sender.

Transport Layer Protocol Specification 3 9/4/2015

4.2 Workflow
The general workflow for sending an HL7 message via SOAP to an IIS follows:

1. Sender tests connectivity to 1S

2. Sender composes and sends HL7 message

3. Receiver accepts HL7 message and sends HL7 response
4. Sender accepts HL7 response and any faults

4.3 Operations

The following operations are provided by the 1S SOAP Web Service to support the
workflow:

Table 1 Operations

Operation Purpose

connectivityTest To test connectivity; to verify that the SOAP Web Service is
accessible.
submitSingleMessage | To submit an HL7 version 2.x message (e.g.: 2.3.1, 2.5.1) to an IIS.

4.4 Parameters
Each operation has one or more input and output parameters:

Operation: connectivity Test

Table 2 Connectivity Test Operation Parameters

Parameter Input/Output | Datatype Description
echoBack Input String Data to be sent back by the connectivity test.
return Output String Data sent back by the test. The returned string

should include the original text sent in by the
sender. Other text may be prepended or
appended.

Operation: submitSingleMessage

Table 3 Submit Single Message Operation Parameters

Parameter " Input/Output Data type Description

username Input String IS username

password Input String IS password

facilitylD Input String 11S Facility ID

hl7Message Input String HL7 version 2.x message (e.g.: 2.3.1, 2.5.1,
etc...) intended for IIS

Transport Layer Protocol Specification 4 9/4/2015

Parameter " Input/Output Data type Description
Return Output String HL7 version 2.x response (e.g.: 2.3.1, 2.5.1,
etc...) from IIS

NOTE: The username, password, and facilitylD parameters are technically optional, but
are heavily used by IS across the nation for authentication. These parameters, if used,
are defined by the I1S and provided to the sender prior to initiating HL7 transmissions.
Given their heavy usage the following system capabilities have been defined.
e A sender SHALL have the ability to provide any combination of
username, password, and/or facilitylD where required by receiver.
e A receiver MAY require the use any combination of username, password,
and/or faciltylD.

The hI7Message and return parameter must contain the appropriate HL7 message as
defined by the Implementation Guide for Immunization Data Transactions using Version
2.x (e.g.: 2.3.1, 2.5.1, etc...) of the Health Level Seven (HL7) Standard Protocol, and any
local 11S HL7 implementation guides.

4.5 Faults

The SOAP Fault element is used to indicate error messages related to the SOAP
operations and to carry detailed information within a SOAP message regarding the error.

There are four types of SOAP Faults in the IIS SOAP Web Service:

1. UnsupportedOperationFault_Message — generated if the sender attempts to
request an operation that is not part of the I11S SOAP Web Service (See Section
4.3).

a. Areceiver MAY have the ability to throw this fault.
b. A sender SHALL have the ability to catch this fault.

2. SecurityFault_Message — generated if the authentication credentials supplied in
the submitSingleMessage operation are not validated.

a. A receiver SHALL have the ability to throw this fault.
b. A sender SHALL have the ability to catch this fault.

3. MessageToolLargeFault_Message — generated if the hl7Message parameter of
the submitSingleMessage operation is too large. The maximum length (e.g.:
number of messages, number of characters, etc...) should be specified by the I1S
and provided to the sender prior to initiating HL7 transmissions.

a. Areceiver MAY have the ability to throw this fault.
b. A sender SHALL have the ability to catch this fault.

4. UnknownFault_Message — Any SOAP fault that does not fit into one of the

above three SOAP Fault categories will be returned as an “unknown” fault.
a. Areceiver MAY have the ability to throw this fault.
b. A sender SHALL have the ability to catch this fault.

Each type of SOAP Fault contains the following parameters:

Transport Layer Protocol Specification 5 9/4/2015

Table 4 SOAP Fault Parameters

Parameter Input/Output Data type Description
Code Output Integer SOAP Fault code number, intended for automated
use by client software to identify the fault.

Reason Output String SOAP Fault reason, intended to be a human-
readable explanation of the error that caused the
fault.

Detail Output String Detailed explanation of fault.

Fault code numbers should be specified by the 11S and provided to the sender prior to
initiating HL7 transmissions.

Transport Layer Protocol Specification 6 9/4/2015

4.6 Formal Specification

The formal specification for the 11IS SOAP Web Service is contained in the following
Web Services Definition Language (WSDL) document.

4.6.1 Header

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns:wsu="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:wsp="http://www.w3.0rg/ns/ws-policy"
xmlns:wspl 2="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsam="http://www.w3.0rg/2007/05/addressing/metadata"
xmlns:wsaw="http://www.w3.0rg/2005/08/addressing"
xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"
xmlns:tns="urn:cdc:1isb:2011"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="urn:cdc:iisb:2011"
name="IISServiceNew">

4.6.2 Schema for types

<types>
<xsd:schema elementFormDefault="qualified" targetNamespace="urn:cdc:iisb:2011">

<xsd:complexType name="connectivityTestRequestType">
<xsd:sequence>
<xsd:element name="echoBack" type="xsd:string" minOccurs="1" maxOccurs="1" nillable="true"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="connectivityTestResponseType">
<xsd:sequence>
<xsd:element name="return" type="xsd:string" minOccurs="1" maxOccurs="1" nillable="true"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="submitSingleMessageRequestType">
<xsd:sequence>
<xsd:element name="username" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"/>
<xsd:element name="password" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"/>
<xsd:element name="facilityID" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"/>
<xsd:element name="hl7Message" type="xsd:string" minOccurs="1" maxOccurs="1" nillable="true"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="submitSingleMessageResponseType">
<xsd:sequence>
<xsd:element name="return" type="xsd:string" minOccurs="1" maxOccurs="1" nillable="true"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="soapFaultType">
<xsd:sequence>
<xsd:element name="Code" type="xsd:integer" minOccurs="1"/>
<xsd:element name="Reason" type="xsd:string" minOccurs="1"/>
<xsd:element name="Detail" type="xsd:string" minOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="UnsupportedOperationFaultType">
<xsd:sequence>
<xsd:element name="Code" type="xsd:integer" minOccurs="1"/>
<xsd:element name="Reason" fixed="UnsupportedOperation"/>
<xsd:element name="Detail" type="xsd:string" minOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="SecurityFaultType">
<xsd:sequence>
<xsd:element name="Code" type="xsd:integer" minOccurs="1"/>
<xsd:element name="Reason" fixed="Security"/>
<xsd:element name="Detail" type="xsd:string" minOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MessageToolLargeFaultType">

Transport Layer Protocol Specification 7 9/4/2015

<xsd:sequence>
<xsd:element name="Code" type="xsd:integer" minOccurs="1"/>
<xsd:element name="Reason" fixed="MessageTooLarge"/>
<xsd:element name="Detail" type="xsd:string" minOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="connectivityTest" type="tns:connectivityTestRequestType"/>

<xsd:element name="connectivityTestResponse" type="tns:connectivityTestResponseType"/>
<xsd:element name="submitSingleMessage" type="tns:submitSingleMessageRequestType"/>
<xsd:element name="submitSingleMessageResponse" type="tns:submitSingleMessageResponseType"/>
<xsd:element name="fault" type="tns:soapFaultType"/>

<xsd:element name="UnsupportedOperationFault" type="tns:UnsupportedOperationFaultType"/>
<xsd:element name="SecurityFault" type="tns:SecurityFaultType"/>

<xsd:element name="MessageToolLargeFault" type="tns:MessageToolLargeFaultType"/>

</xsd:schema>
</types>

4.6.3 Message definitions
<!- Fi
<message name="connectivityTest Message">
<documentation>connectivity test request</documentation>
<part name="parameters" element="tns:connectivityTest" />
</message>

itions -->

<message name="connectivityTestResponse Message">
<documentation>connectivity test response</documentation>
<part name="parameters" element="tns:connectivityTestResponse" />
</message>

<message name="submitSingleMessage Message">
<documentation>submit single message request.</documentation>
<part name="parameters" element="tns:submitSingleMessage" />
</message>

<message name="submitSingleMessageResponse Message">
<documentation>submit single message response</documentation>
<part name="parameters" element="tns:submitSingleMessageResponse" />
</message>

<message name="UnknownFault Message">
<part name="fault" element="tns:fault"/>
</message>

<message name="UnsupportedOperationFault Message">
<part name="fault" element="tns:UnsupportedOperationFault"/>
</message>

<message name="SecurityFault Message">
<part name="fault" element="tns:SecurityFault"/>
</message>

<message name="MessageTooLargeFault Message">

<part name="fault" element="tns:MessageTooLargeFault"/>
</message>

4.6. 4 Operatlon/transactlon declarations

<portType name:"IlsiPortType">
<operation name="connectivityTest">
<documentation>the connectivity test</documentation>
<input message="tns:connectivityTest Message" wsaw: Action="urn:cdc:iisb:2011l:connectivityTest"/>
<output message="tns:connectivityTestResponse_ Message"
wsaw:Action="urn:cdc:iisb:2011:connectivityTestResponse"/>
<fault name="UnknownFault" message="tns:UnknownFault Message"/> <!-- a ge]
<fault name="UnsupportedOperationFault" message="tns:UnsupportedOperationFault Message"/> Ll==
portedOperat 1 soap

</operation>

<operation name="submitSingleMessage">

<documentation>submit single message</documentation>

<input message="tns:submitSingleMessage Message" wsaw:Action="urn:cdc:iisb:2011:submitSingleMessage"/>

<output message="tns:submitSingleMessageResponse Message"
wsaw:Action="urn:cdc:iisb:2011:submitSingleMessageResponse"/>

<fault name="UnknownFault" message="tns:UnknownFault Message"/> </-- a

<fault name="SecurityFault" message="tns:SecurityFault Message"/>

<fault name="MessageToolLargeFault" message="tns:MessageTooLargeFault Message"/>

Transport Layer Protocol Specification 8 9/4/2015

</operation>
</portType>

4.6.5 SOAP 1.2 Binding

<ll== 1.2 B ng —-—>
<binding name="client Binding Soapl2" type="tns:IIS PortType">
<soapl2:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="connectivityTest">
<soapl2:operation soapAction="urn:cdc:iisb:2011:connectivityTest" />
<input><soapl2:body use="literal" /></input>
<output><soapl2:body use="literal" /></output>
<fault name="UnknownFault"><soapl2:fault use="literal" name="UnknownFault"/></fault>
<fault name="UnsupportedOperationFault"><soapl2:fault use="literal"
name="UnsupportedOperationFault"/></fault>
</operation>
<operation name="submitSingleMessage">
<soapl2:operation soapAction="urn:cdc:iisb:2011:submitSingleMessage" />
<input><soapl2:body use="literal" /></input>
<output><soapl2:body use="literal" /></output>
<fault name="UnknownFault"><soapl2:fault use="literal" name="UnknownFault"/></fault>
<fault name="SecurityFault"><soapl2:fault use="literal" name="SecurityFault"/></fault>
<fault name="MessageTooLargeFault"><soapl2:fault use="literal" name="MessageToolLargeFault"/></fault>
</operation>
</binding>

4.6.6 Service definition and footer

<!-- Service definition
<service name="client Service">
<port binding="tns:client Binding Soapl2" name="client Port Soapl2">
<soapl2:address location="http://localhost/WebApp/IISService" />
</port>
</service>
</definitions>

N

Transport Layer Protocol Specification 9 9/4/2015

5 Document Management

Table 5 Document Management

' Changed By Comments Version #
8/25/2011 Transport Initial Version 1.0
Layer Expert
Panel
6/4/2014 E. Larson Added Appendix B to document the 1.1

end-of-line terminator disagreement
between standards.

9/3/2015 E. Larson Added conformance statements to align | 1.2
with WSDL. Added clarifying
statements where appropriate based on
community input. No changes were
made to the WSDL (Section 4.6)

Transport Layer Protocol Specification 10 9/4/2015

6 Appendix A: SOAP-Based Asynchronous/Batch
Exchange

6.1 Overview

When recommending a transport layer for health information system to 1S
interoperability, it was the goal of the transport layer expert panel to address different
processing scenarios and payload sizes, including synchronous and asynchronous (and/or
batch) exchanges. Through a detailed, consensus-based research process, the panel came
to the conclusion that SOAP web services was the best choice to handle all of the current
and future needs of I1S.

In order to truly promote interoperability, the panel recognized it was important to also
define a standard interface for the recommended SOAP transport layer. The immediate
need was for synchronous HL7 message exchange, so that interface was defined first.

Through investigation and detailed meetings, the unique requirements for asynchronous
and/or batch processing were also discovered. The remainder of this appendix will
discuss asynchronous and/or batch processing through SOAP, the specific differences
between defining a standard for synchronous and asynchronous exchanges, and the
panel’s action plan.

6.2 Asynchronous Exchange and SOAP

From a purely technical standpoint, SOAP has no limitations preventing it from
supporting asynchronous processing. Further, through the use of Message Transmission
Optimization Mechanism (MTOM), the size of the payload being sent across the wire is
not an issue. Today, several I1S, including Nevada, Massachusetts, Arizona, and Kansas,
provide the ability to submit large payloads for processing through a SOAP web service.

While several I1S have asynchronous and/or batch processing via a SOAP web service,
most of them have unique solutions which integrate their 1S batch processing and
business processes into their SOAP web service definition. This creates a challenge
when trying to define a standard interface usable by all trading partners.

However, it was acknowledged from the outset that the recommended transport layer was
not intended to replace existing functional interfaces. With this in mind, and the large
majority of asynchronous and/or batch exchanges already functional, the need for a
SOAP-based standard interface for asynchronous exchange is likely small. Itis
acknowledged that the need exists, but it is assumed to be small in comparison to the
need for a synchronous standard interface.

6.3 Defining a Standard Interface

Defining a standard interface to submit a batch payload for asynchronous processing is
largely trivial through SOAP. In fact, the expert panel had basic consensus on a
submission operation through the use of MTOM. The difficulty in a standard interface
for asynchronous process exists after the batch payload has been submitted for

Transport Layer Protocol Specification 11 9/4/2015

processing. Once a batch payload is in the hands of an IS, it can take on multiple status
codes defining the condition or state of the payload. These status codes are unique to
each 11S.

When the sending system wants to check on the submission, each 1S may have a unique
response. Without an already defined standard set of status codes, or an agreement across
all 11S on what these codes should be, it becomes a futile effort to assume the correct
solution. A simple set of status codes might be: “working,” “finished,” “not found,” and
“error.” However, this may not be sufficient for all IIS.

Further, it is unknown at this time what each I1S uses to uniquely identify a submission
and how that might be consistently messaged through a standard interface. That is, if the
sending system cannot receive and process the unique identifier for a submission, it can
never ask for an update or the response payload. While this problem isn’t as challenging
to solve as the status code problem, it is a known condition at this time.

6.4 Action Plan

As noted above, the panel acknowledges asynchronous and/or batch processing still has
its place in interoperability and is easily accomplished from a technical standpoint using
SOAP. However, there is no need to replace processes that are already working well. As
a result, the panel is focusing its work on the immediate need to define a national
standard interface for synchronous transmissions of HL7 messages. If there is a
demonstrated need for a national standard interface for asynchronous processing as well,
the panel will engage the interested parties and address the need through a consensus-
based approach.

Transport Layer Protocol Specification 12 9/4/2015

7 Appendix B: Implementation Notes

7.1 SOAP, HL7, and End-of-Line Terminators

A subtle, but important, disagreement between the HL7 V2 standard and an underlying SOAP
standard was uncovered during testing with a new provider in Rhode Island in spring 2014.

The issue has to do with end-of-line terminators.
e The HL7 standard dictates that all lines shall end with a carriage return (i.e.: ASCII 13, \r,
or #xD).
o The underlying XML standard used by SOAP dictates that all end-of-line terminators
should be normalized to a line feed (i.e.: ASCII 10, \n, or #xA).

As such, it is possible that the carriage returns in an HL7 message could be (as proven in Rhode
Island) converted to line feeds through SOAP transmission. Depending upon your HL7 parser,
this could be problematic.

As of March 2014, 26 1IS were either in testing or production with the CDC WSDL so it was
important to consider the ramifications of any suggested resolutions. At this time the
suggestion is a resolution on the IIS side. This will eliminate the need to roll-out an updated
version of the WSDL and most importantly will not require changes by providers.

The suggested resolution is one of two approaches.
1. Prior to calling the HL7 parser in your IS, perform a quick find/replace to ensure
carriage returns are present
2. Adjust the HL7 parser to allow more than just carriage returns to mark the end-of-line
terminator

Transport Layer Protocol Specification 13 9/4/2015

