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Summary
What is already known on this topic?

The shared frailty model has been a popular way of analyzing
clustered survival data, though other methods, like the marginal Cox
model, handle this data.

What is added by this report?

We used data on leukocyte telomere length and stroke to demonstrate
that the marginal Cox model produces very similar results to the
shared frailty model.

What are the implications for public health practice?

The marginal Cox model adds to the toolbox for analyzing clustered
survival data in population genetic studies, which investigate the
hereditary component of human diseases. Researchers may choose
the marginal Cox model when the model will be interpreted at the pop-
ulation level and a robust covariance estimator is required.

Abstract

Researchers need applicable tools to analyze and account for fa-
milial relatedness when working with family study data. In this
brief article, we describe the application of 2 modeling strategies
for studying the association between leukocyte telomere length
and incident stroke based on data collected in the Strong Heart
Family Study: the shared frailty model and the marginal Cox pro-
portional hazards model. Although these modeling strategies are
based on different theoretical frameworks, their results were simil-
ar. Future simulation study may help us to better understand the
limitations and performance of each strategy in a controlled envir-
onment.

Objective

The Strong Heart Study (SHS) is a cohort study of cardiovascular
diseases (CVD) among American Indians living in Arizona, Ok-
lahoma, North Dakota, and South Dakota. In Phase IV of the SHS
(also called the Strong Heart Family Study [SHFS]), members of
91 families from 12 tribal communities were recruited and as-
sessed for demographic, clinical, and behavioral characteristics
(1,2). Participants have been followed for CVD outcomes to the
present day. When analyzing data from the SHFS, we must ad-
dress relatedness among family members.

The shared frailty model is one approach for analyzing clustered
time-to-event data (3). We used it previously to determine the as-
sociation between leukocyte telomere length (LTL) and cardi-
ometabolic outcomes, such as stroke (4), carotid atherosclerosis
(5), and diabetes (6). The marginal Cox proportional hazards mod-
el provides another approach to account for familial relatedness in
survival data analyses (7). However, its application is less demon-
strated in family studies.

In this report, we used both the shared frailty and the marginal
Cox proportional hazards models to study the association between
LTL and time-to-incident stroke. We hypothesized that results
generated by both approaches would be similar. We aimed to illus-
trate the use of multiple tools for researchers to appropriately ana-
lyze family study data.

Methods

The Cox proportional hazards model (Cox model) is commonly
used to identify risk factors that affect survival time among inde-
pendent participants. To analyze clustered data, the shared frailty
model adds a random frailty term to the Cox model, which mod-
els the effect of cluster membership on the outcome risk (3). Con-
versely, the marginal Cox model (7-9) accounts for family re-
latedness by using a robust sandwich covariance estimator, which
makes no distributional assumptions about the model parameters
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and is consistent even when model assumptions (eg, independ-
ence) are violated (10,11).

Full details about the study design were published previously
(1,2). We included data from 4,635 people from the original and
family cohorts who were stroke-free at the time of their baseline
examinations (1989—-1991 and 2001-2003, respectively) and had
LTL measurements. Participants were followed through Decem-
ber 31, 2018, for fatal and nonfatal stroke events (12,13), and they
all gave informed consent. This study was approved by the institu-
tional review boards of the participating institutions, the participat-
ing tribes, and area offices of the Indian Health Service (4).

Summary statistics were generated, and P values were obtained by
using the y? test or Mann—Whitney test. Four shared frailty and
marginal models were built in the same manner with time to first
stroke as the outcome. We first studied the univariable association
between age-adjusted LTL (in log quartile) and stroke. We then
built 3 multivariable models with demographic (Model 2), behavi-
oral (Model 3), and clinical (Model 4) covariates added to the
models sequentially to create our final model. Covariates were
chosen based on our previous work and literature review (4). Haz-
ard ratios for each log LTL quartile were obtained. Type III tests
assessed the significance of the frailty term. All models were cre-
ated in SAS, version 9.4 (SAS).

Results

Among our 4,635 participants, 2,645 belonged to 87 families, and
1,990 were independent individuals considered as single-member
families. Family sizes ranged from 1 to 109 (median, 31). In total,
301 participants experienced incident stroke with a median follow-
up time of 16.8 years (interquartile range: 15.0-20.3) (Table 1).
Those who had a stroke event were older, had higher blood pres-
sure, and had worse lipid profiles (higher triglyceride, higher total
and LDL cholesterol, and lower HDL-cholesterol) than parti-
cipants free from stroke event during the follow up. The preval-
ence of atrial fibrillation, diabetes mellitus, and smoking was high-
er in those with a stroke event than those without a stroke event.

Across both the shared frailty and marginal models, point estim-
ates, Cls, and P values are almost the same, except for the univari-
ate models that showed about 5%—10% differences (eg, hazards
ratio of 0.88 and 0.90 from the frailty model vs 0.83 and 0.98 from
the marginal model) (Table 2). For the shared frailty model, the
frailty term was significant for all models except Model 1 (P =
.00), though results for all models were similar to independent
Cox models. Both methods showed that after adjustment for
demographic, behavioral, and clinical covariates, participants
whose LTL was in the third quartile had significantly lower risk of
developing a stroke event during the 17-year follow-up period

with a hazard ratio of 0.66 (95% CI, 0.46—0.94; P value, .02) com-
pared with participants with LTL in the first quartile. Participants
with LTL in the second or fourth quartiles did not have signific-
antly different risks of developing a stroke compared with parti-
cipants with LTL in the first quartile. The shared frailty model and
the marginal model generated similar estimates on the same set of
data collected in the SHFS.

Discussion

Two modeling strategies, the shared frailty model and the margin-
al Cox proportional hazards model, generated similar estimates in
studying the association between LTL and incident stroke based
on the same data collected in the SHFS. Although previous stud-
ies have used the shared frailty model (4—6), our results show that
the less complex marginal Cox model could be considered as a vi-
able alternative for clustered data, such as family or panel data.
However, we must consider the advantages and disadvantages of
each model when choosing the best model for a situation.

The shared frailty model accounts for the relatedness between
family members by introducing a random variable called a frailty
to a Cox proportional hazards model (3). Each family is treated as
a cluster, and each individual family member is treated as a ran-
domly selected individual from that cluster. One advantage of this
model is that the differences between each of the clusters can be
easily described (14). In addition, if the frailty term is found to be
insignificant, we can reduce our model to an independent Cox
model. The shared frailty model yields more efficient estimation
when the distribution of the frailty term is modeled correctly.
However, this is prone to misspecification because choices for this
distribution are limited by software. Coefficients from the shared
frailty model should be interpreted as conditional on the unob-
served frailty term (7). In contrast, the marginal Cox proportional
hazards model uses a robust sandwich covariance estimator to ac-
count for the relatedness between family members. A benefit of
this model is that the dependence between related observations is
unspecified, which allows for greater flexibility in practice be-
cause we are not limited by our ability to correctly specify a frailty
model (7). However, this model is still somewhat reliant on the
specified model and can be affected if the coefficients are heavily
biased by unobserved covariates. The marginal model can be inter-
preted at the population level (7). Both models are useful tools for
analyzing survival data from family studies, such as the SHFS. A
simulation study of the 2 modeling strategies would be helpful for
us to better understand their limitations and performance under a
controlled environment. In addition, future studies may consider
comparing methods for clustered competing risks data. However,
it is beyond the scope of this brief article aiming to demonstrate
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the application of both methods in analyzing clustered survival
data collected from family studies.
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Tables
Table 1. Baseline Characteristics by Incident Stroke Status®
Variables Total (N = 4,635) Incident stroke (n = 301) Stroke-free (n = 4,334) Pvalue®
Leukocyte telomere length (LTL) 1.0 (0.9-1.2) 1.0 (0.8-1.4) 1.0 (0.9-1.2) .85
Age,y 48.2 (36.8-56.5) 56.2 (50.0-63.1) 47.7 (35.7-55.8) <.001
Sex, male, n (%) 1,900 (41) 120 (40) 1,780 (41) .68
Phase | Cohort, yes, n (%) 2,369 (51) 237 (79) 2,132 (49) <.001
Field sites, n (%) <.001

Arizona 499 (11) 13 (4) 486 (11)

Oklahoma 1,889 (41) 103 (34) 1,786 (41)

Dakotas 2,247 (48) 185 (61) 2,062 (48)
Education, y 12.0 (10.0-14.0) 12.0 (10.0-13.0) 12.0 (10.0-14.0) <.001
Smoking, yes, n (%) 3,089 (67) 223 (74) 2,866 (66) .005
Body mass index, kg/m? 29.9 (26.2-34.5) 30.0 (26.5-34.3) 29.9 (26.1-34.5) 77
Atrial fibrillation, yes, n (%) 270 (6) 46 (15) 224 (5) <.001
Diabetes mellitus, yes, n (%) 1,197 (26) 137 (46) 1,060 (25) <.001
Systolic blood pressure, mmHg 121.0 (111.0-132.0) 128.0 (117.0-140.0) 121.0 (111.0-132.0) <.001
Diastolic blood pressure, mmHg 76.0 (69.0-83.0) 77.0 (71.0-84.0) 76.0 (69.0-83.0) .03
Total cholesterol, mg/dL 186.0 (162.0-211.0) 192.0 (169.0-216.0) 185.0 (162.0-210.0) <.001
LDL cholesterol, mg/dL 102.0 (83.0-124.0) 106.0 (88.0-130.0) 102.0 (83.0-124.0) .006
HDL cholesterol, mg/dL 46.0 (39.0-56.0) 44.0 (37.0-54.0) 46.0 (39.0-56.0) .002
Triglycerides, mg/dL 123 (87.0-179.0) 130.0 (96.0-180.0) 122.0 (86.0-179.0) .05

Abbreviations: LTL, leukocyte telomere length; LDL, low-density lipoprotein; HDL, high-density lipoprotein.

& Continuous variables are described by using the median (first quartile, third quartile). Categorical variables are described by using as count (percentage).
Participants were monitored for stroke events for a median follow-up time of 16.8 years (interquartile range, 15.0-20.3). Values are median (interquartile

range) unless otherwise noted.

® Calculated by using the x2 test for categorical variables and the Mann—Whitney test for continuous variables.
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Table 2. The Association Between Log LTL and Time to Incident Stroke, From the Frailty and Marginal Models®

Frailty model Marginal model

Log LTL ; b . c
Model quartile Hazard ratio (95% Cl) P value Hazard ratio (95% CI) P value
Model 1, univariable model 2vs1 0.88 (0.64—1.23) 0.46 0.83 (0.61-1.13) .24

3vs 1 0.53 (0.37-0.77) <.001 0.54 (0.38-0.75) <.001

4vs 1 0.90 (0.66-1.23) 0.50 0.98 (0.73-1.30) .87
Model 2, adjusted for demographic covariates® 2vs1 0.95 (0.69-1.30) .75 0.95 (0.70-1.30) .75

3vs1 0.61 (0.43-0.87) .007 0.61 (0.43-0.86) .005

4vs1 0.90 (0.67-1.21) .49 0.90 (0.68-1.19) 47
lk\)lleor?gllig}aa}%jgsgigtfggé:ovariates in model 2 plus 2vs1 0.97 (0.71-1.33) .86 0.97 (0.71-1.33) .86

3vs 1 0.62 (0.44-0.89) .01 0.62 (0.44-0.88) .007

4vs1 0.92 (0.69-1.24) .59 0.92 (0.70-1.22) .57
Mi%?fa{l%o?gggggffor covariates in models 2 and 3 plus (2 vs 1 0.95 (0.69-1.32) 0.77 0.95 (0.69-1.31) 77

3vs 1 0.66 (0.46-0.94) .02 0.66 (0.46-0.93) .02

4vs1 0.94 (0.69-1.26) .67 0.94 (0.70-1.25) .66

Abbreviations: LTL, leukocyte telomere length.

& For each frailty model, the significance of the frailty term was assessed using type Il tests. The frailty term was significant for Model 2 (P < .001), Model 3
(P < .001), and Model 4 (P < .001) but insignificant for Model 1 (P .06).

® pvalues calculated by using the Wald test. Significant at P < .05.

¢ Pvalues calculated by using the robust Wald test. Significant at P < .05.

d Demographic covariates: study site, cohort, and education.

® Behavioral covariates: smoking status and body mass index.

" Clinical covariates: atrial fibrillation, diabetes, systolic and diastolic blood pressure, total, LDL and HDL cholesterol.

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the U.S. Department of Health and Human Services,
the Public Health Service, the Centers for Disease Control and Prevention, or the authors’ affiliated institutions.

www.cdc.gov/pcd/issues/2025/24 _0387.htm « Centers for Disease Control and Prevention 5



