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Abstract

Introduction
The Behavioral Risk Factor Surveillance System 

(BRFSS) is commonly used for estimating the prevalence 
of chronic disease. One limitation of the BRFSS is that 
valid estimates can only be obtained for states and larger 
geographic regions. Limited health data are available on 
the county level and, thus, many have used small-area 
analysis techniques to estimate the prevalence of disease 
on the county level using BRFSS data.

Methods
This study compared the validity and precision of 4 

small-area analysis techniques for estimating the preva-
lence of 3 chronic diseases (asthma, diabetes, and hyper-
tension) by race on the county level. County-level reference 
estimates obtained through local data collection were 
compared with prevalence estimates produced by direct 
estimation, synthetic estimation, spatial data smoothing, 
and regression. Discrepancy statistics used were Pearson 
and Spearman correlation coefficients, mean square error, 
mean absolute difference, mean relative absolute differ-
ence, and rank statistics.

Results
The regression method produced estimates of the preva-

lence of chronic disease by race on the county level that had 
the smallest discrepancies for a large number of counties.

Conclusion
Regression is the preferable method when applying 

small-area analysis techniques to obtain county-level 
prevalence estimates of chronic disease by race using a 
single year of BRFSS data.

Introduction

The Behavioral Risk Factor Surveillance System 
(BRFSS) collects uniform, state-specific data on preven-
tive health practices and risk behaviors that are linked 
to chronic diseases, injuries, and preventable infectious 
diseases in adults (1). Although BRFSS provides a wealth 
of information, valid direct estimation of prevalence can 
only be calculated at state and larger geographic levels 
because of the structure of the sampling design and 
weighting scheme (2,3). The lack of data at the local level 
hinders the ability to evaluate the effectiveness of public 
health policy, local public health programs, and public 
health interventions (4).

Several statistical procedures for small-area analysis 
have been developed to help fill the local data void. Small-
area analysis is a statistical procedure that provides a bet-
ter estimate when the sample size for an area is too small 
or nonexistent. These approaches, as discussed in Jia et al 
(5), address the issue of sample size and, therefore, allow 
for increased precision of estimates.

The most commonly used methods include direct esti-
mation, synthetic estimation, spatial data smoothing, and 
regression analysis (6). Each has unique advantages and 
disadvantages. The simplest, direct county-level estima-
tion, is not recommended; when using BRFSS, estimates 
should only be produced when there are more than 50 
respondents in a subgroup. The synthetic method applies 
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statistics for the state to counties based on demographic 
characteristics. Although estimates are easy to calculate, 
they often have bias as they tend to cluster around the 
state average, are heavily influenced by the more densely 
populated areas within the state, and often do not reflect 
the actual variation in the patterns of disease among 
the counties within a state. Spatial data smoothing uses 
data from neighboring counties to calculate a weighted 
moving average. Spatial estimates are dependent on the 
amount of smoothing and the amount of data available 
to produce estimates. This approach does not perform 
well for counties near the US border because there are 
fewer neighbor counties and, thus, less data available to 
produce estimates. Multivariable regression analysis with 
area-specific data as predictors has 2 major advantages 
over the other approaches: the estimates often have only 
a small amount of bias, and the quality of estimation can 
be evaluated through model evaluation statistics. Major 
limitations of this approach, however, are that models 
are often multi-level and require county-level data, model 
building is not straightforward and often time consuming, 
and there is no systematic way to select a final model.

It is unknown which small-area technique produces the 
most valid and precise results for racial subgroup esti-
mates on the county level, and the validity and precision of 
the BRFSS for county-level estimation of chronic disease 
prevalence have not been discussed in the literature. I 
examine the validity and precision of BRFSS for estimat-
ing the prevalence of disease by racial subgroup on the 
county level (5).

Methods

I examined the reliability and accuracy of direct estima-
tion, synthetic estimation, spatial smoothing, and regres-
sion for small-area analysis. I used each method to com-
pare 2003 BRFSS prevalence estimates with county-level 
reference estimates of asthma, hypertension, and diabetes 
for non-Hispanic whites and non-Hispanic blacks.

County-level reference estimates

County-level reference estimates were obtained for US 
counties from publicly available county-level data col-
lected in 2003 (eg, data for New York City come from the 
New York City Department of Health Community Health 
Assessment) for which the prevalence of asthma, diabetes, 

or hypertension was available or could be calculated for 
non-Hispanic whites and blacks. Most of the prevalence 
estimates by race and county used in this analysis were 
available on the Internet; other estimates were obtained 
by contacting state and county departments of health. 
For some counties, estimates were not available for all 3 
diseases or for both racial subgroups; thus, selection bias 
is possible. In the 2000 US Census, the percentage of non-
Hispanic blacks for those counties included in this analysis 
varied from 1% to 56% (an average of 9% across counties). 
Likewise, the percentage of non-Hispanic whites varied 
from 33% to 96% (an average of 77% across counties). Most 
counties had a mix of urban and rural areas; 65% of the 
population in these counties live in urban areas. Seven 
counties were urban and 10 counties were rural. Because 
of the variety of geographic locations, demographic compo-
sition, and mix of rural, urban, and suburban counties for 
which county-level estimates were obtained, I believe this 
analysis is generalizable to US counties not included in 
this analysis that have similar characteristics.

BRFSS prevalence estimates

Prevalence estimates for asthma were obtained from a 
sequence of 2 BRFSS questions. Survey participants were 
first asked, “Have you ever been told by a doctor, nurse, 
or other health professional that you had asthma?” If the 
respondents answered yes they were then asked, “Do you 
still have asthma?” Respondents responding yes to both 
questions were considered to have asthma. The prevalence 
of diabetes and hypertension were calculated using survey 
participants’ responses to the questions “Have you ever 
been told by a doctor that you have diabetes?” and “Have 
you ever been told by a doctor, nurse, or other health pro-
fessional that you have high blood pressure?” respectively. 
Respondents answering yes were then asked, “Was this 
only when you were pregnant?”; respondents answering 
“yes, but only during pregnancy” were considered as not 
having chronic diabetes or hypertension for the purpose of 
this analysis.

Estimation Methods

Direct estimation

Direct prevalence estimates for asthma, hypertension, 
and diabetes were calculated by race and county by using 
weighted 2003 BRFSS data for counties with more than 
50 respondents.
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Synthetic estimation

The synthetic estimate for county i is the sum of the 
3-way, age-race-sex tabulated rates at the state level 
for demographic category j over all demographic groups, 
weighted by the proportion of the county population in 
each demographic category:

Equation 1

where  is the estimated prevalence of disease in county 
i, nij is the number of people in county i that belong 

to demographic group j, 
 
is the total population

in county i, and  is the estimated state level age-race-
sex prevalence rates.

The demographic population estimates (nij and ni.) are 
from the 2000 census. The estimated state–level 3-way 
prevalence rates for asthma, hypertension, and diabetes 
were calculated by using weighted 2003 BRFSS data.

Spatial smoothing

Spatial prevalence estimates were obtained by using 
the weighted “head-banging” spatial data smoothing algo-
rithm (7). The median estimated prevalence rate for neigh-
boring counties was calculated (ui). The counties were then 
grouped according to whether their estimated prevalence 
rates ( ) fell above or below ui, and these 2 quantities 
were calculated:

1. high screen for county i = weighted median preva-
lence of neighboring counties ≥ui

2. low screen for county i = weighted median preva-
lence of neighboring counties <ui

The weights were based on the county population. If the 
estimated prevalence rate for county i was between the 
high and low screen, its value was unchanged. However, 
if  was larger than its high screen, then its value was 
changed to the high screen and if  was less then the low 
screen its value was changed to the low screen.

Regression

Multilevel logistic regression models with random effects 
were used to obtain county prevalence estimates:

Equation 2

logit(pij) = χ’ β + αi

where xij = (χij1,...,χij)’ is the vector of q covariates, β = 
(β1,...,βq)’ is the corresponding vector of fixed effects, and 
αi is the random effect for county. Demographic variables 
were added to the model first, followed by county-level 
socioeconomic characteristics obtained from 2000 census 
data including poverty rate, median household income, 
and proportion of adults with less than high school educa-
tion. The random effect was assumed to be normally dis-
tributed with a mean of 0 and a variance equal to σ2. If the 
random effect term was too small to affect the accuracy of 
estimated county prevalence rates (<0.001%), to simplify 
analysis, the random effects were not estimated and were 
assumed to have a value of 0. Even when the random 
effect term was assumed to be 0 it was still included in 
the model to improve estimation for the fixed effects and 
to ensure correct selection of the variables for inclusion in 
the model (8,9). A final model was selected on the basis of 
significance of covariates and model fit. Once the regres-
sion parameters were calculated, I estimated the county 
prevalence rates by race.

Data analysis

Analysis was conducted by using SAS/STAT version 9.1 
(SAS Institute, Inc, Cary, North Carolina) with SAS-call-
able Sudaan version 9.0 (RTI, Research Triangle Park, 
North Carolina) to adjust for the complex sampling design 
in BRFSS (10-13). BRFSS county prevalence estimates 
obtained by using the small-area analysis techniques were 
validated by comparing them to the county-level reference 
estimates obtained through local data collection. Counties 
for which no reference estimate was available were 
excluded from analysis. Discrepancies between the county-
level reference estimates (ci) and the BRFSS estimated 
prevalence rates (pi) were examined by using scatterplots 
of BRFSS estimates (pi) versus county level reference esti-
mates (ci) and discrepancy statistics (5):

1. Pearson and Spearman correlation coefficients
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2. Mean square error (MSE):
 

3. Mean absolute difference (MAD): 

4. Mean relative absolute difference (MRAD): 

5. Rank statistics (14): 

In each equation, N is the number of counties (5).

BRFSS does not identify counties with a population 
of less than 150,000; these counties were excluded from 
analysis. Pearson correlation coefficient, MSE, MAD, and 
MRAD are parametric statistics and assume normality 
in test assumptions. For the purpose of this analysis I 
assumed normality of the errors between the small-area 
BRFSS estimates and the county-level reference estimates 
via the central limit theorem; all discrepancy statistics 
were based on sample sizes greater than 50. Spearman 
correlation coefficients and rank statistics are provided as 
nonparametric alternatives in case the normality assump-
tion is violated.

The Pearson and Spearman correlation statistics are 
numerical representations of scatterplots and provide a 
more objective way to test the hypothesis that the BRFSS 
prevalence estimates and county-level estimates are lin-
early correlated. Ideally, the small-area BRFSS prevalence 
estimates (pi) would be equal to the county-level reference 
estimates (ci) and therefore lie on straight line with a 45-
degree angle. By using the Pearson correlation coefficient 
and its nonparametric counterpart the Spearman correla-
tion coefficient, I test the null hypothesis that the BRFSS 
estimates and reference estimates are not linearly related. 
Correlation coefficients close to 1 would indicate that 
BRFSS prevalence estimates and county-level estimates 
have a high linear correlation, thus the small-area analy-
sis technique produces valid and precise estimates. Good 
small-area analysis prevalence estimates would have MSE, 
MAD, MRAD, and rank statistics close to 0, indicating very 
little discrepancy with county-level estimates.

Results

Of the 1,937 BRFSS estimates of race by county, 906 
(47%) had subgroup sample sizes of less than 50, the 
minimum needed for direct estimation of prevalence (2). 
For counties with subgroup sample size more than 50, 
the average number of respondents per subgroup was 124 
(minimum of 51 and maximum of 970).

For the prevalence of asthma by race, 190 BRFSS preva-
lence estimates were compared with the corresponding 
190 county-level reference estimates. Direct estimation 
produced the largest discrepancy statistics (Table 1). 
Synthetic estimation showed improvements over direct 
estimation, producing the largest significant correlation 
coefficients. Spatial smoothing ranged from second worst 
(algorithm applied once) to second best (algorithm repeat-
ed 20 times). Regression was the best small-area analysis 
technique for estimating the prevalence of asthma by race 
at the county level (Table 1); although the correlation 
coefficients were not significant, they were closest to 1 in 
magnitude, and the MSE, MAD, MRAD, and rank statis-
tics were closest to 0.

For the prevalence of diabetes by race, 181 county-level 
reference estimates were compared with the correspond-
ing BRFSS prevalence estimates. Direct estimation had 
the largest discrepancy. Spatial smoothing ranged from 
second best to second worst depending on the amount 
of smoothing (number of times algorithm is repeated). 
Synthetic estimation performed slightly better than direct 
estimation and produced significant correlation coeffi-
cients. Regression showed significance only in the non-
parametric Spearman correlation coefficient. Overall, the 
regression approach showed the least amount of discrep-
ancy, making it the better small-area analysis technique 
for estimating the prevalence of diabetes by race on the 
county level (Table 2).

For the prevalence of hypertension by race, 182 county-
level reference estimates were compared with BRFSS esti-
mates. Direct estimation and spatial smoothing showed the 
biggest discrepancies (Table 3). Even when the amount of 
smoothing was increased (algorithm repeated >20 times), 
this technique consistently displayed large discrepancies. 
Synthetic estimation showed improvements over direct 
estimation and spatial smoothing. Regression showed 
marginal improvements over synthetic estimation.
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Discussion

I examined data for non-Hispanic whites and non-
Hispanic blacks because the prevalence of asthma, hyper-
tension, and diabetes were consistently measured for 
these groups. Other racial/ethnic groups for which refer-
ence prevalence estimates are consistently measured 
were hard to obtain because of the small sample size (eg, 
Asians, Native Americans, Pacific Islanders, Hispanics). 
Generalizability of small-area analysis techniques for 
these subpopulations has not been validated and is an 
area for future research.

Direct estimation had the largest discrepancies, likely 
because the BRFSS is not designed to produce subpopu-
lation county-level estimates because of small subgroup 
sample sizes on the county level. This was especially 
true for non-Hispanic blacks and demonstrates a major 
limitation of this technique. Although regression appears 
to be the best small-area analysis technique, synthetic 
estimation and spatial smoothing often performed bet-
ter than regression when no county-level variables were 
significantly associated with the outcome. Other smooth-
ing methods may be appropriate for this type of analysis, 
which raises questions about the proper choice of smooth-
ing technique and choosing the appropriate degree of 
smoothing for estimation. The synthetic method has been 
used widely in public health practice, likely because of the 
ease of calculation. However, researchers have also used 
Bayesian methods and complex regression analysis to 
produce estimates; a comparison of these approaches may 
also prove beneficial.

This area of research is limited by the lack of system-
atic local data collection of chronic disease prevalence by 
race/ethnicity. Development and refinement of small-area 
analysis techniques relies heavily on statistically sound 
reference estimates. It was challenging to obtain county-
level reference estimates by race; this was especially 
true for non-Hispanic blacks as the estimates were often 
unstable because of small sample sizes. There is a poten-
tial for selection bias based on publicly available data used 
as reference estimates.

Statistically sound local-level estimates of chronic dis-
ease by race may improve our ability to address racial/
ethnic disparities in chronic disease using evidence-
based public health. Small-area analysis can provide reli-
able county-level estimates for the prevalence of chronic  

disease by race using BRFSS data when a county has few 
respondents. BRFSS data is a probability sample of US 
households with a telephone. Telephone coverage varies 
by state and subpopulation, which raises issues of selec-
tion bias in BRFSS data collection. Despite its limitations, 
BRFSS remains the best available health data for sub-
state estimation.
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Tables

Table 1. Discrepancy Statistics Comparing 2003 Behavioral Risk Factor Surveillance System (BRFSS) Estimates and 2003 
County-Level Estimates for Prevalence of Asthmaa

Discrepancy Statistics Direct Spatial Smoothing Synthetic Regression

Pearson correlation coefficient 0.02�0 −0.0272 0.762� 0.8277

Spearman correlation coefficient −0.0413 0.039� 0.6820 0.7721

Mean square error (MSE) 0.2768 0.30�� 0.1�29 0.1�96

Mean absolute difference (MAD) 0.���3 0.�688 0.3��7 0.3��1

Mean relative absolute difference (MRAD) 3.9961 3.8929 0.6�81 0.�278

Rank statistics 0.31�1 0.3�63 0.2372 0.1�71
 

a Correlation coefficients close to 1 indicate that BRFSS prevalence estimates and county-level estimates have a high linear correlation, thus producing valid 
and precise estimates. MSE, MAD, MRAD, and rank statistics close to 0 indicate little discrepancy with county-level estimates.

Table 2. Discrepancy Statistics Comparing 2003 Behavioral Risk Factor Surveillance System (BRFSS) Estimates and 2003 
County-Level Estimates for Prevalence of Diabetesa

Discrepancy Statistics Direct Spatial Smoothing Synthetic Regression

Pearson correlation coefficient 0.0�1� 0.1096 0.0��1 0.1328

Spearman correlation coefficient 0.1291 0.1�06 0.2068 0.2309

Mean square error (MSE) 0.0121 0.0�27 0.0083 0.0020

Mean absolute difference (MAD) 0.06�� 0.2396 0.0�63 0.03�1

Mean relative absolute difference (MRAD) 0.8819 2.0876 0.607� 0.����

Rank statistics 0.0872 0.1622 0.0688 0.0178
 

a Correlation coefficients close to 1 indicate that BRFSS prevalence estimates and county-level estimates have a high linear correlation, thus producing valid 
and precise estimates. MSE, MAD, MRAD, and rank statistics close to 0 indicate little discrepancy with county-level estimates.
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Table 3. Discrepancy Statistics Comparing 2003 Behavioral Risk Factor Surveillance System (BRFSS) Estimates and 2003 
County-Level Estimates for Prevalence of Hypertensiona

Discrepancy Statistics Direct Spatial Smoothing Synthetic Regression

Pearson correlation coefficient 0.0�99 0.198� −0.0525 0.0�73

Spearman correlation coefficient 0.0913 0.129� −0.0731 0.21�3

Mean square error (MSE) 0.0�66 0.10�6 0.0386 0.031�

Mean absolute difference (MAD) 0.1382 0.2396 0.1987 0.16��

Mean relative absolute difference (MRAD) 0.�809 0.8327 0.2720 0.2067

Rank statistics 0.180� 0.2601 0.096� 0.0�3�
 
a Correlation coefficients close to 1 indicate that BRFSS prevalence estimates and county-level estimates have a high linear correlation, thus producing valid 
and precise estimates. MSE, MAD, MRAD, and rank statistics close to 0 indicate little discrepancy with county-level estimates.


