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MODEL FOR THE STRUCTURE OF ROUND-STRAND WIRE ROPES

By Richard C. Wang, * Anthony J. Miscoe, 2 and William M. McKewan 3

ABSTRACT

The behavior of wire ropes used in hoiging is not wdl undersood. In an effort to improve this
understandinghe structure of round-strand wire ropes was andyzed. This report provides a generdized
mathematical model that completely describes the geometry of the wicees#ts of two sets of vector
equationsandisvdidfor any round-srand wirerope. One st of equationsisused to tracethe pathsof wires
that have the form of asingle hdlix; the other is used for the paths of double hdica wires. The specific
madd for a 33-mm 6x19 Sede, indegpendent wire rope core (IWRC), right regular lay wire rope was
presentedsan example. The pathsand the geometric propertiesof thewires, which indudethepath length
per lay of srand, the curvature, and the torson, were determined from this modd. The effects of grain
deformation were analyzed, resulting in a system of equdibodetermining the structurd parameters of
thedeformed rope. Infuturework, themodd could be used to andyzewireropesof different congructions
so that a more scientifically based understanding of rope behavior can be established.

M echanical engineer.

2Mechanical engineer (retired).

SPhysical scientist.

Pittsburgh Research Laboratory, National Institute for Occupational Safety and Health, Pittsburgh, PA.



INTRODUCTION

Wire ropes are usd for tranamitting tendle forces The
main charadteridicsthat mekethem so wdl suited to thisfunc-
tion are flexibility and srength. Wire ropes are used in many
goplicationsinvalvingthesafety of people, suchasdevaors, ski
tows andaanes  In minehoiding systems wireropeisusadto
trangport personnd, product, and supplies between surface and
underground. The condition of therope deteriorates during use
duetofaigue wear, and corroson. Becausethefalureof awire
ropecan becatagrophic, periodicingpectionisnesded sothet the
dedson can be made asto whether the rope should beretired.

Mine sefety research has long been concerned with
improvinghe understanding of ropebehavior toforestdl the
hazardoususe of a degraded rope yet prevet the
uneconomica, premature retirement of Hill-ussful rope.
Becausghereiswidegoread disagreement among oecidists
withregard to theindicators and methods now used to assess
hoi strope condition, the Nationd Institute for Occupationd
Saf etyand Hedlth (NIOSH), Pittsburgh Research L aboratory,
studi edthe factors regponsible for the degradation of hoist
ropesso that abetter understanding of rope performancecan
be devel oped.

The current Federd retirement criteria for wire ropes
usedin mine hoiging specify the dlowable reductions of
ropediameter and outsdewirediameter and thelocationand
number of broken wires [30 CFR* 56.19024, 57.19024,
75.143477.1434(1997)]. However, thar effectsonstrength
loss for ropes of different condructions have not been
properly consideredThiswill lead to removing wire ropes
from service a different stages where the actud loss of
strengthis ether less or more than what isanticipated. To
remedythis deficiency, the knowledge of how thetotd load
i sdistributed among thewiresin different rope constructions
needs to be acquired. In generd, the load didribution is
dependent not only on theeoss-sectiond area of wires, but
also on the specific arrangement of wiresin arope.

The wire dresses in an indgpendent wire rope core
(IWRC) were compared by Cogdlo [1990]. It was found
that,for 17,379 N (3,907 Ib) of load gppliedtotheIWRC, the
normda sress was 310,264 kPa (45,000 ps) in the centrd
wireof the center strand and 279,196 kPa (40,494 ps) inthe
centralwireof theoutsdesrand. They werenot only sgnif-
icantly different, but dso consderably higher than 247,591
kPa (35,910 psi), the nominal stressnputed by taking the
total load and dividing it by the totd metdlic area. It is
thereforebdieved that the load distribution must be con-
sidered for different rope congructions to prevent
catadrophic falure of ropes in service To do this, an
understandingdf the wire geometry that affects the load
distribution musdirst be acquired. Although mathematica
modes have been usad to sudy wire geometry by many
researchersn the past, these modds can be used only for
single hdicd wires Lee [1991] presented two sats of
Cartesiancoordinate equations in matrix form for double
helical wires, but did not give detalled derivation of the
equati ons.One st of theequationswasfor regular lay ropes;
the other was for lang lay ropes.

Inthisstudy, theropesructurewasandyzed, and agen-
eralizedmathematicad modd describingthewiregeometry in
anyropeconsgructionwithround srandswasdevd oped. The
modelcontains arotation ratio, termed "rdaiverotation” in
thi sreport, which characterizes the re ationship between the
wireand the strand hdlices. In the use of rope with theends
restrained from rotating, this reative rotaion remans
constant thus reducing the parameters in the moddsto the
angledf wire rotation only. The modd is generd enough
thatany combination of wireand strand lay directionscan be
handl edf thestated sign conventionsfor theanglesof srand
and wire rotation and the relative rotation are followed.

DESCRIPTION OF ROPE STRUCTURE

STRUCTURAL ELEMENTS

A wirerope is a sructure composed of many individud
wires. A typica wireropeiscomposed of two mgor structurd
elements,as shown in figure 1. One is the srand that is
formed byhdicaly winding or laying wires around a centra
wireor a srand core  Different shapes of drand may be
formeddegpending on the shape of the core. For example, in
trianglar srand condructions, triangular cores may be
conposed of triangular wires or of round wires lad in
triangles. Only a wire rope made of round strands was
analyzed irthisreport. The other mgor sructurd dement is
the core around which the strands are

febqstyrwiet Sitkeg LG s FRCRfalenara Tfibers, poly-
propylenepr sted that provide proper support for the strands
under bending and loading in nooma uss The mos
commonlyused cores are fiber core, independent wire rope
core (IWRC), and wire strand core (WSC).

Althaugh the strand can be lad in any one of many
speci fi geometricarrangementsand compasad of any number
of wires the rope dso can have any number of drands
Thereforewire rope generdly isidentified by the number of
strands, the nominal or exact numbEwiresin each strand,



andits specific geometric arangement. When wiresarelad
in the direction oppodte to that of the srands, the rope is
cdled aregular lay rope. When wires are laid in the same
direction as



that of the strands, the ropeis cdled alang lay rope. If the
strandsarelaid into theropeto theright inafashionsmilar to
the threading in a right-hand bolt, they are right lay rope
strands. Conversdly, strands laid into the rope to the left are
left lay rope strands.  Different combinations of these wire
ropelaysareshowninfigure2. The WireRopeUsarsManual
[WireRope Technicad Board 1993] contains more detailed
informati oronwireropeidentificationand congruction. Most
of the rope produced today is preformed; this meansthat the
wiresare permanently shaped into the hdica form they will
assumentherope Thismanufacturing processdiminatesthe
tendencyof thewiresto unlay, usudly hazardoudy, whenthey
are unrestrained or when the rope is cut.

CLASSIFICATION OF WIRES

It is assumed in this study that dl wires have acircular
crosssection and remain circular when they are stretched or
bent. The centroidd axis, which lies dong the center of a
wire,is sdected to represent the path of the wire and used to
study its geometric characteridtics that are rdaed to wire
stress. The centroidakis of the centra wire of astrand dso
represents the path of the strand.

Based on the dructurd dements in a wire rope as
describedibove, thereisa most onestraight wirein astraight
rope. Itislocated in the center of aWSC or IWRC rope. The
remaning wires can be dasdfied geometricdly into two
groups: singlehdicesor double hdices Theouter wiresina
straightstrand used as the WSC have a sngle hdicd form

because they are helically wound only once around a straight

axis. When adrandishdicdly wound into arope, the centra
wiredso hasasnglehdicd form. All of theother wireshave
a double hdicd form because they are wound twice, once
aroundthe grand axis and another around the rope axis
Howeverthey remainsnglehdicesrdativetothecentrd wire
of the strand in which they are wound. Thisrdaionship is
important in the modeling of a double helical wire.

STRUCTURAL PARAMETERS

The fallowing basic parameters specifying the hdicad
structure are defined; the symbols representing them in the
mathematical model are shown in parentheses.

1. Srandhdix axis(Z): Theaxisof the rope around
whichthesrandsarehdicaly wound to form arope or around
whichthewires are hdicaly wound to form the center strand
of arope. The postive direction of the axisis defined to be
the direction that the helix advances.

2.  Wirehdixaxis(W): Thecentroidd axisof thehd-
ical wirearound which other wiresarehdicaly woundtoform
adrand. Itisdsothecentroidd axisof ahdicd strand. The
positivedirection of the axisisdefined to be thedirection that
the helix advances.
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3. Radiusof grand hdix (r): The perpendiculer dis-

isformed and negativeif aleft lay ropeisformed. Theangle

tance between the centroidal axis of the strand and the strand expressed in radians, unless specified otherwise.

helix axis.

4. Radiusof wire hdix (r,): The perpendicular
di stancebetween the centroidd axis of the wire and the wire
helix axis.

5. Circular helixThe gstrand hdix having a congtant
helical radius is a circular hdix. Similarly, the wire hdix
having a constant helical radiusis aso acircular helix.

6. Angledf srand hdix (¢): The angle of a strand
helixat any point dong the centroidd axis of the strand isthe
angl e between the tangent vector at that point, headirigan
directionthat the strand hdix advances, and the plane that is
perpendicular to therand hdix axis and passes through that
point.

7. Angle ofnirehdix (a,): Theangleof awire hdix
at any point dong the centroidd axis of the wireisthe angle
between the tangent vector a that point, heading in the
directionthat the wire hdix advances, and the plane that is
perpendicular to the wire hdix axis and passes through that
point.

8. Anglefsrandrotation (6,): Theangleawhichthe
centroidalaxis of ahdica strand sweegps out in a plane per-
pendiculatto the srand hdix axis. Theangleisdefined to be
positivan aright-handed coordinate sysem if aright lay rope

9. Angleofwirerotation (6,): Theanglea whichthe
centroidalaxis of a hdlica wire swvegps out in a plane per-
pendicular to thewire hdix axis The angleis defined to be
positivein a right-handed coordinate system if a right-hand
strand iformed and negative if aleft-hand strand isformed.
The angle is expressad radians, unless specified otherwise,

10. Laylength of strand (L): The distance measured
parall etotheaxisof theropearound whichthecentroidd axis

of a strand or wire makes one complete helical convolution.

11. Laylength (pitch) of wire (L,): Thedisancemess-
uredpardld tothewirehdix axisaround which thecentroida
axis of awire makes one complete helical convolution.

12. Lengthofrope(S or 2): Thelength measured dong
thedrand hdix axis It represents the distance that a strand
helix has advanced on the axis of the rope.

13. Lengthof srand (S, or w): The length messured
alongthewirehdix axis. It representsthedigancethat awire
helix has advanced on the centroidal axis of the strand.

14. Lengthof wire (S,): The path length messured
along the centroidal axis of the wire.

MATHEMATICAL MODELING

BASIC RELATIONSHIPS

In circular hdices, the centroidal axes of both the wire
and the strand malge consdered to belying on right circular
cylinders.Becausethe surface of acylinder can bedeve oped
into a plane, some basic rdationships between each of the
centroi dalaxes and the other parameters can be established by
using the developed views shown in figure 3.

Therd ationshi psbetweenthelength of ropeandtheangle
of strand rotation and between the length of strand and the
angle of grand rotation can be obtaned by usng the
previous ydefined parametersand from thedeve oped view of
the strand helix and are expressed bel ow.

S = rf,tan@) (@)
rSeS
s Tas) (%)

Thelength of rope, S,, in equation 1 becomesthelay length of
strandL_, when 6, = 2x. Smilarly, the rdationshipsbetween
thelength of strand and theangle of wirerotation and between
the length of wire and the angle of wire rotation aso can be

obtai nedoy using thedeve oped view of thewirehdix and are
expressed below.
§ =0, tani,) 3

_ ruGy
S cosCow ) )

The lengthof strand, S,, in equation 3 becomesthe lay length
of wire, L, wheng,, = 2r.

Becausdghelength of strand obtained from thewirehdix
mustequd that obtained from the strand hdix for a given
lengthof rope, anew term"n" isdefined to be theratio of the
angl eof wirerotation to theangle of strand rotation, which can
be obtained from equations 2 and 3.

n = aN - rS
s rytan Cow ) cos €

)

Thisratioisdegpendent ontheanglesof both hdiceswhen both
hdlicalradii arefixed. Itisconsdered to beimportant in chaer-
acterizingthe rope sructure, specificdly the rdaionship
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Figure 3. CDeveloped views of strand and wire helices.

betweerthewireand strand hdices, andistermed the"rd aive
rotation"in thisreport. The rdative rotation will be postive
for lang lay ropes and negative for regular lay ropes.

COORDINATE SYSTEMS

Because severajeometric characterigtics of hdicesthat
arerdated to load distribution and wire stresses can be eedlly
evaluatedhrough vector andys's, vector equationsdescribing
thesehdices are used to modd the different wiresin arope.
To distinguish vectors from scal dvs]dfacetypeisused for
vectorsntheequations Twothree-dimensond, right-handed,
rectangular Catesan coordinate systems are sdected to
analyze the strand and wire helices.

Oneisaglobd fixed system cdled, for convenience, the
ropecoordinatesystem (figure4A). Thecoordinaesare X, Y,
and Z with the origiet the center of the rope and the Z-axis
coincidingviththeropeaxis TheX-Y planeisperpendicular
to the rope axis and is the plane where the angle of strand
rotationismeasured. The X-axisisarbitrarily sdected sothat
it intersects, in its postive direction, with the centroidd axis
of agtrand. TheX-axisisdso used asthereferencelinefrom
whichthe angle of strand rotation, 0., is measured. The unit
vectorgdirected dlong the postive directions of X, Y, and Z
arei, j, andk, respectively.

Theaother, alocd coordinate system, isthestrand coordinate
sygem (figure4B). ItscoordinatesareU, V, and W with the ori-
gnonthecatroidd axisof asrand. Thisloca coordinae sys
tem movesdong the cantroidd axisof thesrand. TheW-axisis
in the direction of the tangant vector to the centroiddl axis of the
dgrand. TheU-V planeis papendicular to the catroidd axis of
thegrand and isthe planewheretheange of wirerotation, 9, is
meeaured. The U-axisis padld to the X-Y plane ad isdso
padld to the line on the X-Y plane that spedifiesthe angle of
grand rotaion. The unit vectors directed dong the postive di-
rectionsof U, V,and W ae f, g, and h, repectivdy.

VECTOR EQUATIONS FOR SINGLE AND DOUBLE
HELICES

Themodd describing the centroidd axis of the centrd
wireof asrand in the rope using the rope coordinate system
isasngle hdix modd. The modd describing the centroidd
axisof awirein astrand usng the srand coordinate sysem s
alsoasnglehdix modd. Oncethesesnglehdix moddsare
formed,they will be used to devalop a double hdix modd
describindhecentroidd axisof adoublehdlicd wirein either
aregular lay rope or alang lay rope in the rope coordinate
system.

Single Helix Model

When the rope coordinate sysem is placed a the canter of
the wire rope and a certain srand is spedified to have an initid
grand rotation angle of O & z = 0, as shown in figure 4A, the
vector equation of thehdix for thecatroidd axisof thissrandis

R=xi+Y.j+zk (®)

Thesubscript"'s' indicates variablesthat are associated with a
singlehdix. The parametric equations of R for a circular
strand helix are

X, = I, cosf), )
Ys = . Sin@)), (8)
and z, = rH, tan@,)- 9

Thesdtrand rotation angle 6, in equations 7, 8, and 9 is poditive
for aright lay rope and negative for aleft lay rope.

Similarly,when the strand coordinate sysem isinitidly
placedon the centroidal axis of acertain strand & 6, = 0, a
certain wire is specified to have an initid angle of wire
rotationof O & w = O, as shown in figure 4B. The vector
equaton of the drcular hdix for the centroidd axis of this
wireissmilar to equation 6 in therope coordinate system and
can be written as



Q=uf+vg+wh. (20)
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Figure 4 CCoordinate systems for single helix A, rope coordinate systempB, strand coordinate system.

Theparametric equations of Q for acircular wire hdix in a
strand are

u-=r,cosf,), an
v =r,sing,), 12
and w = r, 0, tan@,)- (13)

The wire rotation angle 0,, in equations 11, 12, and 13 is
positivdf it formsaright-hand strand and negativeif it forms
aleft-handdtrand. Because the coordinate sysem is moving
alongthe centroidd axisof thestrand, w smply representsthe
path length dong the centroidd axis that the system has
traveled for awire rotation angle@yf.

Double Helix Model

The double hdix modd can be devdoped by properly
combining the vector R in the rope coordinate system and a
vectorqg on the U-V plane ahe strand coordinate system, as
shownin figure 5. It isassumed that, in the rope coordinate
systemapasition vector P with the head of thevector located
at (u,v,w) of thestrand coordinate system tracesthe centroidd
axis of adouble helical wire and has a general form

P=x,i+VY,] +27,k, (14
wherex,,, y,,, and z , are the component functions. The sub-
script "w" indicates variables that are associated a double
helix.

Thevector q inthe strand coordinate system isapaostion
vectorthat traces the centroidd axis of adouble hdica wire
on the U-V plane a a certain vdue of w in the srand
coordinatesysem. The vector eguation for g may be
written as

g=uf+vag. (15)

Thew component is not needed in pecifying the location of
thecentroidd axisof adoublehdica wirebecause g isdways
onthe U-V plane The parametric equationsfor uand v are
identical to equations 11 and 12.

Becausghe heed of R islocated exactly at thetal of q,
thevector P can be readily obtained through vector addition
once the vector inthe strand coordinate sysem is projected
to the rope coordinate system. Using the fact that the U-axis
ispardld tothe X-Y planeand thelinethat goecifiestheangle
of strand rotation (6 and that the U-V planeis perpendicular
to the W-axis, which has an angle of strand hdix («), the
individualprojectionsof uandv ontheX-, Y-, and Z-axesare



Figure 5 CCoordinate system for double helix.

X, = U cosf,), (16)

Y, = using), @an

z, =0, (18)

X, = — v sin(e) SNy, (19)

Y, = Vv sin(ay) cos(6y), (20)

and Z, = - vV cosfy). (21)

Thevector g now can be expressed in the rope coordinate
system as

Q= *+*X)i+0u+tWi+@*+z)k (2

Because the vectdp is the sum oR andq, the general form
of the vector equation fé& now can be written as

P=( X +X) I+ s YtV +(z+2+2) k(23

By introducing the relative rotatiorfdefined by equation 5)
into equations 7, 8, 9, 16, 17, 19, and 20, replacing u and v
witheguations 11 and 12, and subdtituting them into equation
23, the fallowing component functions for the double hdix
model in terms of only wire rotation angle are obtained.

= rscos( %’V) + Iy COS(aN) COS(

-rysinCos) sin (6, Si”( %N (24)

Thesdgn for 9, is podtive when it rotates counterclockwise

| 9y, | 8,
Yy, =rsinf —| +r,co0, )sin| —
n n

. : eW
+r,Sn(e)sin(6,) COS[ 7] (25)

z,,=rtan(e) % -r,co8(e)sin(®,) (26)

and negative when it rotates dockwise. The lay type deter-
mineshesgn for n asdefined by equation 5. The component
z,, is dways podtive and increases in the direction that the
helix advances.

EXAMPLE FOR A SPECIFIC WIRE ROPE

Thedrcular hdix modds presented above are gpplicable
to any type of rope condruction as long as its drands are
round, i.e, the wires are laid in circular paten. As an
exampl ethe sructura parameters of a 33-mm 6x19 Sedle,
IWRC right regular lay wire rope are used to show how the
model for a specific rope is obtained.

Thebas c strand arangement of a6x19 Sedewireropeis
shown in figure 6. The sructurd parameters of different
strandsare presented intable 1. Thestrand cross sections per-
pendicularto the srand or wire hdix axis are shown in
figures7 through 9. The structurd parameters of the single
anddoublehdicd wiresineach strand arepresentedintable 2.
Some of the parameters, such asthe lay length of strand, the
lay length of wire, and the rdaive rotation, were cd culated
basedon thebasicrdaionshipsgiven by equations 1, 3, and 5.

Themodd for sngle hdlica wires can be obtained by
simply substituting the values of tbeametersr_ and ¢, , as
indicatedntable 2, into equations 7, 8, and 9. Themodd for
doubl ehdica wirescan be obtained by subdtituting thevaues
of theparamgtersr, r,, , o, axd nasshowninteble 2 into equar
tions24, 25, and 26. Asexamples, the component functionsof
the modd for each type of wire in the rope are presented
below.
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Table 1 CStructural parameters of strands in 33-mm 6x19 Seale wire rope

Strand Helix parameters
Strand Form No. of radius
strands ’ I, s, L.,
mm mm rad mm
IWRC
S1.......... Straight.. . .. 1 2.271 NAp NAp NAp
S2.......... Single helix. 6 2.016 4.287 1.2362 77.48
Seale 11.41
S3.......... Single helix. 6 5.110 1.2259 199.61
NAp Not applicable.
Table 2 CStructural parameters of wires in 33-mm 6x19 Seale wire rope
No. of Wire Helix parameters
Wire wires per radius, L, a., L, T O, L.,
strand mm mm rad mm mm rad mm n
Straight:
W10........... 1 0.801 NAp NAp NAp NAp NAp NAp NAp
Single helical:
W11l........... 6 0.735 1.536 1.2864 33.02 NAp NAp NAp NAp
W20........... 1 0.704 4.287 1.2362 77.48 NAp NAp NAp NAp
W30........... 1 1.456 11.413 1.2259 199.61 NAp NAp NAp NAp
Double helical:
W21........... 6 0.656 4.287 1.2362 77.48 1.360 1.4149 54.37 1.5087
W31l.......... 9 0.712 11.413 1.2259 199.61 2.168 1.7849 62.65 -3.3855
W32........... 9 1.243 11.413 1.2259 199.61 3.867 1.9408 62.65 -3.3855

NAp Not applicable.
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1. Wirewlo

Becausethisisthecenter wireof therope, itspathisaway's
ontheZ-axis Thevedtor equation has only onecomponantin
thedirection of k, and themagnitudeissmply theropelength.

2. Wirewll
X, = 1.536 cos{)
Y. = 1.536 sirf)
z, = 5.2550,
3. Wire20
X, = 4.287 cos{)
Y. = 4.287 sirf)
z = 12.3310,
4. WireW21
X = 4_.287 cos( 1_5E

+ 1 360 cosN

- 1.285 sinC6)D

Vo = 4_287 sin( t
1.5
+ 1 360 cosCN
+ 1285 sinCi)D
z,, = 8.1739,, - 0.447 sirg,)
5. WireW30

X, = 11.413 cod)
y, = 11.413 sir)

z, - 31.7680,

11

(78)
(89)
(99)

(7b)
(8b)

(9b)

(249

(253

(263

(70)

(80)

(9¢)
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6. WireWws31

Xe = 11 _.413 cos( 6
~3_3¢

+ 2_.168 cos)) cos

- 2.040 sin&)) sin

(24b)

z, - -9.3849,, - 0.733 sirg,) (26b)
yw=11_.413 sin( —
+2_.168 cos!
+ 2.040 sin(

(25b)

7. Wire W32
Xw = 11 .413 cos( -
3

+ 3.867 cosCiN

- 3.639 sinCiN

(24¢c)
7= -9.3849,, - 1.307 sirg,) (26¢)
yo- 11.413 sin( — &
-3.3¢
+ 3.867 cos(h,)) sin
+ 3.639 sin(6,) cos
(25c)

MODEL APPLICATIONS

Themodd for aspecificwireropecan beeadly obtained,
asshown in the example above, and has many practicd gppli-
cations. It can be used to generate the wire paths and to eva -
uatethegeometric propertiesof thewires. Theeffect of defor-
mation can be determined by subdituting the sructurd
parametersf the deformed ropeinto theorigind modd. The

configurationsUsng the modd devdoped in thisreport, the
wirepaths can be easly generated by a computer. They not
only reveal the shapesf thewire paths, but dso areussful in
locati ngthe places where awire will be rubbed by the other
wiresand in determining the interva a which an outer wire
will be exposed on the rope surface.

model also has other applications, such as predicting damage Typical paths of single hdicd wires generated by equa-

patternsthrough externd and internd wear, examining and
improvingthe design of a rope construction prior to manu-
facturing,and producing three-dimendond pictures of the
wires for computer analysis.

GENERATION OF WIRE PATHS

Asdescribed earlier, the wires in wire ropes have three
forms: sraight, sngle hdix, or double hdix. The only
straightwire in arope is the center wire in an IWRC. The
wiresaround the center wireforming the center srand and the
centerwiresin the outer strands of the core and in the surface
stranddhavetheshgpeof asnglehdix. Thewiresformingthe
O u t e r s t r a n d s
of the core and the surface strands except their center wires
have double hdlicd paths that are very complex in ther

tions7a-8a-9a, 7b-8b-9b, and 7c-8c-9c for wires W11, W20
and W30, respectivay, are shown in figure 10. The paths
shownare in about one lay of strand S3. Typicd paths of
doubl endica wiresgenerated by equations24a-25a-26a, 24b-
25b-26band 24c-25¢-26¢ for wiresW21, W31, and W32, re-
spectively,are shown in figures 11 through 13. The paths
showrerein about two laysof the strand formed by eechwire.
The reason for the ma alifference betvwween the shape of the
W21peath and that of the W31 and W32 pathsisthat srand S2,
whichcontainswire W21, isalang lay strand, wheress strand
S3,which containsW31and W32, isaregular lay strand. The
side views ofll wire paths show much sharper turnsthan the
actual wire paths. This is because much larger scaes have
been sdected on the Y coordinate than those on the
Z coordinate of thesefigures so that moreof their pathscanbe
viewed.
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EVALUATION OF GEOMETRIC PROPERTIES

Tolean how thetendleload is didributed among the wires
inaropeand to caculaewire dresses, severd geometric proper-
tiesof eechwiremust beevd uated beforeand efter thegpplication
of load. These propaties are the path length, curvature, and
torson.

Path Length Per Lay of Strand

Theequaionsfor evduation of the path length of Sngeand
doublehdica wiresin eechlay of thesrand can bedeaived from
equations 2, 3, and 4 and are shown in equations 27 and 28.

Pathlength of Sngehdica wiresineach lay of sdrand:

271r
Ss = —=—S— 27
° cosCos) @7

Path length of doubdlehdica wiresineadh lay of dranct

27rs

cosCas) sinCo)

Table 3 showsthe path lengths per lay of drand for a6x19
Sederope ascdaulaed by equaions 27 and 28. Thetabledso
showsthewireto-ropelength ratiosby compering thewire peths
tothesrand lay lengths

Sw:

(28)

Table 3.CPath length of wires per lay of strand

Laylengh  Laylengh Pﬂi‘f’f Wireto-rope
Wire of strand of strand L, of strand. length
refemred to mm ! ratio
nm
Staight
WO ...... NAp NAp NAp 1000
Single helical
WILL ...... L, 3302 3440 1042
W20 ...... Lo 7748 8203 1.059
W3O ...... Ly 19961 21210 1.063
Double helical
W2L...... L, 7748 8304 1072
W31 ...... Ly 19961 21706 1087
WX ...... Ly 19961 22750 1.140
NAp Notappicabe.

Curvature and Torsion

A goadd moving frame of reference, smilar to the strand
coordinatesysemadgptedinthemathematica modding, hasbean
used in the generaion of thebasic equationsfor evduation of the
curvaure and torson of a aurve in threeedimensond spece
[Sokdnikoff and Redheffer 1958; Leithald 1986]. Thisframeis
formed by athree-dimens ond, right-handed set of orthogonal unit
vectors asshowninfigure 14. Theorigin of theframeislocated
a thehead of any podtionvector that may be Ror Pof themodds
just devdoped. Thethree unit vectors t, n, and b are cdled the
unit tangent, the unit principal norma, and the unit binorma
vectors regpectivdy. Theframeis somdimesrefared to asthe
"moving trihedrd" assodated with thecurve

Theaurvaureat acartain point of acurveisamessureof how
quickly the curve changes direction a that point. It is the
reciprocd of theradiusof the curvea thet point and expressad in
the unit of /mm in this regport.  In a wire, a change of the
curvaure is produced by bending moments thet act on the wire
cossstion. Curvaturenot only isrdated to the shearing sress,
but d=o dfects the didribution of the tensle dress on the aoss
stion. Thaefore thedeformation of theropesructureintems
of the curvature change neads to be soedfied to detemine its
effect on shearing and nomd dresses

(Binormal vector)

b / Wire
/

V4

(Principal
normal
vector)

{Tangent vector)

Figure 142The moving trihedral.



The curvature vector is defined to be thefirs derivative of t
inthemoving trihedrd, asshown infigure 14, withregpect toarc
length of acurve. 1t can be expressad as kn, whare g isascdar
multiplier. The curvature vector isin the same direction of the
prindpa normd vector. Themagnitudeof thisvectoriscaledthe
curvaure of the curve and is smply equd to  because the
magnitudedf nisunity. Thecurvatureof agraight lineisaways
zero because the tangant vector iscondant. Thecurvaiure of the
cantroidd axisof ether asngleor adoublehdica wire therefore,
may be spedificaly defined to be the magnitude of the rate of
change of the unit tangent vector with respect to arc length of
thewire

Badc fomulas deaived for evduation of curvature are
expressd in tarms of the pogition vector with arc length as the
parameter, because arc length aises naturdly from the shgpe of
thecurve[ Soka nikoff and Redheffer 1958]. Todiredtly gpoply the
modd devdoped in this report, it is more convenient to use
equations 29 and 30 for computation of the curvature [Stewart
1991]. The vedtars R and P denoted with single and double
primesin theequationsrepresant thefirst and sscond derivaives,
respectively, with regard to 6_or 0, just asfor redl-velued func-
tions Smilaly, thevectorsdenoted with triple primes, tobeused
later inthisreport, represent thethird derivativeswith respect to 6
o 6, Thesymbd "| [', by which the vecior is bounded,
represatsthemagnitude of thevector, whichisgengrdly usedin
vector andyss R was given by equation 6, and its component
fundions were given in equaions 7, 8, and 9. Pwas given by
equation 14, ad its componat fundions weae given in
equations 24, 25, and 26.

Cunvatureof sndehdica wires

_ ‘R/ x R”‘

‘R/‘S (29

Cunatured doubdehdica wires

_ [P x P

‘P"S (30)

w

Subdituting the first and second derivatives of eech vector
intoequations29and 30and pafoming thecrassand dot products
and other oparaions, the expanded foms of these equaions
expressed in tams of the component fundions are shown bdow.
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Bqanded anaiureequationfar sngehdica wires

J(y/ ” Z/ysrl / //)2 + (X/ ” ysr S//)
WO+ 07 @)

(Z/ ”_

(293)

After subdituting thefundionsintoequation 29a, it canbereduced
to itssmples form, as shown in equation 29%b. Thisexpresson
indicatesthat the curvature of asngle hdicd wireisindgpendent
of the angle of srand rotation and is condant for a given hdix

age

cos*(ax,)
s = (29b)
rS
Bqanded anaiureequationfor doubehdica wires
\/ (ywl ZW// _ Zwlywll)z + (ZW/XW// _ X / //)2 (leywll _ yW/XW/l)Z
Kw = (30a)

WO+ 0,7 @

The curvaures were computed for both sngle and double
hdicd wiresin a6x19 Sedewirerope Therealtsfor snge
hdicd wiresareshownintable4. Thereaultsfor double hdica
wiresareshownintable5, withtheabsolutevaueof 6, increesing
from O° to 360° a incrementsof 15°.

Theaurvauresof thel WRCand S3hdicd wireswereplotted
againg the absdlute va ue of the angle of srand or wirerotation.
Thar rdaionshipsare shownin figure 15 for two paiods They
indicatethat (1) thecurvatureof Snglehdicd wiresisindgpendent
of the angle of srand rotation, as expressed by equation 29b,
(2) theaurvatureof doublehdicd wiresisaperiodicd function of
the angle of wire rotation with a peaiod of 360°, and (3) the
aurvaure of double hdicd wiresisat maximum when thewires
aefathest from therope center and a minimum when thewires
arenearest to therope center becausetheangle of wirerotationis
meeared from the postive U-axis which points awvay from the
rope canter, asshownin figure 5.

Table 4.CCurvature and torsion
of single helical wires

Wi Cunvature, Torsion,

e 1/m 1/hm

WIL ...... 00513 01753
W20 ...... 00252 00724
W30 ...... 0.0100 00179
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Table 5.CCurvature and torsion of double helical wires

Angle of Curvature, 1/mm Torsion, 1/mm
wire
rotation, ° W21 W31 W32 W21 W31 W32
0O ...... 00652 00202 00265 01249 -00198 -00268
15 ...... 00649 00201 00264 01256 -00200 -00273
30 ...... 00638 00197 00260 01z77 -00207 -00288
45 ... ... 00620 00190 0024 01313 -00218 -00314
60 ...... 00593 00180 00244 01365 -00233 -00353
7o 00559 00167 00232 01435 -002%4 -00407
DO ...... 00517 00151 00216 01528 -00281 -00479
1065 ...... 00467 00132 00197 01653 -00319 -00580
120 ...... 00411 00110 00175 01829 -00377 -00723
135 ..., 00353 00086 00152 00286 -00485 -00933
150 ...... 00297 00060 00130 02460 -00757 -01234
165 ...... 0024 00033 00113 02914 -01897 -01586
18 ...... 00238 00016 00106 03157 -073%9 -01768
195 ...... 0024 00033 00113 02914 -01897 -01586
210 ...... 00297 00060 00130 02460 -00757 -01234
225 ...... 00353 00086 00152 02086 -00485 -00933
240 ...... 00411 00110 00175 01829 -00377 -00723
255 ..., 00467 00132 00197 01653 -00319 -00580
270 ...... 00517 00151 00216 01528 -00281 -00479
285 ...... 00559 00167 00232 01435 -002%4 -00407
300 ...... 00593 00180 00244 01365 -00233 -00353
315 ...... 00620 00190 0024 01313 -00218 -00314
30 ...... 00638 00197 00260 01z77 -00207 -00288
45 ... 00649 00201 00264 01256 -00200 -00273
360 ...... 00652 00202 00265 01249 -00198 -00268
Thetorson a acatan point of acurvemesauresthe degree 0.07 —T T T T y T
of twiding of acurveat thet point. Thechangeof torsoninawire w21
isproduced by twisting momantsthet act onthewirearosssaction. 0.06 -
Angular deformetion between cross sedtions reauilts in sheexing = AW .
dresses 0.05 = p
Thefirg derivaiveof binthemoving trihedrd, asshownin | i
figure 14, with respect to arc length of acurvewill yidd avector 0.04 |- |
thatispardld to nand canbeexpressadas -tn. Thescdar mullti- ' | ]
plier 7 iscdled thetorson of thecurve. It meesurestherate et £
: ) o : o 0.03 |- w20 —
whichthecentroidd axisof eéther asngleor adoublehdicd wire E /
twigtsout of itsosculaing plang, whichistheplanecontaining the . ‘|’ | ‘I’
unit tangent and theunit princpa nomd vectors. Thetorson of % 002 l '
adraght lineisdefined to be zero. If thecurveisaplane curve, E 0.028 r T r T T -
thetorsonisawayszero, becausetheosculaing planeistheplane § 0024 '_ W32 |
of the curve and the unit binormd vector is condant. % ) i i
Basi cformulas derived for computation of tordon are ex- © 0020
pressedn terms of the podtion vector with arc length asthe 0016
parameter[Sokolnikoff and Redheffer 1958]. To directly )
gpply the modds developed in this report, it is more 0012 /W3O
convenient to use equati ot and 32 for computation of the
i 0.008 |- _
torsion [Stewart 1991]. i W3t j
0.004 - —
Torsion of single helical wires: : l s l ! l .
o] 180 360 540

R xR R

Ts =
‘R/ X R//‘z

(31

720
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(85 or 8,), deg

Figure 18 Curvature of IWRC and S3 wires.



Torsion of double helical wires:

P xP P
P x PP

Tw

(32)

Substitutingthe derivatives of each vector into the
equati onsnd performing the crossand dot products and other
operati ongheexpanded formsof theseequationsexpressedin
terms of the component functions are shown below.

Expanded torsion equation for single helical wires:

. XS (yS/ZS//_ZS/yS//) n yS (ZS/XS//_XS/ZS//) n ZS (XS/yS//_yS/XS//)
s I 2 //)2 I 15 1 + (XS/yS//_yS/XS//)Z (Sla)

(yS ZS - ZSyS + (ZS XS - XS ZS )2

After subdtituting the functions into equation 31a, it can
be reduced to its ssmplest form, as shaweguation 31b. It
indicateshat thetors on of asnglehdica wireisindependent
of theangle of strand rotation and iscongtant for agiven hdix
angle.

- sin(ey) cos(exy) (a10)

rS

Expanded torsion equation for double helical wires:

X, (Vw’Zw”‘Zw’yw”) Y, (Zw,Xw”_Xw,Zw”) .y (waywu_waxwu)

Tw = 323
R R R R )

w

Thetorsons of both sngle and double hdicd wiresina
6x19Sede wire rope were computed. Theresultsfor sngle
helical wires are shown in table 4. The reaults for double
helical wires are shown in table 5, with the absolute vaue of
6,, increesing from O° to 360° a increments of 15°. The
negativeorsons for W31 and W32 represant the twidting of
thecentroidd axesof thesewiresinaleft lay srand, wherethe

twisting is opposite in direction to that in aright lay strand.
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The torsons of the IWRC and S3 hdicd wires were
pl ottedagainst the absol uteva ue of theangle of strand or wire
rotation. Their rdaionships are shown in figure 16 for two
periods. They indicate that (1) the torson of sngle hdlicd
wiresis indgpendent of the angle of dsrand rotation, as
expressedhy equation 31b, (2) the torson of double hdicd
wiredsaperiodicd function of theangle of wirerotationwith
aperiod of 360°, and (3) thetorson of double hdicd wiresis
at minimunmwhen the wires are farthest from the rope center
andat maximumwhen thewiresare nearest to therope certer.
It is ds0 noted tha the minimum torson occurs & the
locations where the curvature is & maximum, and the

maximum torsion occurs at the locations where the curvature

isat minimum.
ANALYSIS OF DEFORMATIONS

When a tensile load is applied to a wire rope, each
individual wire will deform. Because of the differencesin the
wire lengths and the helix angles of single and double helical
wires, the load will not be distributed among the wires simply
based on the cross-sectional areas. The effectof these wire
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Figure 18 Torsion of IWRC and S3 wires.
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deformati onsn the geometry of the rope structure needsto be
determind. The mgor changeis axid dongation dong the
centroidalaxisof awire. Accompanying theaxid dongation
is a laterd contraction of the cross section. In addition,
bendingand twisting moments are generated in the wire that
causechanges in the curvature and torson of thewire. The
combinaton of dl of these individud wire deformeations
results in the deformation of the rope structure.

Therewill be a resultant twisting moment, which will
cause the rope to rotate if the ends are not restrained.
Thereforedeformation of the rope structure will depend on
whethertheropeisalowed to rotate or not. |n mine hoisting,
thecage or skip and rope are prevented from rotating by the
shaftguides. Somerope manufacturersaso producerotation-
resi stantrope [Wire Rope Technicd Board 1993, which is
madewith layers of srands laid in oppodte directions to
producecounteracting torques.  In the use of rope with both
endsredtrained, the totad number of strand lays and the totd
numberof wire lays in arope are kept congant. Thus, the
relative rotation, n, included in thaodd s for double hdicd
wires,remains condant as the rope structure deforms under
load. Because of the objective of evauating the retirement
criteria formine hoigts, only the restrained-rotation case will
be considered in this report.

Axial Elongation and Lateral Contraction

Theaxid dongation and laterd contraction of the wires
will occur smultaneoudy when the rope is under tenson.
Neithercan be determined independently. However, a suffi-
cient number of equations may be established to obtain the
solutiongor agivenropedrain. Thesructurd parameters of
thedeformed rope usad in deriving the required equationsare
thepath length of thewirein each lay of the deformed strand,
the wire strain, the reduced wisglius, and the radius of the
deformedhdix. Each of them is described bdow. The
symbol sused arethe same asthose defined previoudy, exogpt
that the subscript "d" has been added to represent their vaues
in the deformed rope structure. The variable used to specify
the axid dongation of the rope is the rope strain, which is
representedy ¢ intheequations. Itisdetermined by dividing
the amount of dongation of the rope by the origind length
before the application of load.

Wire Strain

Hooke'slaw gates that, within the dadtic range, the
deformation produced by extermalces that act on nonrigid
bodiesis proportiond to the stress. The path lengths of the
wirebefore and after the gpplication of load, therefore, are
neededto soecify the axid deformation and determine the
tensile stress.

To establish the relationship between kaagths of wire
andropein the deformed rope structure, the developed views,

which are the same asthose shownin figure 3 for the
undeformed ropewill be used. The only differences to
replace theoriginal structural parameterswith the
deformedones, i.e., Pwith §, S with G, r,with ¢,
withg, §, with §Id‘ r, with g, andg,, withe,,,, Wheng,
= 2x, S,becomesthe deformeday length of strand,
which may beexpressed as|(1 + €,). Onthebasisof a
single lay of a strand, equations 38d 34 areobtainedfor
single and double helical wires, respectively each lay of
the strand,a double helical wire has an angle of wire
rotation of zn, although the strand only has an angle of
strand rotation of 2

Path length of the deformed single helical wire in each [i
of strand:

Ssd = V[LsCL+ D] + (27 (33)

Path length of the deformed double helical wirein each
of strand:

VILsCL+e&D]®2 + (D2 + C (3%

Thewire srain isthe change of the path length of awire,
as expressed by equations 35 and 36.

Wire strain for single helical wires:

Ssd — Ss

€ = SS (35)
Wire strain for double helical wires:
6 = Sw — Sy (36)
Sw

Reduced Wire Radius

Expaimeants show that the axid dongation of a wire in
tendonisawaysaccompanied by laterd contraction of thewire
For any mateid, theraio of theunit laterd contractiontotheunit
axid dongationisknown as Poisson'sratio, ., which is condart
within thedadicrange The unit latlerd contraction for around
wireisdetemined by dividing the reduction of thewireradiusin
the deformed rope sruciure by the arigind redius. If R_and R,
represant theorigind wireradii of sngleand doublehdicd wires,
respectivaly, thereduced wireredii, R jadR , canbeexpressd
intems of thewiredrain ¢ ad ¢, respectively, in accordance
with the definition of Poisson'sratio.
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Reduced radius of single helical wires:

Ry = R(1 — ey 37
Reduced radius of double helical wires:
Rua = Ru(1 — uey) (38)

A Poisson's ratio of 0.303 for steel [Avallone and Baumeister
1986] may be used for determining the reduced wire radius at
different wire strains.

Radius of Deformed Helix

Theradius of the deformed hdix for sngle hdicd wires
is afunction of thearious reduced wireradii. For example,
theradii of the deformed hdices for wires W11 and W20,
accordimy to figures 6 through 8, are smply the sum of the
various reduced wire radii, as shown below.

Radius of the deformed strand helix for wire W11:

M1a= Rioa* Riig (39)

Radi usftheddformed srand hdixfor wireW20or srand <>

N0d= Rioa+ 2R1a+ 2Roiq+ Rogg (40)
Theradiusof thedeformed strand hdix for wire W30 or strand
S3 cannot be amply expressed asin equations 39 and 40 for
wiresW11 and W20. It will degpend on the radius of the
deformedwire helix for wire W32, r,, which is not merdy
thesum of the various reduced wireradii. However, both can
be

related by the following equation.

Radi usftheddormed srand hdixfor wireW30or srand 3.

( )E%Od: Rioa* 2R1a+ 4Ropg+ 2Ropq+ Rapg+ Mang
41

Theradius of the deformed wire hdix for double hdica
wiresdso isafunction of the variousreduced wireradii. For
exampl ethe radii of the deformed wire hdix for wires W21
and W31, according to figuresr&l 9, are smply the sum of
the various reduced wire radii, as shown below.

Radius of the deformed wire helix for wire W21.:

M10= Rooa* Rorg (42

Radius of the deformed wire helix for wire W31.:

N310= Raoat Ragg (43
Theradiusr,, will bedependent on thelocation of the contact
point, as shown in figure 9, of the adjacent dliptica cross
secti onsf wiresW31 and W32inthedeformed ropestructure.
Assumi nghat the contact point betweenthewireW32a 0, =
-3n/2rad and thewireW3l & 0, = -(3n/2 + n/9) rad isat
(u,v) on the U-V plane, which is perpendicular to the
centroi dalaxis of the deformed strand S3, equations44 and 45
canbederived. Equation 44 isobtained from the equations of
the two ellipses by lettingyof the upper quadranie equal
tov,,of thelower quadrantsat u = u_. Equation45isobtained
by letting theirespective derivativesbeequd, i.e, dv,/du=
dv,/duat u = u. Theequations represent two conditionsthat
MaoqMust satisfy.

Radi usf theddormaed wirehdixfor wireW32 sulject totwo
conditions:

[u L gp(L1+e€g)]?

2
Fad =~ |Reoa —

[Lap(L+eg)]? + (2nrg)°

2 2
C(GUt &)+ QU+ &) - de(G Ul + g+ ©)

2c,

(44



UL g (1+€4)]? \' [Lap(1+€0))? + (27r )

[Lgp(1+€40)17+ (27rapg)? (R322d - Ucz) [L 3y (1+ €40)]% + (277 g4 Rop)?

1 C,(C,U, +Cg) — 2¢5(2¢,u, + C)
C,+

2
V (6% - dey(eul + cu, + cp)

21

(45)
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Thecoefficientsc, through ¢, in these equations are described
by the fallowing expressions, where ¢ = /9. The common

term in al of the coefficients i @s defined in equation 52.

ca - cos2($p) + SinZCHd

- (46)
sin (4D cos (¢ + 2sInCe- 47)
7
ca = sin2(¢$) + %ﬁl& (48)
7

4 = —25inC$d (Rzog + Rz14) (49)
C7z

g - —2¢c0sCdd (Rzog + Rzag> (50)
C7z

co - CRoos + R314D® - REy, (51)
C7z

[Lso (L +e&D]2 + (2mr: (52)

30CL+e&)]? + (2wrzod)? +

Because wire W10 is the straight wire of strand S1, the
wiredran is identica to the rope drain. Its reduced wire
radius,R,,, issmply equivdent to R, (1 - ne,). Thesruc-
tural parameters in length measurement for the other hdica
wiresare interrdated, as indicated by the equations above.
They can be determined by solving the required s multaneous
equationsfor the wires in eech drand. For example, four
simultanecusguations, i.e., equations33, 35, 37, and 39, may
be solved for the structurd parameters of wire W11 under a
certainropesrain. Oncethestructura parametersof thewires
in grand Sl in the deformed rope become known, the
structuraparameters of thewiresin srand S2 under the same
ropesdran can be determined by solving eight Smultaneous
equationsj.e, equations 33, 35, and 37 written for wire W20
withequation 40 and equations 34, 36, and 38 written for wire
W21with equation 42. Using the solutions obtained for the
wiresin srands S1 and 2, the sructurd parameters of the
wiresin srand S3 under the same rope dran can be
determined by solving 20 smultaneous equdions, i.e,
equatons 33, 35, and 37 written for wire W30 with
equationdl; equations 34, 36, and 38 written for wire W31
withequation 43; and equations 34, 36, and 38 writtenfor wire
W32 with equations 44 through 52.

Angle of Deformed Helix

Whenthe rope dongates under tensile load and is re-
strai nedromrotating, theanglesof thestrand and wirehdices
will dso change because of the axid dongation and latera
contractiorof the wire. Using figure 3, the rdaionship be-
tweenthe angle of the deformed strand or wire helix and the
rope straing,, is given in the following equations.

Angle of the deformed strand helix:

If the originaly is less thant/2 rad, then

oy = tan 1| LsCL & 53
27Trsd ( )
If the originaly is greater tham/2 rad, then
o = m - tan 1| LsCL+ e’ (54)
27Trsd
Angle of the deformed wire helix:
If the originaly,, is less thant/2 rad, then
. tanl\' L1+ &)+ (2rre (55)
(2mrw)?
If the originaly,, is greater tham/2 rad, then
- tan,l\' [LCL+ 6]+ (2mry (56)
2mry)?2

Usingheradii of thedeformed hdix determined previous-
ly, theangleof thedeformed helix for singlehdlica wires, o,
canbe cdculated with ether equation 53 or 54, depending on
whetherthe origina angle, ¢, islessthan or grester than /2.
Similarly the angle of the deformed hdix for double hdica
wiresg,, , canbecaculaed with either equation 55 or 56, o
dependingon whether the origind angle, q,,, is less than or
greaterthan 7t/2. Thelay length of srand, L, in these equa-
tionsisthe original lay length.

Themodd for the deformed wire rope can now be con-
structed by replacing the structural parametetise origind
model with the deformed ones obtained from the andysis of
deformations shown above.



Bending and Twisting

To determine the bending and twisting of the wires, the
curvaturend tors on of thedeformed wiresmust beeva uated.
Theeguations required for evauaion are the same as those
derivedearlier, except that thestructurd parametersof thede-
formedrope or the component functions of the deformed
model must now be used in equations 29b and 31b for sngle
helical wires and eguations 30a and 32a for double hdica
wires.

If x, and x 4 represent the curvatures of the deformed
singleand double hdica wires, respectively, then bending
may be expressed as (kg - kJ) OF &4 k). Smilarly, if t_j
andt,
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representthe torsons of the deformed sngle and double
helical wires, respectively, thenisting may be expressed as
(tg-tOor(t,4- T, Asindicated by equations 29b and 31b,
boththe curvature and torson of the deformed single hdicd
wires also will bandegpendent of the angle of strand rotation.
Thereforepoththebendingandtwistingof snglehdicd wires
would be uniform dong ther entire paths when a load is
applied. Both the curvatiure and torson of the deformed
doublehdicd wires are periodica functions of the angle of
wirerotation. The period is 27, just as shown in figures 15
and 16 for the undeformed double helical wires.

CONCLUSIONS

Themode deve oped inthisreport fully describesthege-
ometry of the dructure of wire ropes of any round-strand
construction.It is expressed by vector equations in a three-
dimensional right-handed, rectangular Cartesian coordinate
systemandisgenerd enough that any combination of wireand
stranday directions can be handled if the stated sign conven-
tionsfor the angles of strand and wirerotation and therdative
rotation are followed in the component functions.

Thewire paths are defined for the firgt time by usng a
devel opedmodd, which not only reved the shapes of the
variouswires, but dso are ussful for predicting damage
patternshrough externd and interna wear. The geometric
properties of each wire can be eadly evauated by usng this
model. A 33-mm 6x19 Sede, IWRC, right regular lay wire
rope was analyzed to illustrate the model's useful ness.

A sydgem of equdaions was dso edablished for
determininghe structurd parameters of the deformed rope a
agiven rope grain, with restrained ends, thus obtaining the
model for the deformed rope. The geometric properties of
eachdeformed wire can be evaduated the same way as shown
in this report for the undeformed rope.

It is recommended fduture work that sressandysisbe
conductedased on the changes of these geometric properties
of thedeformed wiresto determine how theload isdigributed

among these wires. Furthermore, the model could be used to

studytheeffect of wear and bresking of wireson strength loss
for the various round-strand wire ropes used in mine hoisting
so that more scientificaly based retirement criteria can be
established.
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