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MODEL FOR THE STRUCTURE OF ROUND-STRAND WIRE ROPES

By Richard C. Wang, 1 Anthony J. Miscoe, 2 and William M. McKewan 3

ABSTRACT

The behavior of wire ropes used in hoisting is not well understood.  In an effort to improve this
understanding, the structure of round-strand wire ropes was analyzed.  This report provides a generalized
mathematical model that completely describes the geometry of the wires.  It consists of two sets of vector
equations and is valid for any round-strand wire rope.  One set of equations is used to trace the paths of wires
that have the form of a single helix; the other is used for the paths of double helical wires.  The specific
model for a 33-mm 6×19 Seale, independent wire rope core (IWRC), right regular lay wire rope was
presented as an example.  The paths and the geometric properties of the wires, which include the path length
per lay of strand, the curvature, and the torsion, were determined from this model.  The effects of strain
deformation were analyzed, resulting in a system of equations for determining the structural parameters of
the deformed rope.  In future work, the model could be used to analyze wire ropes of different constructions
so that a more scientifically based understanding of rope behavior can be established.

1Mechanical engineer.
2Mechanical engineer (retired).
3Physical scientist.
Pittsburgh Research Laboratory, National Institute for Occupational Safety and Health, Pittsburgh, PA.
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INTRODUCTION

Wire ropes are used for transmitting tensile forces.  The
main characteristics that make them so well suited to this func-
tion are flexibility and strength.  Wire ropes are used in many
applications involving the safety of people, such as elevators, ski
tows, and cranes.  In mine hoisting systems, wire rope is used to
transport personnel, product, and supplies between surface and
underground.  The condition of the rope deteriorates during use
due to fatigue, wear, and corrosion.  Because the failure of a wire
rope can be catastrophic, periodic inspection is needed so that the
decision can be made as to whether the rope should be retired.

Mine safety research has long been concerned with
improving the understanding of rope behavior to forestall the
hazardous use of a degraded rope, yet prevent the
uneconomical, premature retirement of still-useful rope.
Because there is widespread disagreement among specialists
with regard to the indicators and methods now used to assess
hoist rope condition, the National Institute for Occupational
Safety and Health (NIOSH), Pittsburgh Research Laboratory,
studied the factors responsible for the degradation of hoist
ropes so that a better understanding of rope performance can
be developed.

The current Federal retirement criteria for wire ropes
used in mine hoisting specify the allowable reductions of
rope diameter and outside wire diameter and the location and
number of broken wires [30 CFR4 56.19024, 57.19024,
75.1434, 77.1434 (1997)].  However, their effects on strength
loss for ropes of different constructions have not been
properly considered.  This will lead to removing wire ropes
from service at different stages where the actual loss of
strength is either less or more than what is anticipated.  To
remedy this deficiency, the knowledge of how the total load
is distributed among the wires in different rope constructions
needs to be acquired.  In general, the load distribution is
dependent not only on the cross-sectional area of wires, but
also on the specific arrangement of wires in a rope.

The wire stresses in an independent wire rope core
(IWRC) were compared by Costello [1990].  It was found
that, for 17,379 N (3,907 lb) of load applied to the IWRC, the
normal stress was 310,264 kPa (45,000 psi) in the central
wire of the center strand and 279,196 kPa (40,494 psi) in the
central wire of the outside strand.  They were not only signif-
icantly different, but also considerably higher than 247,591
kPa (35,910 psi), the nominal stress computed by taking the
total load and dividing it by the total metallic area.  It is
therefore believed that the load distribution must be con-
sidered for different rope constructions to prevent
catastrophic failure of ropes in service.  To do this, an
understanding of the wire geometry that affects the load
distribution must first be acquired.  Although mathematical
models have been used to study wire geometry by many
researchers in the past, these models can be used only for
single helical wires.  Lee [1991] presented two sets of
Cartesian coordinate equations in matrix form for double
helical wires, but did not give detailed derivation of the
equations.  One set of the equations was for regular lay ropes;
the other was for lang lay ropes.

In this study, the rope structure was analyzed, and a gen-
eralized mathematical model describing the wire geometry in
any rope construction with round strands was developed.  The
model contains a rotation ratio, termed "relative rotation" in
this report, which characterizes the relationship between the
wire and the strand helices.  In the use of rope with the ends
restrained from rotating, this relative rotation remains
constant, thus reducing the parameters in the models to the
angle of wire rotation only.  The model is general enough
that any combination of wire and strand lay directions can be
handled if the stated sign conventions for the angles of strand
and wire rotation and the relative rotation are followed.

DESCRIPTION OF ROPE STRUCTURE

STRUCTURAL ELEMENTS

A wire rope is a structure composed of many individual
wires.  A typical wire rope is composed of two major structural
elements, as shown in figure 1.  One is the strand that is
formed by helically winding or laying wires around a central
wire or a strand core.  Different shapes of strand may be
formed depending on the shape of the core.  For example, in
triangular strand constructions, triangular cores may be
composed of triangular wires or of round wires laid in
triangles.  Only a wire rope made of round strands was
analyzed in this report.  The other major structural element is
the core around which the strands are

4
Code of Federal Regulations.  See CFR in references.helically wound.  The core is made of natural fibers, poly-

propylene, or steel that provide proper support for the strands
under bending and loading in normal use.  The most
commonly used cores are fiber core, independent wire rope
core (IWRC), and wire strand core (WSC).

Although the strand can be laid in any one of many
specific geometric arrangements and composed of any number
of wires, the rope also can have any number of strands.
Therefore, wire rope generally is identified by the number of
strands, the nominal or exact number of wires in each strand,
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and its specific geometric arrangement.  When wires are laid
in the direction opposite to that of the strands, the rope is
called a regular lay rope.  When wires are laid in the same
direction as
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Figure 1.CCStructural elements in a typical wire rope.

Figure 2.CCComparison of typical wire rope lays.

that of the strands, the rope is called a lang lay rope.  If the
strands are laid into the rope to the right in a fashion similar to
the threading in a right-hand bolt, they are right lay rope
strands.  Conversely, strands laid into the rope to the left are
left lay rope strands.  Different combinations of these wire
rope lays are shown in figure 2.  The Wire Rope Users Manual
[Wire Rope Technical Board 1993] contains more detailed
information on wire rope identification and construction.  Most
of the rope produced today is preformed; this means that the
wires are permanently shaped into the helical form they will
assume in the rope.  This manufacturing process eliminates the
tendency of the wires to unlay, usually hazardously, when they
are unrestrained or when the rope is cut.

CLASSIFICATION OF WIRES

It is assumed in this study that all wires have a circular
cross section and remain circular when they are stretched or
bent.  The centroidal axis, which lies along the center of a
wire, is selected to represent the path of the wire and used to
study its geometric characteristics that are related to wire
stress.  The centroidal axis of the central wire of a strand also
represents the path of the strand.

Based on the structural elements in a wire rope as
described above, there is at most one straight wire in a straight
rope.  It is located in the center of a WSC or IWRC rope.  The
remaining wires can be classified geometrically into two
groups:  single helices or double helices.  The outer wires in a
straight strand used as the WSC have a single helical form
because they are helically wound only once around a straight
axis.  When a strand is helically wound into a rope, the central
wire also has a single helical form.  All of the other wires have
a double helical form because they are wound twice, once
around the strand axis and another around the rope axis.
However, they remain single helices relative to the central wire
of the strand in which they are wound.  This relationship is
important in the modeling of a double helical wire.

STRUCTURAL PARAMETERS

The following basic parameters specifying the helical
structure are defined; the symbols representing them in the
mathematical model are shown in parentheses.

1. Strand helix axis (Z):  The axis of the rope around
which the strands are helically wound to form a rope or around
which the wires are helically wound to form the center strand
of a rope.  The positive direction of the axis is defined to be
the direction that the helix advances.

2. Wire helix axis (W):  The centroidal axis of the hel-
ical wire around which other wires are helically wound to form
a strand.  It is also the centroidal axis of a helical strand.  The
positive direction of the axis is defined to be the direction that
the helix advances.
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Ss '
rs2s

cos("s )
(2)

Sw '
rw2w

cos("w)
(4)

n ' 2w
2s

' rs

rwtan("w)cos(
(5)

3. Radius of strand helix (rs):  The perpendicular dis-
tance between the centroidal axis of the strand and the strand
helix axis.

4. Radius of wire helix (rw):  The perpendicular
distance between the centroidal axis of the wire and the wire
helix axis.

5. Circular helix:  The strand helix having a constant
helical radius is a circular helix.  Similarly, the wire helix
having a constant helical radius is also a circular helix.

6. Angle of strand helix ("s):  The angle of a strand
helix at any point along the centroidal axis of the strand is the
angle between the tangent vector at that point, heading in the
direction that the strand helix advances, and the plane that is
perpendicular to the strand helix axis and passes through that
point.

7. Angle of wire helix ("w):  The angle of a wire helix
at any point along the centroidal axis of the wire is the angle
between the tangent vector at that point, heading in the
direction that the wire helix advances, and the plane that is
perpendicular to the wire helix axis and passes through that
point.

8. Angle of strand rotation (2s):  The angle at which the
centroidal axis of a helical strand sweeps out in a plane per-
pendicular to the strand helix axis.  The angle is defined to be
positive in a right-handed coordinate system if a right lay rope

is formed and negative if a left lay rope is formed.  The angle
is expressed in radians, unless specified otherwise.

9. Angle of wire rotation (2w):  The angle at which the
centroidal axis of a helical wire sweeps out in a plane per-
pendicular to the wire helix axis.  The angle is defined to be
positive in a right-handed coordinate system if a right-hand
strand is formed and negative if a left-hand strand is formed.
The angle is expressed in radians, unless specified otherwise.

10. Lay length of strand (Ls):  The distance measured
parallel to the axis of the rope around which the centroidal axis
of a strand or wire makes one complete helical convolution.

11. Lay length (pitch) of wire (Lw):  The distance meas-
ured parallel to the wire helix axis around which the centroidal
axis of a wire makes one complete helical convolution.

12. Length of rope (Sr or z):  The length measured along
the strand helix axis.  It represents the distance that a strand
helix has advanced on the axis of the rope.

13. Length of strand (Ss or w):  The length measured
along the wire helix axis.  It represents the distance that a wire
helix has advanced on the centroidal axis of the strand.

14. Length of wire (Sw):  The path length measured
along the centroidal axis of the wire.

MATHEMATICAL MODELING

BASIC RELATIONSHIPS

In circular helices, the centroidal axes of both the wire
and the strand may be considered to be lying on right circular
cylinders.  Because the surface of a cylinder can be developed
into a plane, some basic relationships between each of the
centroidal axes and the other parameters can be established by
using the developed views shown in figure 3.

The relationships between the length of rope and the angle
of strand rotation and between the length of strand and the
angle of strand rotation can be obtained by using the
previously defined parameters and from the developed view of
the strand helix and are expressed below.

Sr ' rs2s tan("s) (1)

The length of rope, Sr, in equation 1 becomes the lay length of
strand, Ls, when 2s ' 2B.  Similarly, the relationships between
the length of strand and the angle of wire rotation and between
the length of wire and the angle of wire rotation also can be

obtained by using the developed view of the wire helix and are
expressed below.

Ss ' rw2w tan("w) (3)

The length of strand, Ss, in equation 3 becomes the lay length
of wire, Lw, when 2w ' 2B.

Because the length of strand obtained from the wire helix
must equal that obtained from the strand helix for a given
length of rope, a new term "n" is defined to be the ratio of the
angle of wire rotation to the angle of strand rotation, which can
be obtained from equations 2 and 3.

This ratio is dependent on the angles of both helices when both
helical radii are fixed.  It is considered to be important in char-
acterizing the rope structure, specifically the relationship
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Figure 3.CCDeveloped views of strand and wire helices.

between the wire and strand helices, and is termed the "relative
rotation" in this report.  The relative rotation will be positive
for lang lay ropes and negative for regular lay ropes.

COORDINATE SYSTEMS

Because several geometric characteristics of helices that
are related to load distribution and wire stresses can be easily
evaluated through vector analysis, vector equations describing
these helices are used to model the different wires in a rope.
To distinguish vectors from scalars, boldface type is used for
vectors in the equations.  Two three-dimensional, right-handed,
rectangular Cartesian coordinate systems are selected to
analyze the strand and wire helices.

One is a global fixed system called, for convenience, the
rope coordinate system (figure 4A).  The coordinates are X, Y,
and Z with the origin at the center of the rope and the Z-axis
coinciding with the rope axis.  The X-Y plane is perpendicular
to the rope axis and is the plane where the angle of strand
rotation is measured.  The X-axis is arbitrarily selected so that
it intersects, in its positive direction, with the centroidal axis
of a strand.  The X-axis is also used as the reference line from
which the angle of strand rotation, 2s, is measured.  The unit
vectors directed along the positive directions of X, Y, and Z
are i, j, and k, respectively.

The other, a local coordinate system, is the strand coordinate
system (figure 4B).  Its coordinates are U, V, and W with the ori-
gin on the centroidal axis of a strand.  This local coordinate sys-
tem moves along the centroidal axis of the strand.  The W-axis is
in the direction of the tangent vector to the centroidal axis of the
strand.  The U-V plane is perpendicular to the centroidal axis of
the strand and is the plane where the angle of wire rotation, 2w, is
measured.  The U-axis is parallel to the X-Y plane and is also
parallel to the line on the X-Y plane that specifies the angle of
strand rotation.  The unit vectors directed along the positive di-
rections of U, V, and W are f, g, and h, respectively.

VECTOR EQUATIONS FOR SINGLE AND DOUBLE
HELICES

The model describing the centroidal axis of the central
wire of a strand in the rope using the rope coordinate system
is a single helix model.  The model describing the centroidal
axis of a wire in a strand using the strand coordinate system is
also a single helix model.  Once these single helix models are
formed, they will be used to develop a double helix model
describing the centroidal axis of a double helical wire in either
a regular lay rope or a lang lay rope in the rope coordinate
system.

Single Helix Model

When the rope coordinate system is placed at the center of
the wire rope and a certain strand is specified to have an initial
strand rotation angle of 0 at z ' 0, as shown in figure 4A, the
vector equation of the helix for the centroidal axis of this strand is

R ' xs i % ys j % zs k. (6)

The subscript "s" indicates variables that are associated with a
single helix.  The parametric equations of R for a circular
strand helix are

xs ' rs cos(2s), (7)

ys ' rs sin(2s), (8)

and zs ' rs2s tan("s). (9)

The strand rotation angle 2s in equations 7, 8, and 9 is positive
for a right lay rope and negative for a left lay rope.

Similarly, when the strand coordinate system is initially
placed on the centroidal axis of a certain strand at 2s ' 0, a
certain wire is specified to have an initial angle of wire
rotation of 0 at w ' 0, as shown in figure 4B.  The vector
equation of the circular helix for the centroidal axis of this
wire is similar to equation 6 in the rope coordinate system and
can be written as
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Q ' u f % v g % w h. (10)
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Figure 4.CCCoordinate systems for single helix.  A, rope coordinate system; B, strand coordinate system.

The parametric equations of Q for a circular wire helix in a
strand are

u ' rw cos(2w), (11)

v ' rw sin(2w), (12)

and w ' rw2w tan("w). (13)

The wire rotation angle 2w in equations 11, 12, and 13 is
positive if it forms a right-hand strand and negative if it forms
a left-hand strand.  Because the coordinate system is moving
along the centroidal axis of the strand, w simply represents the
path length along the centroidal axis that the system has
traveled for a wire rotation angle of 2w.

Double Helix Model

The double helix model can be developed by properly
combining the vector R in the rope coordinate system and a
vector q on the U-V plane of the strand coordinate system, as
shown in figure 5.  It is assumed that, in the rope coordinate
system, a position vector P with the head of the vector located
at (u,v,w) of the strand coordinate system traces the centroidal
axis of a double helical wire and has a general form

P ' xw i % yw j % zw k, (14)

where xw, yw, and z w are the component functions.  The sub-
script "w" indicates variables that are associated a double
helix.

The vector q in the strand coordinate system is a position
vector that traces the centroidal axis of a double helical wire
on the U-V plane at a certain value of w in the strand
coordinate system.  The vector equation for q may be
written as

q ' u f % v g. (15)

The w component is not needed in specifying the location of
the centroidal axis of a double helical wire because q is always
on the U-V plane.  The parametric equations for u and v are
identical to equations 11 and 12.

Because the head of R is located exactly at the tail of q,
the vector P can be readily obtained through vector addition
once the vector q in the strand coordinate system is projected
to the rope coordinate system.  Using the fact that the U-axis
is parallel to the X-Y plane and the line that specifies the angle
of strand rotation (2s) and that the U-V plane is perpendicular
to the W-axis, which has an angle of strand helix ("s), the
individual projections of u and v on the X-, Y-, and Z-axes are
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Figure 5.CCCoordinate system for double helix.

zw' rs tan("s)
2w

n
& rwcos("s) sin(2w) (26)

yw'rs sin
2w

n
% rwcos(2w) sin

2w

n

% rwsin("s) sin(2w)cos
2w

n (25)

' rscos
2w
n

% rw cos(2w)cos

& rwsin("s)sin(2w)sin 2w
n (24)

xu ' u cos(2s), (16)

yu ' u sin(2s), (17)

zu ' 0, (18)

xv ' & v sin("s) sin(2s), (19)

yv ' v sin("s) cos(2s), (20)

and zv ' & v cos("s). (21)

The vector q now can be expressed in the rope coordinate
system as

q ' (xu % xv) i % (yu % yv) j % (zu % zv) k. (22)

Because the vector P is the sum of R and q, the general form
of the vector equation for P now can be written as

P ' (xs % xu % xv) i % (ys % yu % yv) j % (zs % zu % zv) k. (23)

By introducing the relative rotation n (defined by equation 5)
into equations 7, 8, 9, 16, 17, 19, and 20, replacing u and v
with equations 11 and 12, and substituting them into equation
23, the following component functions for the double helix
model in terms of only wire rotation angle are obtained.

The sign for 2w is positive when it rotates counterclockwise

and negative when it rotates clockwise.  The lay type deter-
mines the sign for n as defined by equation 5.  The component
zw is always positive and increases in the direction that the
helix advances.

EXAMPLE FOR A SPECIFIC WIRE ROPE

The circular helix models presented above are applicable
to any type of rope construction as long as its strands are
round, i.e., the wires are laid in circular pattern.  As an
example, the structural parameters of a 33-mm 6×19 Seale,
IWRC, right regular lay wire rope are used to show how the
model for a specific rope is obtained.

The basic strand arrangement of a 6×19 Seale wire rope is
shown in figure 6.  The structural parameters of different
strands are presented in table 1.  The strand cross sections per-
pendicular to the strand or wire helix axis are shown in
figures 7 through 9.  The structural parameters of the single
and double helical wires in each strand are presented in table 2.
Some of the parameters, such as the lay length of strand, the
lay length of wire, and the relative rotation, were calculated
based on the basic relationships given by equations 1, 3, and 5.

The model for single helical wires can be obtained by
simply substituting the values of the parameters rs and " s, as
indicated in table 2, into equations 7, 8, and 9.  The model for
double helical wires can be obtained by substituting the values
of the parameters rs , rw , "s, and n as shown in table 2 into equa-
tions 24, 25, and 26.  As examples, the component functions of
the model for each type of wire in the rope are presented
below.
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Figure 6.CCStrand arrangement of 33-mm 6×19 Seale, IWRC,
right regular lay wire rope.

Figure 7.CCCross section of IWRC strand S1.

Table 1.CCStructural parameters of strands in 33-mm 6×19 Seale wire rope

Strand Form    
No. of
strands

Strand
radius,
  mm

Helix parameters

 rs,   
mm  

"s,   
rad   

Ls,   
mm  

IWRC:
  S1. . . . . . . . . . Straight. . . . .  1 2.271 NAp NAp NAp
  S2. . . . . . . . . . Single helix. .  6 2.016 4.287 1.2362 77.48
Seale:
  S3. . . . . . . . . . Single helix. .  6 5.110

11.41
3 1.2259 199.61

NAp Not applicable.

Table 2.CCStructural parameters of wires in 33-mm 6×19 Seale wire rope

Wire
No. of 

wires per
strand

Wire
radius,
mm

Helix parameters

    rs, 
   mm

       "s,
      rad

Ls,
 mm

rw,
 mm

"w,
 rad

Lw,
mm

n   

Straight:
  W10. . . . . . . . . . . 1 0.801 NAp NAp NAp NAp NAp NAp NAp
Single helical:
  W11. . . . . . . . . . . 6 0.735 1.536 1.2864  33.02 NAp NAp NAp NAp
  W20. . . . . . . . . . . 1 0.704 4.287 1.2362  77.48 NAp NAp NAp NAp
  W30. . . . . . . . . . . 1 1.456 11.413 1.2259 199.61 NAp NAp NAp NAp
Double helical:
  W21. . . . . . . . . . . 6 0.656  4.287 1.2362  77.48 1.360 1.4149 54.37   1.5087
  W31. . . . . . . . . .  9 0.712 11.413 1.2259 199.61 2.168 1.7849 62.65 &3.3855
  W32. . . . . . . . . . . 9 1.243 11.413 1.2259 199.61 3.867 1.9408 62.65 &3.3855
NAp Not applicable.
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Figure 8.CCCross section of IWRC strand S2.

Figure 9.CCCross section of Seale strand S3.

xw ' 4.287 cos
2

1.5087

% 1.360 cos(2w)

& 1.285 sin(2w)
(24a)

yw ' 4.287 sin
2

1.5087

% 1.360 cos(2w)

% 1.285 sin(2w)
(25a)

1. Wire W10

Because this is the center wire of the rope, its path is always
on the Z-axis.  The vector equation has only one component in
the direction of k, and the magnitude is simply the rope length.

2. Wire W11

xs ' 1.536 cos(2s) (7a)

ys ' 1.536 sin(2s) (8a)

zs ' 5.255 2s (9a)

3. Wire 20

xs ' 4.287 cos(2s) (7b)

ys ' 4.287 sin(2s) (8b)

zs ' 12.331 2s (9b)

4. Wire W21

zw ' 8.173 2w & 0.447 sin(2w) (26a)

5. Wire W30

xs ' 11.413 cos(2s) (7c)

ys ' 11.413 sin(2s) (8c)

zs ' 31.768 2s (9c)
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xw ' 11.413 cos
2w

&3.3855

% 2.168 cos(2w) cos

& 2.040 sin(2w) sin
(24b)

yw ' 11.413 sin
&

% 2.168 cos(2

% 2.040 sin(2
(25b)

xw ' 11.413 cos
&3.

% 3.867 cos(2w)

& 3.639 sin(2w)
(24c) 

yw ' 11.413 sin
2w

&3.3855

% 3.867 cos(2w) sin

% 3.639 sin(2w) cos
(25c)  

6. Wire W31

zw ' &9.384 2w & 0.733 sin(2w) (26b)

7. Wire W32

                   zw ' &9.384 2w & 1.307 sin(2w) (26c)

MODEL APPLICATIONS

The model for a specific wire rope can be easily obtained,
as shown in the example above, and has many practical appli-
cations.  It can be used to generate the wire paths and to eval-
uate the geometric properties of the wires.  The effect of defor-
mation can be determined by substituting the structural
parameters of the deformed rope into the original model.  The
model also has other applications, such as predicting damage
patterns through external and internal wear, examining and
improving the design of a rope construction prior to manu-
facturing, and producing three-dimensional pictures of the
wires for computer analysis.

GENERATION OF WIRE PATHS

As described earlier, the wires in wire ropes have three
forms:  straight, single helix, or double helix.  The only
straight wire in a rope is the center wire in an IWRC.  The
wires around the center wire forming the center strand and the
center wires in the outer strands of the core and in the surface
strands have the shape of a single helix.  The wires forming the
o u t e r  s t r a n d s
of the core and the surface strands except their center wires
have double helical paths that are very complex in their

configurations.  Using the model developed in this report, the
wire paths can be easily generated by a computer.  They not
only reveal the shapes of the wire paths, but also are useful in
locating the places where a wire will be rubbed by the other
wires and in determining the interval at which an outer wire
will be exposed on the rope surface.

Typical paths of single helical wires generated by equa-
tions 7a-8a-9a, 7b-8b-9b, and 7c-8c-9c for wires W11, W20
and W30, respectively, are shown in figure 10.  The paths
shown are in about one lay of strand S3.  Typical paths of
double helical wires generated by equations 24a-25a-26a, 24b-
25b-26b, and 24c-25c-26c for wires W21, W31, and W32, re-
spectively, are shown in figures 11 through 13.  The paths
shown are in about two lays of the strand formed by each wire.
The reason for the major difference between the shape of the
W21 path and that of the W31 and W32 paths is that strand S2,
which contains wire W21, is a lang lay strand, whereas strand
S3, which contains W31 and W32, is a regular lay strand.  The
side views of all wire paths show much sharper turns than the
actual wire paths.  This is because much larger scales have
been selected on the Y coordinate than those on the
Z coordinate of these figures so that more of their paths can be
viewed. 
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Figure 10.CCPaths of single helical wires W11, W20, W30.

Figure 11.CCPath of double helical wire W21.

Figure 12.CCPath of double helical wire W31.

Figure 13.CCPath of double helical wire W32.
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Ss '
2Brs
cos("s)

(27)

Sw '
2Brs

cos("s) sin("w)
(28)   

Figure 14.CCThe moving trihedral.

EVALUATION OF GEOMETRIC PROPERTIES

To learn how the tensile load is distributed among the wires
in a rope and to calculate wire stresses, several geometric proper-
ties of each wire must be evaluated before and after the application
of load.  These properties are the path length, curvature, and
torsion.

Path Length Per Lay of Strand

The equations for evaluation of the path length of single and
double helical wires in each lay of the strand can be derived from
equations 2, 3, and 4 and are shown in equations 27 and 28.

Path length of single helical wires in each lay of strand:

Path length of double helical wires in each lay of strand:

Table 3 shows the path lengths per lay of strand for a 6×19
Seale rope as calculated by equations 27 and 28.  The table also
shows the wire-to-rope length ratios by comparing the wire paths
to the strand lay lengths.

Table 3.CCPath length of wires per lay of strand

     Wire
Lay length
of strand 

referred to

Lay length  
of strand Ls,
    mm       

Path length
per lay   
of strand,

mm     

Wire-to-rope
length     
 ratio      

Straight:
    W10 . . . . . . NAp    NAp      NAp   1.000
Single helical:
    W11 . . . . . . L11       33.02        34.40   1.042
    W20 . . . . . . L20       77.48        82.03   1.059
    W30 . . . . . . L30     199.61      212.10   1.063
Double helical:
    W21 . . . . . . L20       77.48        83.04   1.072
    W31 . . . . . . L30     199.61     217.06   1.087
    W32 . . . . . . L30     199.61     227.50   1.140

NAp    Not applicable.

Curvature and Torsion

A special moving frame of reference, similar to the strand
coordinate system adapted in the mathematical modeling, has been
used in the generation of the basic equations for evaluation of the
curvature and torsion of a curve in three-dimensional space
[Sokolnikoff and Redheffer 1958; Leithold 1986].  This frame is
formed by a three-dimensional, right-handed set of orthogonal unit
vectors, as shown in figure 14.  The origin of the frame is located
at the head of any position vector that may be R or P of the models
just developed.  The three unit vectors t, n, and b are called the
unit tangent, the unit principal normal, and the unit binormal
vectors, respectively.  The frame is sometimes referred to as the
"moving trihedral" associated with the curve.

The curvature at a certain point of a curve is a measure of how
quickly the curve changes direction at that point.  It is the
reciprocal of the radius of the curve at that point and expressed in
the unit of 1/mm in this report.  In a wire, a change of the
curvature is produced by bending moments that act on the wire
cross section.  Curvature not only is related to the shearing stress,
but also affects the distribution of the tensile stress on the cross
section.  Therefore, the deformation of the rope structure in terms
of the curvature change needs to be specified to determine its
effect on shearing and normal stresses.
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6s '
*R! × R"*

*R!*3 (29)

6w '
*P! × P"*

*P!*3 (30)

6s '
(ys!zs"& zs!ys")

2 % (zs!xs"& xs!zs")
2 % (xs!ys"& ys!xs")

2

(xs!)
2 % (ys!)

2 % (zs!)
2 3

(29a)

6s '
cos2("s)

rs

(29b)

6w '
(yw!zw"& zw!yw")

2 % (zw!xw"& xw!zw")
2 % (xw!yw"& yw!xw")

2

(xw!)
2 % (yw!)

2 % (zw!)
2 3 (30a)

The curvature vector is defined to be the first derivative of t
in the moving trihedral, as shown in figure 14, with respect to arc
length of a curve.  It can be expressed as 6n, where 6 is a scalar
multiplier.  The curvature vector is in the same direction of the
principal normal vector.  The magnitude of this vector is called the
curvature of the curve and is simply equal to 6 because the
magnitude of n is unity.  The curvature of a straight line is always
zero because the tangent vector is constant.  The curvature of the
centroidal axis of either a single or a double helical wire, therefore,
may be specifically defined to be the magnitude of the rate of
change of the unit tangent vector with respect to arc length of
the wire.

Basic formulas derived for evaluation of curvature are
expressed in terms of the position vector with arc length as the
parameter, because arc length arises naturally from the shape of
the curve [Sokolnikoff and Redheffer 1958].  To directly apply the
model developed in this report, it is more convenient to use
equations 29 and 30 for computation of the curvature [Stewart
1991].  The vectors R and P denoted with single and double
primes in the equations represent the first and second derivatives,
respectively, with regard to 2s or 2w, just as for real-valued func-
tions.  Similarly, the vectors denoted with triple primes, to be used
later in this report, represent the third derivatives with respect to 2s

or 2w.  The symbol "|  |", by which the vector is bounded,
represents the magnitude of the vector, which is generally used in
vector analysis.  R was given by equation 6, and its component
functions were given in equations 7, 8, and 9.  P was given by
equation 14, and its component functions were given in
equations 24, 25, and 26.

Curvature of single helical wires:

Curvature of double helical wires:

Substituting the first and second derivatives of each vector
into equations 29 and 30 and performing the cross and dot products
and other operations, the expanded forms of these equations
expressed in terms of the component functions are shown below.

Expanded curvature equation for single helical wires:

After substituting the functions into equation 29a, it can be reduced
to its simplest form, as shown in equation 29b.  This expression
indicates that the curvature of a single helical wire is independent
of the angle of strand rotation and is constant for a given helix
angle.

Expanded curvature equation for double helical wires:

The curvatures were computed for both single and double
helical wires in a 6×19 Seale wire rope.  The results for single
helical wires are shown in table 4.  The results for double helical
wires are shown in table 5, with the absolute value of 2w increasing
from 0° to 360° at increments of 15°.

The curvatures of the IWRC and S3 helical wires were plotted
against the absolute value of the angle of strand or wire rotation.
Their relationships are shown in figure 15 for two periods.  They
indicate that (1) the curvature of single helical wires is independent
of the angle of strand rotation, as expressed by equation 29b,
(2) the curvature of double helical wires is a periodical function of
the angle of wire rotation with a period of 360°, and (3) the
curvature of double helical wires is at maximum when the wires
are farthest from the rope center and at minimum when the wires
are nearest to the rope center because the angle of wire rotation is
measured from the positive U-axis, which points away from the
rope center, as shown in figure 5.

Table 4.CCCurvature and torsion
of single helical wires

Wire
Curvature,

1/mm
Torsion,
1/mm

W11 . . . . . . 0.0513 0.1753
W20 . . . . . . 0.0252 0.0724
W30 . . . . . . 0.0100 0.0179
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Js ' RR! ×× RR" @@ RR“
*RR! ×× RR"*2

(31)

Figure 15.CCCurvature of IWRC and S3 wires.

Table 5.CCCurvature and torsion of double helical wires

Angle of
wire

rotation, o

Curvature, 1/mm Torsion, 1/mm

W21    W31 W32      W21 W31 W32   

    0 . . . . . . 0.0652 0.0202 0.0265 0.1249 &0.0198 &0.0268
  15 . . . . . . 0.0649 0.0201 0.0264 0.1256 &0.0200 &0.0273
  30 . . . . . . 0.0638 0.0197 0.0260 0.1277 &0.0207 &0.0288
  45 . . . . . . 0.0620 0.0190 0.0254 0.1313 &0.0218 &0.0314
  60 . . . . . . 0.0593 0.0180 0.0244 0.1365 &0.0233 &0.0353
  75 . . . . . . 0.0559 0.0167 0.0232 0.1435 &0.0254 &0.0407
  90 . . . . . . 0.0517 0.0151 0.0216 0.1528 &0.0281 &0.0479
105 . . . . . . 0.0467 0.0132 0.0197 0.1653 &0.0319 &0.0580
120 . . . . . . 0.0411 0.0110 0.0175 0.1829 &0.0377 &0.0723
135 . . . . . . 0.0353 0.0086 0.0152 0.0286 &0.0485 &0.0933
150 . . . . . . 0.0297 0.0060 0.0130 0.2460 &0.0757 &0.1234
165 . . . . . . 0.0254 0.0033 0.0113 0.2914 &0.1897 &0.1586
180 . . . . . . 0.0238 0.0016 0.0106 0.3157 &0.7359 &0.1768
195 . . . . . . 0.0254 0.0033 0.0113 0.2914 &0.1897 &0.1586
210 . . . . . . 0.0297 0.0060 0.0130 0.2460 &0.0757 &0.1234
225 . . . . . . 0.0353 0.0086 0.0152 0.2086 &0.0485 &0.0933
240 . . . . . . 0.0411 0.0110 0.0175 0.1829 &0.0377 &0.0723
255 . . . . . . 0.0467 0.0132 0.0197 0.1653 &0.0319 &0.0580
270 . . . . . . 0.0517 0.0151 0.0216 0.1528 &0.0281 &0.0479
285 . . . . . . 0.0559 0.0167 0.0232 0.1435 &0.0254 &0.0407
300 . . . . . . 0.0593 0.0180 0.0244 0.1365 &0.0233 &0.0353
315 . . . . . . 0.0620 0.0190 0.0254 0.1313 &0.0218 &0.0314
330 . . . . . . 0.0638 0.0197 0.0260 0.1277 &0.0207 &0.0288
345 . . . . . . 0.0649 0.0201 0.0264 0.1256 &0.0200 &0.0273
360 . . . . . . 0.0652 0.0202 0.0265 0.1249 &0.0198 &0.0268

The torsion at a certain point of a curve measures the degree
of twisting of a curve at that point.  The change of torsion in a wire
is produced by twisting moments that act on the wire cross section.
Angular deformation between cross sections results in shearing
stresses.

The first derivative of b in the moving trihedral, as shown in
figure 14, with respect to arc length of a curve will yield a vector
that is parallel to n and can be expressed as &Jn.  The scalar multi-
plier J is called the torsion of the curve.  It measures the rate at
which the centroidal axis of either a single or a double helical wire
twists out of its osculating plane, which is the plane containing the
unit tangent and the unit principal normal vectors.  The torsion of
a straight line is defined to be zero.  If the curve is a plane curve,
the torsion is always zero, because the osculating plane is the plane
of the curve and the unit binormal vector is constant.

Basic formulas derived for computation of torsion are ex-
pressed in terms of the position vector with arc length as the
parameter [Sokolnikoff and Redheffer 1958].  To directly
apply the models developed in this report, it is more
convenient to use equations 31 and 32 for computation of the
torsion [Stewart 1991].

Torsion of single helical wires:
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Jw '
P! × P" @@ P“

*P! × P"*2 (32)

Js '
xs“(ys!zs"& zs!ys") % ys“(zs!xs"& xs!zs") % zs“(xs!ys"& ys!xs")

(ys!zs"& zs!ys")
2 % (zs!xs"& xs!zs")

2 % (xs!ys"& ys!xs")
2 (31a)

Js '
sin("s) cos("s)

rs

(31b)

Jw '
xw“(yw!zw"& zw!yw") % yw“(zw!xw"& xw!zw") % zw“(xw!yw"& yw!xw")

(yw!zw"&zw!yw")
2 % (zw!xw"& xw!zw")
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Figure 16.CCTorsion of IWRC and S3 wires.

Torsion of double helical wires:

Substituting the derivatives of each vector into the
equations and performing the cross and dot products and other
operations, the expanded forms of these equations expressed in
terms of the component functions are shown below.

Expanded torsion equation for single helical wires:

After substituting the functions into equation 31a, it can
be reduced to its simplest form, as shown in equation 31b.  It
indicates that the torsion of a single helical wire is independent
of the angle of strand rotation and is constant for a given helix
angle.

Expanded torsion equation for double helical wires:

The torsions of both single and double helical wires in a
6×19 Seale wire rope were computed.  The results for single
helical wires are shown in table 4.  The results for double
helical wires are shown in table 5, with the absolute value of

2w increasing from 0° to 360° at increments of 15°.  The
negative torsions for W31 and W32 represent the twisting of
the centroidal axes of these wires in a left lay strand, where the
twisting is opposite in direction to that in a right lay strand.

The torsions of the IWRC and S3 helical wires were
plotted against the absolute value of the angle of strand or wire
rotation.  Their relationships are shown in figure 16 for two
periods.  They indicate that (1) the torsion of single helical
wires is independent of the angle of strand rotation, as
expressed by equation 31b, (2) the torsion of double helical
wires is a periodical function of the angle of wire rotation with
a period of 360°, and (3) the torsion of double helical wires is
at minimum when the wires are farthest from the rope center
and at maximum when the wires are nearest to the rope center.
It is also noted that the minimum torsion occurs at the
locations where the curvature is at maximum, and the
maximum torsion occurs at the locations where the curvature
is at minimum.

ANALYSIS OF DEFORMATIONS

When a tensile load is applied to a wire rope, each
individual wire will deform.  Because of the differences in the
wire lengths and the helix angles of single and double helical
wires, the load will not be distributed among the wires simply
based on the cross-sectional areas.  The effect of these wire
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Ssd ' [Ls(1% ,r)]2 % (2Br (33)

[Ls(1% ,r)]2 % (2Brsd)2 % (2 (34)

,s ' Ssd & Ss

Ss
(35)

,w ' Swd & Sw

Sw
(36)

deformations on the geometry of the rope structure needs to be
determined.  The major change is axial elongation along the
centroidal axis of a wire.  Accompanying the axial elongation
is a lateral contraction of the cross section.  In addition,
bending and twisting moments are generated in the wire that
cause changes in the curvature and torsion of the wire.  The
combination of all of these individual wire deformations
results in the deformation of the rope structure.

There will be a resultant twisting moment, which will
cause the rope to rotate if the ends are not restrained.
Therefore, deformation of the rope structure will depend on
whether the rope is allowed to rotate or not.  In mine hoisting,
the cage or skip and rope are prevented from rotating by the
shaft guides.  Some rope manufacturers also produce rotation-
resistant rope [Wire Rope Technical Board 1993], which is
made with layers of strands laid in opposite directions to
produce counteracting torques.  In the use of rope with both
ends restrained, the total number of strand lays and the total
number of wire lays in a rope are kept constant.  Thus, the
relative rotation, n, included in the models for double helical
wires, remains constant as the rope structure deforms under
load.  Because of the objective of evaluating the retirement
criteria for mine hoists, only the restrained-rotation case will
be considered in this report.

Axial Elongation and Lateral Contraction

The axial elongation and lateral contraction of the wires
will occur simultaneously when the rope is under tension.
Neither can be determined independently.  However, a suffi-
cient number of equations may be established to obtain the
solutions for a given rope strain.  The structural parameters of
the deformed rope used in deriving the required equations are
the path length of the wire in each lay of the deformed strand,
the wire strain, the reduced wire radius, and the radius of the
deformed helix.  Each of them is described below.  The
symbols used are the same as those defined previously, except
that the subscript "d" has been added to represent their values
in the deformed rope structure.  The variable used to specify
the axial elongation of the rope is the rope strain, which is
represented by ,r in the equations.  It is determined by dividing
the amount of elongation of the rope by the original length
before the application of load.

Wire Strain

Hooke's law states that, within the elastic range, the
deformation produced by external forces that act on nonrigid
bodies is proportional to the stress.  The path lengths of the
wire before and after the application of load, therefore, are
needed to specify the axial deformation and determine the
tensile stress.

To establish the relationship between the lengths of wire
and rope in the deformed rope structure, the developed views,

which are the same as those shown in figure 3 for the
undeformed rope, will be used.  The only difference is to
replace the original structural parameters with the
deformed ones, i.e., Sr with Srd, Ss with Ssd, rs with rsd, "s

with "sd, Sw with Swd,  rw with rwd, and "w with "wd.  When 2s

' 2B, Srd becomes the deformed lay length of strand,
which may be expressed as Ls(1 % ,r).  On the basis of a
single lay of a strand, equations 33 and 34 are obtained for
single and double helical wires, respectively.  In each lay of
the strand, a double helical wire has an angle of wire
rotation of 2Bn, although the strand only has an angle of
strand rotation of 2B.

Path length of the deformed single helical wire in each lay
of strand:

Path length of the deformed double helical wire in each lay
of strand:

The wire strain is the change of the path length of a wire,
as expressed by equations 35 and 36.

Wire strain for single helical wires:

Wire strain for double helical wires:

Reduced Wire Radius

Experiments show that the axial elongation of a wire in
tension is always accompanied by lateral contraction of the wire.
For any material, the ratio of the unit lateral contraction to the unit
axial elongation is known as Poisson's ratio, F, which is constant
within the elastic range.  The unit lateral contraction for a round
wire is determined by dividing the reduction of the wire radius in
the deformed rope structure by the original radius.  If Rs and Rw

represent the original wire radii of single and double helical wires,
respectively, the reduced wire radii, Rsd and Rwd, can be expressed
in terms of the wire strain ,s and ,w, respectively, in accordance
with the definition of Poisson's ratio.
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(44)

Reduced radius of single helical wires:

Rsd ' Rs(1 & F,s) (37)

Reduced radius of double helical wires:

Rwd ' Rw(1 & F,w) (38)

A Poisson's ratio of 0.303 for steel [Avallone and Baumeister
1986] may be used for determining the reduced wire radius at
different wire strains.

Radius of Deformed Helix

The radius of the deformed helix for single helical wires
is a function of the various reduced wire radii.  For example,
the radii of the deformed helices for wires W11 and W20,
according to figures 6 through 8, are simply the sum of the
various reduced wire radii, as shown below.

Radius of the deformed strand helix for wire W11:

r11d ' R10d % R11d (39)

Radius of the deformed strand helix for wire W20 or strand S2:

r20d ' R10d % 2R11d % 2R21d % R20d (40)

The radius of the deformed strand helix for wire W30 or strand
S3 cannot be simply expressed as in equations 39 and 40 for
wires W11 and W20.  It will depend on the radius of the
deformed wire helix for wire W32, r32d, which is not merely
the sum of the various reduced wire radii.  However, both can
be
related by the following equation.

Radius of the deformed strand helix for wire W30 or strand S3:

      r30d ' R10d % 2R11d % 4R21d % 2R20d % R32d % r32d         
(41)

The radius of the deformed wire helix for double helical
wires also is a function of the various reduced wire radii.  For
example, the radii of the deformed wire helix for wires W21
and W31, according to figures 8 and 9, are simply the sum of
the various reduced wire radii, as shown below.

Radius of the deformed wire helix for wire W21:

r21d ' R20d % R21d (42)

Radius of the deformed wire helix for wire W31:

r31d ' R30d % R31d (43)

The radius r32d will be dependent on the location of the contact
point, as shown in figure 9, of the adjacent elliptical cross
sections of wires W31 and W32 in the deformed rope structure.
Assuming that the contact point between the wire W32 at 2w '
&3B/2 rad and the wire W31 at 2w ' &(3B/2 % B/9) rad is at
(uc,vc) on the U-V plane, which is perpendicular to the
centroidal axis of the deformed strand S3, equations 44 and 45
can be derived.  Equation 44 is obtained from the equations of
the two ellipses by letting v31 of the upper quadrants be equal
to v32 of the lower quadrants at u ' uc.  Equation 45 is obtained
by letting their respective derivatives be equal, i.e., dv31/du '
dv32/du at u ' uc.  The equations represent two conditions that
r32d must satisfy.

Radius of the deformed wire helix for wire W32 subject to two
conditions:
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c1 ' cos2(N) % sin2(N)
c7

(46)

2sin(N)cos(N) % 2sin(N)
c7

(47)

c3 ' sin2(N) % cos2(N)
c7

(48)

4 ' &2sin(N)(R30d % R31d)
c7

(49)

5 ' &2cos(N)(R30d % R31d)
c7

(50)

[L30(1% ,r)]2 % (2Br30
L30(1% ,r)]2 % (2Br30d)2 %

(52)

c6 '
(R30d % R31d)

2 & R231d

c7
(51)

"sd ' tan&1 Ls(1% ,r)
2Brsd

(53)

"sd ' B & tan&1 Ls(1% ,r)
2Brsd

(54)

wd' tan
&1 [Ls(1% ,r)]2%(2Brsd)

(2Bnrwd)2
(55)

wd' B& tan&1 [Ls(1% ,r)]2%(2Brsd
(2Bnrwd)2

(56)

The coefficients c1 through c6 in these equations are described
by the following expressions, where N ' B/9.  The common
term in all of the coefficients is c7, as defined in equation 52.

 Because wire W10 is the straight wire of strand S1, the
wire strain is identical to the rope strain.  Its reduced wire
radius, R10d, is simply equivalent to R10(1 & F,r).  The struc-
tural parameters in length measurement for the other helical
wires are interrelated, as indicated by the equations above.
They can be determined by solving the required simultaneous
equations for the wires in each strand.  For example, four
simultaneous equations, i.e., equations 33, 35, 37, and 39, may
be solved for the structural parameters of wire W11 under a
certain rope strain.  Once the structural parameters of the wires
in strand S1 in the deformed rope become known, the
structural parameters of the wires in strand S2 under the same
rope strain can be determined by solving eight simultaneous
equations, i.e., equations 33, 35, and 37 written for wire W20
with equation 40 and equations 34, 36, and 38 written for wire
W21 with equation 42.  Using the solutions obtained for the
wires in strands S1 and S2, the structural parameters of the
wires in strand S3 under the same rope strain can be
determined by solving 20 simultaneous equations, i.e.,
equations 33, 35, and 37 written for wire W30 with
equation 41; equations 34, 36, and 38 written for wire W31
with equation 43; and equations 34, 36, and 38 written for wire
W32 with equations 44 through 52.

Angle of Deformed Helix

When the rope elongates under tensile load and is re-
strained from rotating, the angles of the strand and wire helices
will also change because of the axial elongation and lateral
contraction of the wire.  Using figure 3, the relationship be-
tween the angle of the deformed strand or wire helix and the
rope strain, ,r, is given in the following equations.

Angle of the deformed strand helix:

If the original "s is less than B/2 rad, then

If the original "s is greater than B/2 rad, then

Angle of the deformed wire helix:

If the original "w is less than B/2 rad, then

If the original "w is greater than B/2 rad, then

Using the radii of the deformed helix determined previous-
ly, the angle of the deformed helix for single helical wires, "sd,
can be calculated with either equation 53 or 54, depending on
whether the original angle, "s, is less than or greater than B/2.
Similarly, the angle of the deformed helix for double helical
wires, "wd, can be calculated with either equation 55 or 56, also
depending on whether the original angle, "w, is less than or
greater than B/2.  The lay length of strand, Ls, in these equa-
tions is the original lay length.

The model for the deformed wire rope can now be con-
structed by replacing the structural parameters in the original
model with the deformed ones obtained from the analysis of
deformations shown above.
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Bending and Twisting

To determine the bending and twisting of the wires, the
curvature and torsion of the deformed wires must be evaluated.
The equations required for evaluation are the same as those
derived earlier, except that the structural parameters of the de-
formed rope or the component functions of the deformed
model must now be used in equations 29b and 31b for single
helical wires and equations 30a and 32a for double helical
wires.

If 6sd and 6 wd represent the curvatures of the deformed
single and double helical wires, respectively, then bending
may be expressed as (6sd & 6s) or (6wd & 6w).  Similarly, if Jsd

and Jwd

represent the torsions of the deformed single and double
helical wires, respectively, then twisting may be expressed as
(Jsd & Js) or (Jwd & Jw).  As indicated by equations 29b and 31b,
both the curvature and torsion of the deformed single helical
wires also will be independent of the angle of strand rotation.
Therefore, both the bending and twisting of single helical wires
would be uniform along their entire paths when a load is
applied.  Both the curvature and torsion of the deformed
double helical wires are periodical functions of the angle of
wire rotation.  The period is 2B, just as shown in figures 15
and 16 for the undeformed double helical wires.

CONCLUSIONS

The model developed in this report fully describes the ge-
ometry of the structure of wire ropes of any round-strand
construction.  It is expressed by vector equations in a three-
dimensional, right-handed, rectangular Cartesian coordinate
system and is general enough that any combination of wire and
strand lay directions can be handled if the stated sign conven-
tions for the angles of strand and wire rotation and the relative
rotation are followed in the component functions.

The wire paths are defined for the first time by using a
developed model, which not only reveal the shapes of the
various wires, but also are useful for predicting damage
patterns through external and internal wear.  The geometric
properties of each wire can be easily evaluated by using this
model.  A 33-mm 6×19 Seale, IWRC, right regular lay wire
rope was analyzed to illustrate the model's usefulness.

A system of equations was also established for
determining the structural parameters of the deformed rope at
a given rope strain, with restrained ends, thus obtaining the
model for the deformed rope.  The geometric properties of
each deformed wire can be evaluated the same way as shown
in this report for the undeformed rope.

It is recommended for future work that stress analysis be
conducted based on the changes of these geometric properties
of the deformed wires to determine how the load is distributed
among these wires.  Furthermore, the model could be used to
study the effect of wear and breaking of wires on strength loss
for the various round-strand wire ropes used in mine hoisting
so that more scientifically based retirement criteria can be
established.
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