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Foreword
The Occupational Safety and Health Act of 1970 [29 USC 15], through delegation of func-
tions by the Secretary of Health and Human Services, mandates the National Institute for 
Occupational Safety and Health (NIOSH) to …“develop criteria dealing with toxic materi-
als and harmful physical agents, which will describe exposure levels that are safe for various 
periods of employment…” [29 USC 669 (a) (3)]. Critical in developing these recommended 
criteria is assessment of the risk of adverse health effects that workers might experience giv-
en exposure to occupational hazards. The foundation for making these recommendations is 
quantitative risk assessment (QRA). NIOSH QRA is a science-based process that identifies 
workplace hazards, assesses the response to exposure of those hazards, and characterizes 
the associated health risks to inform risk management decisions.

NIOSH has over 30 years of experience conducting risk assessment. The methods used are 
consistent with National Research Council 1983 and 2009 guidance, which is the dominant 
benchmark in the field. The field of modern risk assessment, established by a broad range 
of legislation, has been highly productive in addressing issues of health, safety, and the 
environment. However, over the last few decades the science behind risk assessment has 
evolved and the utility, impact, and credibility of risk assessments have been challenged. To 
address these issues, it is important to have a transparent process by which risk assessments 
are conducted. This document describes the process that NIOSH uses to conduct QRA.

There is a pressing need for risk assessment, particularly of chemical substances. Over 50 
million U.S. workers are exposed to hazardous chemicals in the course of their work each 
year, either by skin contact or by inhaling vapors, gas, dust, or fumes. Toxic chemicals en-
countered in the workplace pose a wide range of health hazards to workers. Health ef-
fects may include irritation, sensitization, respiratory disease, cancer, and cardiovascular, 
immunological, and reproductive disorders. NIOSH conducts risk assessment when there is 
limited direct information to make a determination of a safe level of exposure for workers in 
order to prevent disease, injury, or death. Given limited information, assumptions in NIOSH 
risk assessment generally favor worker protection. This document and the resultant guid-
ance, such as occupational exposure limits, should provide useful information to all stake-
holders who use risk assessment information in the management of occupational hazards.

John Howard, MD 
Director, National Institute for Occupational 
  Safety and Health 
Centers for Disease Control and Prevention
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Abstract
Exposure to on-the-job health hazards is a problem faced by workers worldwide. Unlike 
safety hazards that may lead to injury, health hazards can lead to various types of illness. 
For example, exposures to some chemicals used in work processes may cause immediate 
sensory irritation (e.g., stinging or burning eyes, dry throat, cough); in other cases, work-
place chemicals may cause cancer in workers many years after exposure. There are millions 
of U.S. workers exposed to chemicals in their work each year. In order to make recommen-
dations for working safely in the presence of chemical hazards, the National Institute for 
Occupational Safety and Health (NIOSH) conducts risk assessments. In simple terms, risk 
assessment is a way of relating a hazard, like a toxic chemical in the air, to potential health 
risks associated with exposure to that hazard. Risk assessment allows NIOSH to make rec-
ommendations for controlling exposures in the workplace to reduce health risks. 

This document describes the process and logic NIOSH uses to conduct risk assessments, 
including the following steps:

 ■ Determining what type of hazard is associated with a chemical or other agent; 
 ■ Collating the scientific evidence indicating whether the chemical or other agent 
causes illness or injury; 

 ■ Evaluating the scientific data and determining how much exposure to the chemical or 
other agent would be harmful to workers; and  

 ■ Carefully considering all relevant evidence to make the best, scientifically supported 
decisions.

NIOSH researchers publish risk assessments in peer-reviewed scientific journals and in 
NIOSH-numbered documents. NIOSH-numbered publications also provide recommenda-
tions aimed to improve worker safety and health that stem from risk assessment.
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Executive Summary
Introduction
Occupational health risks describe the potential and severity of adverse effects in workers 
from their exposure to workplace hazards. Herein, adverse effects refer to health effects 
that are changes in the morphology, physiology, growth, development, reproduction, or 
life span of an organism, system, or population that result in an impairment of functional 
capacity, an impairment of the capacity to compensate for additional stress, or an increase 
in susceptibility to other influences [IPCS 2004]. Safeguards, derived from a combination 
of scientific assessment, engineering, and best management practices, mitigate these risks. 
Risk assessment is an important tool for informed decision-making on workplace safe-
guards when there are limited data on risks. Since the 1990s, quantitative risk assessments 
conducted by the National Institute for Occupational Safety and Health (NIOSH) have but-
tressed recommendations on limiting chemical exposures and some other workplace haz-
ards. The need for these recommendations is critical given estimates that over 50 million 
U.S. workers report frequent exposure to chemicals at work each year [Calvert et al. 2013]*.

This report describes the underlying science and general approach NIOSH researchers use 
in conducting high quality, scientifically sound quantitative assessments of the risks as-
sociated with these workplace hazards. It focuses on chemical risk assessment practices; 
however, some of these practices have benefitted NIOSH assessments of other workplace 
hazards, such as ionizing radiation and noise. The report informs NIOSH risk assessors, 
other scientists, stakeholders, and the public on the NIOSH risk assessment process. It is 
one of many routine exchanges between NIOSH, its stakeholders, and the risk assessment 
community, both home and abroad, which act to ensure best practices in risk assessment 
supporting worker protection.

Risk Assessment Process
NIOSH risk assessments are typically carried out by a multidisciplinary team of epidemi-
ologists, toxicologists, biostatisticians, industrial hygienists, and other exposure scientists 
(e.g., health physicists and chemists), hereafter referred to as risk assessors. NIOSH risk as-
sessments are often conducted in response to investigations prompted by persons who are 
at risk (e.g., affected workers), risk managers (e.g., employers, regulators), or risk assessors, 
alone or in combination, who need information on the probability and severity of potential 
workplace hazards. NIOSH then develops a risk assessment plan containing two key com-
ponents: (1) a conceptual model that identifies the hazard (sources, stressors, and pathways), 
persons potentially at risk, and apparent adverse effects; and (2) an analysis plan (work plan) 
that outlines the analytic components (i.e., data and methods) and interpretative approaches 

*Correspondence with authors (Calvert et al., 2013), who confirmed that about one third of workers participating in the 
2010 National Health Interview Survey reported either “frequent occupational skin contact with chemicals” in their main 
current job over the past year or “frequent occupational exposure to vapors, gas, dust, or fumes” at their longest-held job.
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(e.g., risk metrics) to be used. This approach is consistent with recommendations by the 
National Research Council (NRC) of the National Academies [NRC 2009]. Planning helps 
to ensure that the risk assessment applies the best scientific methods available, applies the 
highest-quality evidence, and addresses the needs of the decision-makers (risk managers). 
Initial plans comprise preliminary information that is subject to change as more informa-
tion becomes available; therefore, plans may evolve throughout the risk assessment process.

NIOSH risk assessments determine the relationship between the occupational exposure 
and adverse effects leading to the development of a reference value, either a recommended 
exposure limit (REL) or a risk management level for carcinogens (RML-CA), to be used to 
guide exposure control. Data permitting, this determination is preferred to be quantitative. 
The quantitative risk assessment uses three major components of the risk assessment pro-
cess that are completed sequentially: hazard identification, dose-response assessment, and 
risk characterization (Figure 1). Hazard identification is the systematic process for assess-
ing the weight of evidence on whether an agent of interest causes an adverse effect in ex-
posed workers. The findings from hazard identification are characteristic descriptions and 
information on the exposures of interest, any important cofactors (e.g., other risk factors, 
moderating factors, mediating factors, or confounders); modes and mechanisms of action; 
and conditions (e.g., pre-existing diseases) under which changes in exposures change the 
probabilities or timing of adverse effects. These data are prerequisites for conducting the 
dose-response assessment. The term dose-response is broadly defined as the relationship 
between the amount of an agent administered to, taken up by, or absorbed by an organism, 
system, or population and the change developed in that organism, system, or population 
in reaction to the agent. In NIOSH quantitative risk assessment, the dose-response is gen-
erally expressed as the conditional probability of the adverse effect in exposed workers at 
different levels of occupational exposure, given assumed levels for other direct causes of 
the adverse effect. In practice, the terms exposure and dose have been expressed in many 
ways over time and are often used interchangeably. By strict interpretation, exposure refers 
to contact between an agent (e.g., hazardous substance) and a target (e.g., human lung tis-
sue), and dose is the amount of the agent administered to, taken up by, or absorbed by the 
target [IPCS 2004]. The dose-response assessment provides estimates of the dose-risk rela-
tionship for use in the third component of risk assessment, namely, risk characterization. 
Risk characterization is the qualitative and, wherever possible, quantitative determination 
of the probability of occurrence, including attendant uncertainties, of known and potential 
adverse effects in workers under defined conditions of exposure to an agent [IPCS 2004]. It 
reflects the culmination of the planning, problem formulation, and analysis phases of risk 
assessment to integrate the science of hazard identification and dose-response assessment 
with risk policy (e.g., target risks). NIOSH uses the output from risk characterization (i.e., 
a description of risk estimates and attendant uncertainties) in combination with informa-
tion on available technology (e.g., analytic feasibility) to establish a sound basis for NIOSH 
recommendations. These recommendations inform decision-makers who are responsible 
for managing workplace risk. Figure 1 shows the components of risk assessment and their 
relationship with risk management.

NIOSH risk assessments follow the traditional NRC risk assessment steps except that 
NIOSH does not use the exposure assessment step [NRC 1983; NRC 2009]. In a risk as-
sessment, exposure assessment is the process of estimating or measuring the magnitude, 
frequency, and duration of exposure to an agent, along with the number and characteristics 
of the population exposed [IPCS 2004; NRC 2009]. The exposure assessment is driven by 
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the needs of environmental risk assessments which require information on the extent of 
human exposure to be able to project population risks and overall disease burdens in risk 
characterization. 

In contrast, NIOSH uses the information from the first two steps of the risk assessment to 
estimate health risks of individuals from the agent at various levels of exposure. This forms 
the risk basis for occupational exposure limits for use in risk management. The NIOSH 
mission, as stated in the Occupational Safety and Health Act, is “…to describe exposure 
levels that are safe for various periods of employment, including but not limited to the ex-
posure levels at which no employee (emphasis added) will suffer impaired health or func-
tional capacities or diminished life expectancy as a result of his work experience” [29 USC 
669 (a)(3)]. Therefore, the extent of exposure described as exposure assessment in the NRC 
formulation and the at-risk population are implicit. 

Similarly defined approaches are used by the Occupational Safety and Health Administra-
tion (OSHA) in determining Permissible Exposure Limits (PELs), and in the Integrated 
Risk Information System (IRIS) implemented by the U.S. Environmental Protection Agen-
cy (EPA). The EPA’s IRIS comprises two of the four steps (hazard identification and dose-
response assessment) described by the NRC. The omission of a formal exposure assessment 
step does not preclude the evaluation of exposure data that are pertinent to other risk as-
sessment steps. For example, the quality of exposure data from observational studies is a 
common concern in hazard identification and dose-response assessment. 

Hazard Identification
Hazard identification is typically the lengthiest component of the risk assessment process. 
Identifying hazards requires knowledge of both the agent and the adverse effect. Further-
more, NIOSH risk assessors approach hazard identification in terms of supporting quan-
tification of the dose-risk relationship; therefore, its findings are intended to define the 

Risk ManagementRisk Assessment

Figure 1. NIOSH risk assessment and risk management processes.

https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system
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population at risk, the agent, the adverse effect(s) of interest, and any cofactors (e.g., ef-
fect modifiers, confounders, or other sources of uncertainty) in sufficient detail to conduct 
sound quantitative dose-response analyses. Consistent with systematic review principles, 
the general framework for gathering and evaluating relevant human and animal study data 
consists of five basic steps: (1) define the causal questions of interest and develop criteria for 
study (data) selection; (2) develop literature search protocol and conduct search; (3) review, 
identify, and select relevant information; (4) evaluate and integrate evidence across stud-
ies; and (5) synthesize and interpret findings [Rhomberg et al. 2013]. The paths to meeting 
these steps can vary widely with the specific scientific context. In general, risk assessors 
judge the weight of evidence in study evaluation by using multiple factors—such as strength 
of association, consistency, specificity, temporality, biological gradient, plausibility, coher-
ence, experiment, and analogy—as first posited by Sir Austin Bradford Hill [1965]. For 
synthesis and interpretation, risk assessors consider the following factors:

 ■ The design and conduct of studies providing data for risk assessment:
 ȣ Are study results generalizable and relevant to the risk assessment problem? 
 ȣ Are results reproducible? 
 ȣ Was confirmation or refutation of findings attempted? 
 ȣ What factors may jeopardize external validity of the results?

 ■ The characterization of exposure, dose, and adverse effect: 
 ȣ What is the utility of the study data for hazard identification? 
 ȣ Will these data be suitable for inclusion in the database for the dose-response 
assessment? 

 ȣ What are the sources of measurement error and their potential effects on the dose-
response association?

 ■ The degree of data certainty and strength of findings in support of hazard 
identification: 

 ȣ Have researchers used sound statistical methods? 
 ȣ Are results robust under alternative assumptions? 
 ȣ Have results been over- or misinterpreted? 
 ȣ How likely are findings due to chance, bias, residual confounding, or other sources 
relevant to internal validity of the study? 

To improve efficiency, NIOSH often uses hazard identification by other agencies, such as 
the U.S. National Toxicology Program (NTP), EPA, OSHA, the Mine Safety and Health 
Administration (MSHA), the Agency for Toxic Substances and Disease Registry (ATSDR), 
the European Chemical Agency (ECHA), and the International Agency for Research on 
Cancer (IARC). These agencies have a long history of identifying hazards by using sound 
and transparent methodologies. Information on hazard identification is also available in 
the literature.

Relevant data primarily stem from human epidemiologic and animal toxicologic studies. 
Ideally, the direct estimation of risk from human data is always preferred to using data 
from experimental animal studies, because: (1) data reflecting actual exposures and re-
sponses within the population of interest are inherently superior for risk assessment; and 
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(2) the uncertainty in extrapolating data from animal toxicologic studies to predicting hu-
man risks can be much larger than that in well-designed epidemiologic studies [Hertz-
Picciotto et al. 1995; Smith 1988; Stayner et al. 1999]. Although some epidemiologic data 
may arise from experimental designs, most information pertinent to risk assessment stems 
from observational studies of working populations (e.g., cohort and case-control studies). 
Human data are not without limitations; therefore, risk assessments tend to rely on a com-
bination of human epidemiologic and animal toxicologic data for hazard identification and 
dose-response analyses. In fact, human studies tend to provide evidence of an association 
between exposure and disease, which can guide the choice of agents, exposure routes, and 
pathological endpoints for examination in toxicological studies that may contribute great-
est to quantifying risks.

In environmental risk assessments, exposure assessment is considered a separate step for 
assessing the likelihood of exposure for estimating population risks and/or disease burden. 
In contrast, NIOSH risk assessments, as described herein, estimate the risks to a hypo-
thetical working population from a known exposure. Although exposure probabilities are 
not typically calculated, dose-response analyses include exposure information; therefore, 
NIOSH systematically assesses the availability, magnitude, and validity of exposure data 
used in relevant studies as a part of hazard identification and applies this information, as 
applicable, in the dose-response assessment. 

Dose-response Assessment
The second component of NIOSH risk assessment is the dose-response assessment. Given 
exposure and outcomes of interest, the aim of the dose-response assessment is to obtain 
reliable and valid estimates of the point of departure (PoD) in a cause-and-effect relation-
ship for effects with a response threshold, or the risk at levels of exposure (e.g., the risk per 
unit dose) for non-threshold effects. Here, the PoD refers to a point on the dose-response 
curve that is established from experimental or observational data that corresponds to a level 
of no (or low) effect without substantial extrapolation. These estimates are essential to risk 
characterization. 

NIOSH generally obtains dose-response estimates via statistical models constructed to pro-
vide the conditional expectation of the dependent variable (the adverse effect) given one or 
more explanatory variables, but at least including the variable describing the agent exposure 
of interest. Model input data stem from toxicologic and/or epidemiologic investigations 
identified and assessed in hazard identification. Because different model specifications can 
lead to different estimates, a key step in dose-response analysis is model selection. Clearly, it 
is preferable to base model selection on biologic plausibility, although a strong advantage of 
one model among several plausible models is rarely evident. Furthermore, data from most 
studies are imperfect and potentially incomplete. In lieu of available statistical techniques 
and algorithms designed to deal with data imperfections, the risk assessor may have to rely 
on assumptions based on scientific judgment. 

Thus, another important part of the dose-response assessment is sensitivity analysis. In a 
sensitivity analysis, risk assessors quantitatively evaluate plausible alternative risk assess-
ment strategies, defaults, and assumptions for their impact on risk estimates. In addition 
to providing a measure of analysis robustness, sensitivity analyses aid the risk manager by 
providing a range of plausible estimates of the dose-risk relationship.
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Risk Characterization
The final step in NIOSH risk assessment is risk characterization. It is the translation of 
information from hazard identification and dose-response assessment into a basis, com-
pletely or in part, for recommendations on limiting workplace exposure. The framework of 
NIOSH risk characterization centers on a choice between two distinct approaches, based 
primarily on the evidence supporting the absence or presence of an impairment threshold. 
For effects with a response threshold, NIOSH typically adjusts the PoD in dose-response 
analysis by using factors that account for natural heterogeneity (e.g., interspecies variabil-
ity or interindividual variability) to arrive at an estimate of a safe dose. Here the term safe 
implies that excess risk at this exposure level is absent or negligible. NIOSH used this ap-
proach in its risk assessment of nonmalignant pulmonary effects from exposures to carbon 
nanotubes and nanofibers [NIOSH 2013b]. In contrast, consider a causal agent that is nei-
ther necessary nor sufficient to cause disease (e.g., cancer). In this case, cause and effect is 
best described as a relationship between the probability of disease and the dose level that is 
absent of a dose threshold. Cancer from low-dose ionizing radiation is a classic example of 
an effect generally considered having residual risk at any level of dose. In a NIOSH risk as-
sessment of radon exposure and lung cancer in uranium miners [NIOSH 1987], a safe level 
of ionizing radiation exposure was not assured; therefore, residual lung cancer risk under 
select exposure scenarios was estimated with probabilistic means. When effects appear to 
be without a response threshold, NIOSH obtains quantitative estimates of low-dose risk 
by model-based extrapolation of the risk at doses below the observed data. To illustrate, 
probabilistic models have been used by NIOSH to estimate the dose that would cause a life-
time excess cancer risk of 1 in 1000 from occupational exposure to hexavalent chromium 
[NIOSH 2013a] and titanium dioxide [NIOSH 2011]. There are instances in which the risk 
characterization approach is less dependent on a determination of whether the process has 
a threshold. For example, the response threshold may reside far below the observable range 
in dose-response analyses and may vary widely among exposed individuals. Under this 
condition, NIOSH may opt for assessing lifetime risks based on model extrapolation. Simi-
larly, an effect that is generally considered stochastic (e.g., cancer) may be indirectly caused 
by exposure through a precursor effect (e.g., inflammation) residing on the causal pathway 
that has a threshold. If this is the only important pathway present, then a safe level of expo-
sure is more likely (i.e., a level below inflammation). 

An important consideration of risk-based characterization is the selection of a target risk, 
which is a single level of risk broadly considered tolerable, given reasonable and practical 
risk management. There are multiple methods and principles available for establishing risk 
acceptance criteria, and the adopted methods and principles will undoubtedly influence 
the choice of target risk. Thus, risk acceptance (or tolerance) criteria are more likely to be 
unique to the situation at hand rather than be pre-defined [Rodrigues et al. 2014; Vanem 
2012]. Nevertheless, NIOSH has established a target risk level for non-threshold carcino-
gens of one excess case per 10,000 workers continuously exposed over a 45-year working 
lifetime [NIOSH 2017]. This level is a starting point for initiating a risk management pro-
cess. The setting of target risk levels for other outcomes is a fundamental component of 
risk management; therefore, actions are primarily the responsibility of the decision-makers 
and not the risk assessor. As such, a detailed discussion on the various risk management 
principles in play for determining these levels is beyond the scope of this report, although 
discussions are available in several published reports [Aven 2016; HSE 2001; Rodrigues et 
al. 2014; Tchiehe and Gauthier 2017; Vanem 2012]. Finally, health risk is but one aspect 
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typically needed to derive a target risk level, given that risk tolerance can depend on the 
combination of individual, societal, economic, and environmental impacts. Although em-
ployers in managing risks may consider these other factors, NIOSH quantitative risk assess-
ment is solely focused on characterizing health risks.

Conclusions
The identification and quantification of occupational risk are paramount to worker protec-
tion. NIOSH has a long, rich history of systematically assessing workplace hazards and 
communicating recommendations aimed to mitigate associated risks. As such, most recog-
nize NIOSH as a leader in occupational risk assessment and often seek its expertise in this 
field. This report aids others in their understanding of the NIOSH risk assessment process. 
To this end, the report describes the NIOSH approach to addressing hazard identification, 
dose-response analyses, and risk characterization, including demonstrated examples of 
NIOSH risk assessments. 

Above all, the NIOSH approach stresses careful attention to the aims of the risk assessment 
throughout the assessment process. It is important to thoroughly investigate the robust-
ness of key assumptions and provide transparency for both the main analysis and analyses 
of alternative modeling strategies and defaults. Maintaining mindfulness of the intended 
audience is of utmost importance; therefore, NIOSH risk assessors endeavor to follow the 
guiding principles of transparency, clarity, consistency, and reasonableness when conduct-
ing risk assessment (Table 1).

Table 1. Guiding principles of NIOSH risk assessments

Principle Description Criteria for risk characterization

Transparency Explicitness is essential 
in the risk assessment 
process.

Use a risk analysis plan.
Describe assessment approach, 

assumptions, extrapolations and use of 
models. 

Describe plausible alternative assumptions. 
Identify data gaps. 
Distinguish science from policy.
Describe uncertainty. 
Describe relative strength of assessment.

Clarity The assessment itself 
is free from obscure 
language and is easy to 
understand.

Be brief and concise.
Use plain English (avoid jargon). 
Avoid technical terms. 
Use simple tables, graphics, and equations.

(Continued)
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Table 1 (Continued). Guiding principles of NIOSH risk assessments

Principle Description Criteria for risk characterization

Consistency The risk assessment 
conclusions harmonize 
with those in other risk 
assessments and with 
other NIOSH actions.

Use this technical report.
Follow NIOSH policies on technical 

writing and peer review.
Place assessment in context with similar 

risk assessments. 

Reasonableness The risk assessment 
uses sound science and 
sensible judgment.

Use review by peers. 
Use best available scientific information. 
Use good judgment. 

Adapted from the EPA Risk Characterization Handbook [Fowle and Dearfield 2000].

Risk assessment science is continuously evolving. Methods currently under development 
may provide additional, powerful tools to assess risks to workers based on very limited data. 
Validation of these new approaches is a critical need. In efforts to stay abreast of the science, 
NIOSH will continue to embrace new methodologies, but it will do so with appropriate cau-
tion and deliberate evaluation of new techniques and approaches.
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1 Background
In their highly cited article, Kaplan and Garrick 
[1981] first posited that an analysis of risk is an ef-
fort to answer three questions:

1. What can happen?
2. How likely is it that it will happen?
3. What are the consequences if it does happen? 

Thus, the hazard (the potential source of harm) im-
poses risk (the likelihood of hazard causing harm) 
that is a function of both opportunity (likelihood) 
and consequence, as generally expressed by the fol-
lowing equation: 

Risk = f (hazard, consequence, opportunity)

Risk is omnipresent and diverse in the human ex-
perience; therefore, steps are necessary to manage 
the many kinds of risks in our daily lives, such as 
business risk, social risk, political risk, and occupa-
tional risk. To illustrate, the risk function for health 
risk associated with hazardous exposure is: 

Risk = f (target, exposure, toxicity, opportunity)
Where:

 ■ The target is the biological entity (e.g., an 
organ, an individual, or a population) that is 
exposed,

 ■ Exposure is contact between the agent (a 
chemical, biological, or physical entity) and 
the target,

 ■ Toxicity is the deleterious biological effects (i.e., 
the adverse effects) elicited by the agent, and 

 ■ Opportunity is the likelihood of cause  
and effect.

In this example, the target and the exposure form the 
hazard, while toxicity represents the consequence.

Occupational risk is the potential and severity of 
adverse health effects in workers from their expo-
sure to workplace hazards. In this context, the ad-
verse effect is simply a specified unfavorable change 

in health status of a worker from known exposure. 
Safeguards, carefully derived from scientific as-
sessment and best practices, reduce occupational 
risks. Risk assessment is an important tool for in-
formed decision-making on workplace safeguards 
when there are limited data on risks. For example, 
risk assessment provides the scientific underpin-
nings to authoritative recommendations, such as 
occupational exposure limits (OELs). Risk assess-
ment conducted by the National Institute for Oc-
cupational Safety and Health (NIOSH) provides 
the foundation for Recommended Exposure Limits 
(RELs) and Risk Management Limits for Carcino-
gens (RML-CAs) for chemicals and other work-
place hazards, such as ionizing radiation and noise. 

NIOSH first considered the need to quantify oc-
cupational risks when standards for benzene expo-
sure promulgated by the Occupational Safety and 
Health Administration (OSHA) were challenged in 
the 1980s, resulting in the well-cited Supreme Court 
decision “Industrial Union Department, AFL-CIO 
v. American Petroleum Institute, 448 U.S. 607 
[1980],” hereafter referred to as the Benzene De-
cision. That decision essentially established a need 
to quantify the risk from occupational exposure 
as a basis for exposure limits. In response, NIOSH 
developed a “Risk Assessment Team,” which later 
expanded to a “Risk Assessment Activity.” This 
team of toxicologists, epidemiologists, exposure 
scientists, and statisticians provided quantitative 
risk assessments for radon [Hornung and Mein-
hardt 1987; NIOSH 1987]; ethylene glycol mono-
methyl ether, ethylene glycol monoethyl ether, and 
their acetates [NIOSH 1991]; cadmium [Stayner 
et al. 1992a; Stayner et al. 1992b]; 1,3-butadiene 
[Dankovic et al. 1993]; and coal dust [Kuempel et 
al. 1997]. In 1995, the Risk Assessment Activity was 
formally organized. Since that time, NIOSH staff 
have conducted quantitative risk assessments for 
a wide variety of agents, including diesel exhaust 

https://www.loc.gov/item/usrep448607/
https://www.loc.gov/item/usrep448607/
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[Stayner et al. 1998], 1,3-butadiene [Stayner et al. 
2000], asbestos [Stayner et al. 1997], silica [Park et 
al. 2002; Rice et al. 2001], noise (with and without 
co-exposure to carbon monoxide) [NIOSH 1998], 
titanium dioxide [NIOSH 2011], hexavalent chro-
mium [NIOSH 2013a], carbon nanotubes and 
nanofibers [NIOSH 2013b], diacetyl and 2,3-pen-
tanedione [NIOSH 2016], manganese in welding 
fume [Park and Berg 2018; Park et al. 2009], tolu-
ene diisocyanate [Daniels 2018], and metalworking 
fluids [Park 2018] (Table 1-1).

In general, risk assessment is a process in which 
NIOSH characterizes the risk of adverse health ef-
fects from workplace hazards by using information 
from hazard identification (exposure and outcome) 
and dose-response assessment. This evaluation 
determines whether an exposed population is at 
greater-than-expected risk of adverse effects, such 
as disease (cancer or non-cancer) or injury. Once 
the hazard is identified, the magnitude and nature 
of its associated risk can be explored further, using 
either qualitative or quantitative approaches. Qual-
itative risk assessments are descriptive and indicate 
whether an adverse effect is likely or unlikely under 
specified conditions of exposure. Quantitative risk 
assessments provide numerical estimates of risks 
based on mathematical modeling. For example, a 
quantitative risk assessment may relate conditions 
of workplace exposure to an estimate of increased 
lifetime risk of a disease or injury. 

Quantitative risk assessments require (1) data on 
exposures relevant to the adverse effect of interest; 
(2) data on the adverse effect associated with the 
exposure of interest; and (3) a mathematical model 
describing that dose-response relationship. The list 
of completed risk assessments shown in Table 1-1 
clearly indicates the preference for directly esti-
mating worker risks using data from human stud-
ies compared to experimental animal studies. Risk 
assessments based on epidemiologic, population-
based studies have real-world relevance to workers, 
but they generally suffer from limitations inherent 
to study design and available data. Risk assessments 
based on experimental animal data provide detailed 
information on the dose-response relationships; 

however, there is often concern about the validity 
of extrapolating animal-based risk assessments to 
humans, who generally have much lower and more 
variable exposures. The integration of mechanistic, 
animal, and human data is important for develop-
ing a thorough understanding of the risks. 

The risk assessment process has become increas-
ingly complex over the past several decades. In oc-
cupational safety and health regulation, the need 
to quantify risk became apparent with the Benzene 
Decision, which established that OSHA could not 
issue a standard without demonstrating a signifi-
cant risk of material health impairment. The rul-
ing allowed (but did not require) numerical criteria 
to be used to determine whether a risk is “signifi-
cant.” As a result, risk assessment became standard 
practice in OSHA rulemaking for health standards, 
and quantitative risk assessments are now preferred 
whenever data, modeling techniques, and biologi-
cal understanding are adequate to support their 
development. NIOSH has adopted many of the 
same risk assessment practices as OSHA in order 
to keep the analyses relevant and meaningful with-
in OSHA’s regulatory context.

1.1 NIOSH Risk Assessment 
History

Historically, NIOSH employed a variety of methods 
to establish recommendations intended to prevent 
adverse effects in workers. NIOSH considered the 
health effects associated with experimental or ob-
served exposure concentrations and applied a safe-
ty factor to ensure that even the most susceptible 
individual would be generally protected from a haz-
ard. One major exception was in addressing issues 
of carcinogenicity. When evaluating carcinogens, 
NIOSH typically assumed that no exposure could 
be considered safe. This led to RELs for carcinogens 
that were not numerical, but directed employers to 
keep exposures as low as feasible [Fairchild 1976].

In its first decades, NIOSH was largely uncertain 
about the utility of dose-response modeling, espe-
cially for carcinogens. In 1982, NIOSH commented 
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to OSHA on an Advance Notice of Proposed Rule-
making on the Identification, Classification and 
Regulation of Potential Occupational Carcinogens 
[NIOSH 1982]: 

Because our understanding of the mechanism 
of carcinogenicity is incomplete, our use of 
mathematical models to predict its outcome 
must be employed with extreme caution. To se-
lect a model or models from among the many 
choices and to have them incorporated into Ad-
ministration policy will not resolve those issues.

However, just a few years later, NIOSH engaged 
in quantitative risk assessment. As cited in 1986 
NIOSH testimony on OSHA’s Proposed Rule on Oc-
cupational Exposure to Benzene [NIOSH 1986a], 
NIOSH drew on the Benzene Decision, which fo-
cused on significant risk of material impairment of 
health, and United Steelworkers of America v. Mar-
shall, 647 F. 2d 1189 (D.C. Cir. [1980]), cert, denied 
101 S. Ct. 3148 [1981], hereafter referred to as the 
Lead Decision, to conclude:

These two decisions provided the impetus for 
the inclusion of a quantitative risk assessment 
effort in the standards recommending pro-
gram of NIOSH [NIOSH 1986a].

The first reference to quantitative risk assessment in 
NIOSH policy statements was in the 1986 NIOSH 
testimony to OSHA recommending 0.1 ppm as a 
permissible exposure limit (PEL) for benzene, based 
largely on findings from a NIOSH risk assessment 
using epidemiologic data [Rinsky et al. 1987]. Risks 
at 0.1 ppm were determined to be around one ex-
cess cancer per 1000 workers over a working life-
time. However, this initial risk-based REL was never 
incorporated into an updated Criteria Document 
for benzene, and later documentation referred to 
the limit of quantification (LOQ) of the analytical 
method (also around 0.1 ppm at the time) as the 
basis of the 0.1 ppm REL [NIOSH 1988]. Here, the 
LOQ is the amount or concentration of the analyte 
at which quantitative results can be reported with a 
high degree of confidence, which is based on assay-
specific acceptance criteria [NIOSH 1995b].

In 1986, although NIOSH did not conduct its own 
risk assessment for formaldehyde, NIOSH testified 
that the OSHA risk assessment for formaldehyde 
was acceptable [NIOSH 1986b]. This risk assess-
ment used animal bioassay data to estimate the hu-
man cancer risk of 3.46 cases per 1000 workers ex-
posed over a working lifetime at the proposed PEL 
of 3 ppm. However, the NIOSH REL of 0.016 ppm 
as an 8-hour time-weighted average (TWA) was 
based on the lowest concentration that was consid-
ered quantifiable at the time. 

In 1987, NIOSH published its first Criteria Docu-
ment to include a quantitative risk assessment: Cri-
teria for a Recommended Standard for Occupational 
Exposure to Radon [NIOSH 1987]. The risk assess-
ment was based on epidemiologic data on excess 
lung cancer in underground uranium miners ex-
posed to radon [Hornung and Meinhardt 1987]. 
The risk assessment found that continuous expo-
sure to radon progeny concentrations of one Work-
ing Level Month (WLM) annually over a working 
lifetime corresponded to 5–10 excess lung cancers 
per 1000 miners. The risk from radon exposure 
versus the feasibility of controlling exposures was a 
point of discussion in the document. The REL was 
ultimately based on the limits of control technol-
ogy at the time; however, NIOSH also communi-
cated risks at this level, which supported additional 
recommendations for continued control technol-
ogy development.

NIOSH risk assessments during the 1990s largely 
incorporated data from well-designed occupa-
tional epidemiologic studies that had become a 
mainstay of the Institute’s field studies program. 
Epidemiological risk assessments of lung cancer in 
humans were conducted for cadmium, chrysotile 
asbestos, and diesel exhaust [Stayner et al. 1998; 
Stayner et al. 1997; Stayner et al. 1992a; Steenland 
et al. 1998]. Cancer as a result of worker exposures 
to ethylene oxide was also examined [Steenland 
et al. 2003]. NIOSH also conducted worker-based 
risk assessments for various lung function measures 
after coal dust exposure and for hearing loss 
after noise exposure [NIOSH 1995a; Prince et al. 
2003]. In addition, although not a complete risk 
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assessment, physiologically based pharmacokinetic 
(PBPK) modeling was used for dose estimation 
in a worker study of 2,3,7,8-Tetrachlorodibenzo-
p-dioxin (TCDD) exposure [Lawson et al. 2004]. 
Animal-based risk assessments were conducted 
to predict human risks in the absence of sufficient 
human data. Toxicologic-based examples include 
assessments of 1,3-butadiene and cancer at vari-
ous sites in the mouse and rat, and assessments of 
glycol ethers and reproductive effects in the mouse, 
rat, and rabbit [Dankovic et al. 1993; NIOSH 1991; 
Stayner et al. 2000].

In the 2000s and beyond, the need for quantitative 
risk estimates preferentially based on epidemio-
logic data resulted in risk assessments becoming 

increasingly complex. Advances in risk assess-
ment have included innovations in reconstructing 
past exposures in epidemiological studies, expan-
sion of statistical modeling techniques, increased 
understanding of the role of particle dosimetry 
issues in risk assessment, and exploration of dose-
response modeling for non-cancer health end-
points. Advancements such as new techniques in 
statistical modeling methods to account for sur-
vivor bias in human studies, the incorporation of 
genetics and genomics into risk assessment, and 
the potential for using quantitative structure ac-
tivity relationships for risk assessment pose many 
challenges and opportunities for the future [Buck-
ley et al. 2015; Comber et al. 2003; Schulte et al. 
2015; Weitzel et al. 2011].
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2 Purpose and Scope

Quantitative risk assessment is a foundation of au-
thoritative recommendations. NIOSH conducts 
high quality, scientifically sound quantitative as-
sessments of workplace hazards as input for de-
veloping its Criteria Documents, including estab-
lishing the basis for RELs and alternative forms 
of authoritative recommendations, such as hazard 
banding. This document describes the underlying 
science and general approach used by NIOSH re-
searchers when conducting risk assessments, de-
fined as the (preferably quantitative) determination 
of the relationship between the predicted exposure 
and adverse effects in workers. This information is 
intended for scientists, stakeholders, and the pub-
lic to improve their understanding of the NIOSH 
risk assessment process. Every risk assessment is 
unique; therefore, situations may arise which re-
quire steps that are not specifically addressed in 
this report. Furthermore, discussions on NIOSH 
risk management and risk communication prac-
tices that typically follow the completion of its risk 
assessments are beyond the scope of this report. In 
particular, exposure assessment, as described by 
the National Research Council (NRC) [NRC 1983], 
may improve risk management practices by iden-
tifying and assessing efficiencies of feasible control 
options. Although important to the NIOSH mis-
sion of protecting workers, these activities are out-
side the scope of this document.

In developing its program, NIOSH benefitted from 
seminal reports by the NRC, which lay the foun-
dation for modern risk assessment [NRC 1983; 
NRC 2009]. The NRC paradigm identified four 
major steps: hazard identification, dose-response 
assessment, exposure assessment, and risk charac-
terization. This basic construct is used throughout 
the risk assessment community; however, some 
authoritative bodies have described the process 
using different terms and groupings of steps. For 

example, the Integrated Risk Information System 
(IRIS) includes the first two steps of the NRC risk 
assessment process. Also, the International Orga-
nization for Standardization (ISO) describes risk 
assessment as an overall process comprising three 
steps, namely, risk identification, risk analysis, and 
risk evaluation, which best correspond to hazard 
identification, dose-response assessment, and risk 
characterization of the NRC paradigm [ISO 2018]. 
Similarly, three NRC steps (hazard identification, 
dose response assessment, and risk characteriza-
tion) are most applicable to NIOSH risk assess-
ment, as shown in Figure 2-1. 

1. Hazard identification is the identification of the 
type and nature of adverse effects that an agent 
has an inherent capacity to cause in an organism, 
system, or population [IPCS 2004]. An adverse 
effect is defined as the specified change in the 
morphology, physiology, growth, development, 
reproduction, or life span of an organism, system, 
or population that results in an impairment of 
functional capacity, an impairment of the capac-
ity to compensate for additional stress, or an in-
crease in susceptibility to other influences [IPCS 
2004]. Hazard identification is the initial stage of 
the risk assessment. The products from hazard 
identification are characteristic descriptions and 
data on the exposure of interest; any important 
cofactors (e.g., other risk factors, moderating fac-
tors, mediating factors, confounders, or colliders); 
modes and mechanisms of action; and conditions 
(e.g., pre-existing diseases) under which changes 
in exposures change the probabilities or timing of 
adverse effects. Preferably, these data are suitable 
for quantifying the dose-response relationship. 
Therefore, hazard identification is the necessary 
antecedent to dose-response assessment. 

2. Dose-response assessment is an analysis of the 
dose-response association between exposure 

https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system
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Dose-Response
Assessment

Hazard
Identification

Risk
Characterization

Available Technology

Target Risk

Risk ManagementRisk Assessment

Risk
Management

Options

Mode of
Action

Figure 2-1. NIOSH risk assessment and risk management processes.

to the agent and adverse effects. The term dose-
response is broadly defined as the relationship 
between the amount of an agent administered 
to, taken up by, or absorbed by an organism, sys-
tem, or population and the change developed in 
that organism, system, or population in reaction 
to the agent [IPCS 2004]. In NIOSH risk assess-
ment, the dose-response is typically described as 
the conditional probability of the adverse effect 
(i.e., the response) in exposed workers at differ-
ent levels of occupational exposure to a hazard-
ous agent, given assumed levels for other direct 
causes of the adverse effect. The meanings of the 
terms exposure and dose have been expressed in 
many different ways over time, and these terms 
are often used interchangeably (see section 
4.3.3.1). Desired products of the dose-response 
assessment are estimates of the risk per unit 
dose having reasonable statistical properties for 
use in quantitative risk characterization. In lieu 
of sufficient data for quantification, the dose-
response may be qualitatively described. 

3. Risk characterization is the qualitative and, wherever 
possible, quantitative determination, including 

attendant uncertainties, of the probability of occur-
rence of known and potential adverse effects of an 
agent in workers under defined exposure condi-
tions [IPCS 2004]. It reflects the integration of the 
sciences from the two preceding steps (i.e., hazard 
identification and dose-response assessment) with 
additional information necessary to complete the 
basis for the REL or other supported recommenda-
tion. Some of this information may be based on risk 
assessment/management policy rather than science; 
therefore, risk characterization is also a component 
of the risk management process. 

NIOSH risk assessments do not include all the steps 
outlined in the NRC paradigm.  A NIOSH risk as-
sessment does not include the exposure assess-
ment step. Exposure assessment is the process of 
estimating or measuring the magnitude, frequency, 
and duration of exposure to an agent, along with 
the number and characteristics of the population 
exposed. Traditionally, exposure assessment pro-
vides information on sources, pathways, and routes 
of exposure necessary to be used in conjunction 
with dose-response information to project whole 
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population risks. For an environmental risk assess-
ment, exposure assessment is critical to consider 
the likelihood and severity of exposure in assessing 
whole population risk. 

In contrast, NIOSH uses the information from the 
first two steps of the risk assessment to estimate 
health risks to the individual from the agent at 
various levels of exposure. This forms the risk basis 
for RELs for use in risk management. The NIOSH 
objective, as stated in Section 20(a)(3) of the Occu-
pational Safety and Health Act of 1970, is “... to de-
scribe exposure levels that are safe for various pe-
riods of employment, including but not limited to 
the exposure levels at which no employee [empha-
sis added] will suffer impaired health or functional

capacities or diminished life expectancy as a result 
of his work experience.” Thus, the risks of concern 
to NIOSH cover the range of exposures as experi-
enced by each worker, and are not considered gen-
erally as a population risk.

Nevertheless, exposure information is used for 
dose-response analyses; therefore, the quality of 
exposure data ultimately used to describe the 
dose-response relationship must be evaluated as 
a component of hazard identification. Thus, this 
document describes exposure methods and mea-
sures (see section 4.3.3), including sources of bias 
(see section 4.3.4), in Chapter 4.0. Additional in-
formation on measurement error is available in 
Appendix B. 
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3 Risk Assessment Plan (Problem Formulation)

There can be many paths to initiating a risk assess-
ment. NIOSH risk assessments have begun after 
concerns were raised by workers, employers, regu-
lators, and lawmakers. Risk assessments can follow 
anecdotal evidence on emerging occupational health 
issues or systematic examination of signs and symp-
toms of occupational disease. Factors contributing 
to a decision to conduct a risk assessment usually 
include broad information on the availability and 
use of the agent, numbers of workers at risk, ex-
posure pathways, the type and severity of effects, 
general mitigation options, and alternatives to risk 

assessment. Consideration of these factors usually 
evolves over time. For example, early case reports 
of bronchiolitis obliterans in popcorn plant work-
ers [Kreiss et al. 2002] motivated several preliminary 
health assessments that ultimately led to a formal 
quantitative assessment of pulmonary disease risk 
from exposure to diacetyl and 2,3-pentanedione that 
formed the risk basis for a REL [NIOSH 2016]. 

In general, a risk assessment has two distinct ini-
tiating stages: (1) planning and scoping and (2) 
problem formulation (Figure 3-1) [NRC 2009]. 

Problem FormulationPlanning and Scoping

Hazard Identification

Risk Characterization

 
What are the 
occupational risks?

Are current safeguards 
(e.g., REL) adequate 
to protect workers?

Conceptual 
model 

Analysis 
plan 

Dose-Response

What technical 
assessments are 
needed to evaluate 
risk and management 
options?  

What conditions affect 
safeguards and the 
level of analysis 
required?

What resources are 
available to conduct 
the assessment?

Integrate available data

Risk Assessment

Risk Managers 
and Stakeholders

Risk Managers and Risk Assessors

Figure 3-1. The interrelationships between planning and scoping, problem formulation, and risk assessment.
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Planning and scoping typically involve a dialogue 
between stakeholders and risk managers (with sup-
port from risk assessors) on the hazards and poten-
tial risk mitigation strategies, including conceptual-
izing the need, purpose, structure, and content of a 
risk assessment to aid in decision-making. Problem 
formulation occurs from communication between 
risk managers and risk assessors (with support of 
stakeholders) on the technical design of the risk 
assessment, which uses the broad concepts devel-
oped in planning and scoping. Although planning 
and scoping provide input into problem formula-
tion and therefore are initiated first, the activities in 
both stages will likely progress concurrently. 

The planning and scoping stage is described as a 
deliberative process that is intended to assist de-
cision-makers in defining a risk-related problem 
[NRC 2009]. Planning and scoping begin with an 
acknowledgment that risk assessment is the appro-
priate decision-making tool. In practice, planning 
and scoping usually begin with discussions among 
risk managers and stakeholders on a certain health 
risk. These discussions may involve risk assessors 
in a supportive role. In general, the planning and 
scoping stage (1) identifies the occupational health 
concern, (2) assesses whether existing safeguards 
are appropriate or what additional information is 
needed to inform decision-making, and (3) deter-
mines the resources needed to conduct the risk as-
sessment. The product is a statement describing the 
specific concerns the risk assessment will address 
and the resources needed to do so.

At the outset of problem formulation, NIOSH 
investigators develop a risk assessment plan that 
contains two critical components: (1) a concep-
tual model that identifies the hazard (sources, 
stressors, and pathways), persons at risk, and 
potential adverse effects for analysis; and (2) an 
analysis plan (work plan) that outlines the ana-
lytic components (i.e., data and methods) and in-
terpretative approaches (e.g., risk metrics) to be 
used [NRC 2009]. The conceptual model guides 
decisions on data needs, and the analysis plan 
matches elements of the conceptual model with a 
proposed analytic approach. The two overarching 

principles in developing the plan are (1) to ensure 
that the risk assessment uses the best scientific 
methods and the highest-quality evidence and 
(2) to address the needs of the decision-makers 
(risk managers). Thus, in the problem formula-
tion stage, it is imperative to be mindful that the 
risk assessment serves both scientific and com-
municative needs. This is best accomplished by 
including input from both scientists and deci-
sion-makers in the design of the risk assessment 
plan, if practical. For complex risk assessments, 
the analysis plans and conceptual models may 
benefit from peer review.

One way to formulate the risk assessment plan is to 
use a series of questions that the risk assessment is 
intended to address, such as this partial list of some 
examples:

 ■ What agents are involved?

 ■ Who is potentially at risk?

 ■ What are the characteristics of the potential 
adverse effects caused by the hazard? 

 ■ What types of data support or inform the risk 
assessment process? 

 ■ What dose-response data will be included? 
For example, what criteria determine the 
acceptability of experimental animal data with 
inhalation as route of exposure?

 ■ How will exposure be expressed (e.g., inhaled 
dose, absorbed dose, or air concentration)? 
What are the reasonable alternative expressions, 
and how would using those alternatives change 
the risk assessment? 

 ■ How are the health effects defined and measured? 
Are health effects aggregated (e.g., all cancer)? 
If aggregated, how would using alternative 
aggregation strategies alter the risk assessment? 

 ■ What evidence of a dose-response association 
is available? What types of causal mechanisms 
are likely to be involved? 

 ■ How should one deal with the background 
(control) incidence of different effects? Are the 
processes producing the observed health effects 
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in control animals (or unexposed populations) 
likely to interact with processes by which the 
hazard of interest causes these effects, or should 
the toxic mechanisms be treated as if they were 
independent of background processes?

 ■ How should one evaluate important sources of 
uncertainty in the risk assessment? Are there 
any reasonable anticipated adjustments to the 
exposure or health effect based on mechanism, 
metabolism, potential confounding factors, 
other exposures, or other factors? What is the 
anticipated impact of uncertainty on the risk 
assessment findings?

 ■ How will the final risks be expressed, and if 
quantitative analysis is done, what target risk 
levels are used? What is the support for those 
decisions, and are there reasonable alternatives? 
If yes, how would using those alternatives affect 
the risk assessment?

 ■ What is the timeframe for completing the 
assessment?

The above list of questions may be applicable in 
many risk assessments; however, the list is not 
comprehensive. Each risk assessment will require 
its own set of questions to explore. 

As necessary, the risk assessor refers to the plan 
throughout all aspects of the risk assessment. Ap-
propriate plans include enough detail so that an-
other risk assessor could reproduce the analysis. 
Risk assessment plans are living documents. If cir-
cumstances dictate changes are necessary, then risk 
assessors should revise their plans by clearly indi-
cating the changes made, along with a justification 
for the revision. This helps to document decisions 
made throughout the course of the risk assessment. 

The development of a written risk assessment plan 
is a relatively new addition to the NIOSH risk as-
sessment process. Up to this point, NIOSH risk 
assessments published in Criteria Documents or 
Current Intelligence Bulletins have not included a 
formal written plan.
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4 Hazard Identification

The first step in occupational risk assessment is 
hazard identification, which is the process of char-
acterizing the nature and strength of the evidence 
of causation, hereafter referred to as the weight of 
evidence (WoE), between an agent of interest (e.g., 
benzene) and an adverse effect (e.g., leukemia) in 
exposed workers. In this way, hazard identification 
is pursuing a causal explanation, which is a cogni-
tive goal of identifying disease mechanisms and 
detecting causal factors [Russo and Williamson 
2007]. Ideally, this evidence will serve as input to 
the dose-response assessment to support quantita-
tive risk assessment. Evaluating the WoE generally 
requires a systematic approach to critically assess 
and interpret the body of scientific information 
(i.e., a systematic review). This information stems 
primarily from epidemiologic studies of humans 
and animal toxicology, with mechanistic data pro-
viding a reinforcing role. Human data sources are 
preferred for quantifying occupational risks; how-
ever, hazard identification has at times relied solely 
on animal data or a combination of human and an-
imal data. When used in combination, either data 
source may take a supportive role in the risk assess-
ment, along with complementary mechanistic data. 

In a recent survey aimed to identify best practices 
in WoE analyses, investigators reviewed approxi-
mately 50 WoE frameworks from academia, the 
federal government, international bodies/organi-
zations, consortia, and others (such as consulting 
firms, industry toxicology research groups, and 
military organizations). Although specific methods 
differed, the general framework of an acceptable ap-
proach to gathering and evaluating relevant human 
and animal study data consists of five basic steps: 
(1) define the causal questions of interest and de-
velop criteria for study (data) selection; (2) develop 
literature search protocol and conduct search; (3) 
review, identify, and select relevant information; 

(4) evaluate and integrate evidence across studies; 
and (5) synthesize and interpret findings [Rhom-
berg et al. 2013]. The paths to meeting these steps 
can vary widely with the specific scientific context 
of the risk assessment; therefore, precise methods 
for assessing WoE cannot be prescribed without 
understanding the individual context, although 
general guidelines are provided herein and are also 
available elsewhere [Higgins and Green 2008; NRC 
1983; NRC 2014; NTP 2015a; NTP 2015b; Rhom-
berg et al. 2013; WHO 2000]. As such, risk asses-
sors strive to develop and describe their approach 
in sufficient detail to ensure a transparent and de-
fendable standard of WoE is met for their evalua-
tion [Weed 2005]. To accomplish this, NIOSH risk 
assessors may develop systematic review protocols 
for evaluating data quality and synthesizing eviden-
tial information. As discussed in a recent NIOSH-
commissioned report on systematic reviews [Hem-
pel et al. 2016], these protocols incorporate best 
practices to accomplish the following:

 ■ Assess all human and animal data relevant to 
mode of action, their human relevance, and 
dose-response. 

 ■ Evaluate the types of data that have been con-
sidered.

 ■ Trace the reasoning by which the data bear on 
the evaluation of the assessment question.

 ■ Consider alternative modes of action and de-
velop a biological story for each plausible mode 
of action/outcome combination.

 ■ Consider the relevance, response, and predic-
tivity of the outcomes and use other knowledge 
(e.g., biological pathways) to inform the rel-
evance determinations.

 ■ Integrate data across all lines of evidence so 
that the interpretation of one will inform the 
interpretation of others (e.g., if the proposed 
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mode of action were true, determine what ob-
servable consequences it should have across 
lines of evidence).

 ■ Clearly present the WoE findings and explore 
ways to measure and communicate different 
magnitudes of WoE and different degrees of 
plausibility of explanations and their risk-as-
sessment consequences.

In conducting the systematic review, risk assessors 
consider the internal and external validity of the 
research, as it relates to the risk assessment. Inter-
nal validity is the degree to which study findings 
are free from bias. External validity is the degree 
to which study findings may apply, be generalized, 
or be transported to the population or groups of 
interests (i.e., workers) that did not participate in 
the study. Broadly, risk assessors consider the fol-
lowing factors:

 ■ The design and conduct of studies providing 
data for risk assessment. Are study results gen-
eralizable and relevant to the risk assessment 
problem? Are results reproducible (have they 
been confirmed or refuted)? What factors may 
jeopardize external validity of the results?

 ■ The characterization of exposure, dose, and 
adverse effect. What is the utility of the study 
data for integration and evaluation across stud-
ies? Will these data be suitable for inclusion in 
the database for the dose-response assessment? 
What are the sources of measurement error 
and their potential effects on the dose-response 
association? 

 ■ The degree of data certainty and strength of 
findings in support of hazard identification. 
Have sound statistical methods been used? Are 
models correctly specified? Are results robust 
under alternative assumptions? Have results 
been misinterpreted? How likely are findings 
due to chance, bias, residual confounding, or 
other sources relevant to internal validity of the 
study? (See Appendix B.) 

In practice, to inform their assessments, NIOSH 
risk assessors have sometimes relied on hazard 

identification by other agencies, such as the U.S. 
National Toxicology Program (NTP), the U.S. 
Environmental Protection Agency (EPA), the 
Occupational Safety and Health Administration 
(OSHA), the Mine Safety and Health Administra-
tion (MSHA), the Agency for Toxic Substances and 
Disease Registry (ATSDR), the European Chemi-
cals Agency (ECHA), and the International Agency 
for Research on Cancer (IARC). These agencies 
have a long history of hazard identification using 
sound, transparent methodologies. The NIOSH 
Chemical Carcinogen Policy [2017] provides ad-
ditional information on the use of available cancer 
hazard assessments. Hazards have also been identi-
fied by recent research that has not been reviewed 
and synthesized by these agencies. This occurs most 
often in cases where emerging hazards have been 
identified or when new information on an existing 
hazard becomes available. In all cases, NIOSH risk 
assessors evaluate, integrate, and synthesize the ex-
isting evidence to characterize the hazard for dose-
response analyses and risk characterization. This is 
accomplished by using best practices of the many 
frameworks established for hazard identification. 
These practices are discussed in comprehensive re-
views [Higgins and Green 2008; NRC 1983; Rhom-
berg et al. 2013], recent commentaries [Howard et 
al. 2017; Woodruff and Sutton 2014], and technical 
reports [EPA 2018a; NRC 2014; NTP 2015a; NTP 
2015b; WHO 2000]. In addition, tools for conduct-
ing and assessing systematic reviews are available 
to NIOSH risk assessors, such as AMSTAR and a 
recent report commissioned by NIOSH as an aid 
for conducting systematic reviews [Hempel et al. 
2016]. Historically, NIOSH risk assessors have uti-
lized thorough literature reviews as the foundation 
for risk assessments. This new report on system-
atic reviews will serve as an important resource to 
guide future reviews. 

In summary, NIOSH risk assessors are mindful that 
the term hazard is defined as the inherent property 
of an agent (or situation) having the potential to 
cause an adverse effect when an organism, system, 
or population is exposed to that agent. Thus, identi-
fying hazards requires knowledge of both the agent 

https://amstar.ca/index.php
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and the adverse effect. Furthermore, NIOSH risk 
assessors approach hazard identification in terms 
of supporting the next step in the risk assessment. 
Therefore, data must sufficiently define dimensions 
of the population at risk, the agent, the adverse 
effect(s) of interest, and any cofactors (e.g., effect 
modifiers, confounders, or other sources of uncer-
tainty), knowledge of which is necessary for con-
ducting sound quantitative dose-response analyses. 

4.1 Hill’s Views on Causation
Observed associations are typically evaluated by 
NIOSH against multiple factors to assess WoE. The 
framework used to make an assessment is likely to 
be specific to the problem at hand; however, there 
are numerous WoE frameworks available to the 
risk assessor for planning an approach [Rhomberg 
et al. 2013]. Perhaps the most widely known WoE 
framework was introduced by Sir Austin Bradford 
Hill [1965], who proposed nine heuristic aspects 
of association commonly referred to as the “Brad-
ford Hill criteria.” These aspects comprise strength 
of association, consistency, specificity, temporality, 
biological gradient, plausibility, coherence, experi-
ment, and analogy. However, using these aspects 
to weight data is but one approach; Hill cautioned 
against the use of his views as a set of definitive 
rules on causality and acknowledged that many 
additional factors may be equally if not more im-
portant to WoE. Similar concerns have surfaced in 
several contemporary critical assessments of Hill’s 
views [Fedak et al. 2015; Hofler 2005; Howick et al. 
2009; Ioannidis 2016; Phillips and Goodman 2004; 
Thygesen et al. 2005]. Thus, the term guidelines is 
preferred to criteria, as posited by Howick et al. 
[2009]. More information on the formulation of 
Hill’s guidelines, including critical assessments of 
their use in causal inference, is available in the as-
sessments referenced above and in seminal epide-
miologic texts [Checkoway et al. 2004; Rothman et 
al. 2008]. The guidelines are briefly described below. 

1. Strength of association refers to the magni-
tude and statistical precision of the observed 
association, whereby a strong association 

is less likely to be influenced by unmea-
sured confounders, other sources of bias, or 
chance alone. Thus, this aspect addresses the 
feasibility of statistical inference. A strong 
association is neither necessary nor suffi-
cient for a causal relationship. For example, 
the association between cardiovascular dis-
ease and smoking is considered relatively 
weak; however, it is also considered causal. 
Conversely, an effect estimate achieving sta-
tistical significance provides little evidence 
of causality without due consideration of 
other aspects, such as underlying statistical 
methods, biologic plausibility, and repro-
ducibility of results. 

2. Consistency refers to the reproducibility 
of similar effects in different populations 
(studies). Generally, evidence from a series 
of studies reporting similar effects is weight-
ed more than findings from a single study. 
Like strength of association, consistency 
also addresses the feasibility of statistical 
inference, because increased homogeneity 
across studies is evidence against poor in-
ternal validity. Nevertheless, consistency is 
neither necessary nor sufficient for a causal 
relationship.

3. Specificity, in Hill’s view, is the simple prem-
ise that an association is more likely to be 
causal if it is observed between one cause 
and one effect. Of course, specificity is re-
liant on the definitions of the cause (ex-
posure) and effect (disease). In practice, 
epidemiologic examinations tend to in-
volve complex exposures and multifactorial 
diseases with similar pathways; therefore, 
highly specific agent-disease associations 
are seldom observed. For this reason, many 
consider specificity to be of little impor-
tance for causal inference in most settings. 

4. Temporality refers to the general acceptance 
that the cause (exposure) must precede the 
effect (disease) in time. This is the only cri-
terion that is considered necessary for a 
causal relationship. Thus, study designs that 
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firmly maintain the temporal progression 
from cause to effect are far more persuasive 
in causal inference. 

5. Biological gradient refers to the observed 
presence of a dose-risk relationship (i.e., 
dose-response). Typically, this is defined 
as a monotonic trend in disease frequency 
with increasing levels of exposure. Studies 
designed to examine dose-response trends 
are more persuasive for causal inference. 
Nonetheless, the absence of a monotonic 
biologic gradient does not preclude the ex-
istence of a causal relationship. This aspect 
of Hill’s guidelines is the focus of NIOSH 
quantitative risk assessment, which is ex-
ploited by the dose-response modeling de-
scribed in Section 5.0. 

6. Plausibility refers to a measure of biologic 
reasonableness for explaining the agent-
disease association. The guideline is largely 
a function of the current understanding on 
toxicity and disease etiology. It is important 
to synthesize evidence from a wide array 
of animal and human studies to assess the 
plausibility of an association between con-
tributing causes and complex diseases. Tox-
icological data from experimental animal 
studies can be particularly useful for assess-
ing biological plausibility. For example, if an 
agent causes toxicity in animals similar to 
that observed in humans, then this is strong 
evidence of biological plausibility. 

7. Coherence is related to plausibility; it implies 
that the interpretation of a causal associa-
tion agrees with known disease etiology. Of 
course, coherence relies on current knowl-
edge, which is always subject to change. Hill 
stated that the absence of coherent informa-
tion should not be considered as evidence 
against causation. In contrast, the presence 
of conflicting information is counter to cau-
sality. The risk assessor must judge whether 
the conflict is true (thus potentially negating 
a cause-and-effect relationship) or false, be-
cause of study errors or misinterpretation. 

8. Experiment refers to evidence of a success-
ful intervention; that is, removing (or reduc-
ing) the cause results in the disappearance 
(or attenuation) of the effect. This is some-
times referred to as evidence of manipu-
lative causation. For example, lower lung 
cancer rates have followed patterns of de-
creased smoking. This observation supports 
the hypothesis that lung cancer is caused 
by smoking. Hill considered this criterion 
as “… the strongest support for the causal 
hypothesis.” However, evidence from inter-
ventions is rarely available to risk assessors. 

9. Analogy is related to plausibility; if a causal 
association is apparent with an agent, then 
the standard of evidence is lessened for sim-
ilar agents by analogy. For example, human 
data on the toxicity of diacetyl are believed 
informative on risks from exposures to the 
chemically similar agent 2,3-pentanedione, 
for which human data are unavailable.

Although Hill’s guidelines are still in wide use 
[Wakeford 2015], there have been many advances 
in science since their introduction. In response, sev-
eral authors have made efforts to modernize these 
guidelines [Becker et al. 2015; Cox 2018; Fedak et 
al. 2015; Hofler 2005; Howick et al. 2009; Weed 
2018], while others have found their continued use 
in causal inference limited [Ioannidis 2016]. Cox 
[2018] recently updated and strengthened Hill’s 
views, including suggested statistical tools, in the 
context of modern causal discovery principles and 
methods. These methods are aimed toward draw-
ing valid causal conclusions that better inform de-
cision makers on risk management approaches. In 
general, modern causal discovery recognizes the 
interplay in the network of causal mechanisms that 
explain the complex dose-risk relationship typical 
in most diseases. In particular, manipulative causal 
analysis is used to infer disease probabilities under 
changing exposure conditions (i.e., intervention) 
while holding other factors fixed (e.g., how does a 
change in exposure level change the probability of 
the adverse effect?) [Pearl 2010]. Clearly, manipula-
tive causation informs decision analysis supporting 
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risk management, which usually assumes that deci-
sion variables have values that can be manipulated 
by decision-makers to help choose an effective risk 
mitigation course [Cox 2018]. In contrast, asso-
ciative causation, which assesses causality on the 
basis of measures of association (e.g., relative risk 
and odds ratios) and WoE criteria, is directed more 
towards identifying potential causes (i.e., afford-
ing a causal explanation, as posited by Russo and 
Williamson [2007]) rather than assessing the effec-
tiveness of interventions. Of the two approaches, 
associative causation is found most often in ob-
servational data, and causation is often interpreted 
based on Hill’s guidelines or similar qualitative 
WoE criteria. 

Regardless of the actual framework used, risk as-
sessors are encouraged to apply Hill’s guidelines, or 
a derivative of these guidelines, to the data integra-
tion step of hazard identification, using them not 
as a checklist or simple measure of WoE but to un-
cover patterns in the data that support scientific in-
ference on causality [Hempel et al. 2016; Rhomberg 
et al. 2013]. Finally, it should be clear that neither 
approach is sufficient to empirically validate causal 
discovery, given limitations in available data [Cox 
2018; Oates et al. 2016]; therefore, some judgement 
(and accompanying uncertainty) on hazard identi-
fication is necessary.

4.2 Adverse Effects
Adverse effects in workers—sometimes referred 
to as the adverse health effect(s), outcome of in-
terest, or simply the response—must be clearly 
defined in the population at risk and comparative 
populations, such as control groups or the gen-
eral population. NIOSH risk assessors affirm that 
case definitions and ascertainment methods used 
in candidate epidemiologic studies are adequate 
for risk assessment. When considering cancer and 
non-cancer adverse effects or biomarkers for those 
effects, it is important to understand the progres-
sion of disease and select a measurable adverse 
effect as early in the process or with the least se-
verity of effect as possible. Ideally, an empirically 

observable endpoint that is clearly a key event or 
precursor to the adverse effect of interest should 
be targeted for risk assessment, but the strength 
of association between the exposure and outcome 
and the potential for confounding are important 
to consider. Furthermore, an agent may involve 
multiple adverse effects. Frequently, risk assessors 
have limited evaluations to the most sensitive effect 
by examining multiple effects separately and then 
choosing the effect offering the greatest risk per 
unit exposure. However, recent efforts have shifted 
toward a more holistic approach of estimating ag-
gregate risks from the combined effects of expo-
sures to one or more agents. 

4.2.1 Cancer
Cancer is a term used to describe over 100 differ-
ent diseases in which abnormal cells divide with-
out control and can invade nearby tissues [Ruddon 
2007; Schottenfeld and Fraumeni Jr 2006]. Given 
this broad definition, there are many possible char-
acterizations of cancer as an adverse effect used in 
epidemiologic studies, ranging from all cancers 
combined to a precise classification of a primary 
malignant tumor. In dose-response analyses, stud-
ies showing specific adverse effects are superior to 
those showing the effects of all cancers combined, 
given varying etiologies among types of cancer; 
however, specificity of the adverse effect may come 
at a cost of statistical imprecision, given the rarity 
of most individual cancers. Moreover, most oc-
cupational studies have examined mortality data 
from death certificates, which often lack desired 
cancer specificity. Therefore, human studies have 
infrequently examined specific malignancies (e.g., 
lung adenocarcinoma). Instead, cause-specific can-
cer endpoints are typically constructed by group-
ing multiple tumors that share common traits (e.g., 
lung cancer, respiratory cancers, and solid tumors). 

It is important to consider the potential effects of a 
heterogeneous grouping on the dose-response. For 
example, ionizing radiation is a known leukemo-
gen; however, strong evidence of chronic lympho-
cytic leukemia (CLL) radiogenicity is lacking [Linet 
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et al. 2007; Silver et al. 2007]. This has led some ex-
pert committees to conclude that CLL is nonradio-
genic [NRC 1990; UNSCEAR 2000]. If CLL is not 
associated with ionizing radiation, then combining 
it with radiogenic leukemias will act to attenuate 
the dose-response between the grouped outcome 
and exposure; therefore, most studies have exclud-
ed CLL from the leukemia grouping.† Group defi-
nitions can vary between studies and even within 
a study because of changes in diagnostic criteria 
over time. When combining data for hazard iden-
tification and subsequent dose-response analyses, 
the risk assessor considers the compatibility of the 
adverse effect definition between studies.

4.2.1.1 Carcinogenesis 
The mechanisms of carcinogenesis are rapidly be-
coming an important aspect of hazard identifica-
tion. Human carcinogenesis is a multistage process 
that can involve numerous mechanisms causing 
various biological changes leading to tumorigene-
sis. These mechanisms can vary widely by agent; 
therefore, risk assessors systematically assess 
available mechanistic data to appropriately char-
acterize the dose-risk relationship and evaluate the 
overall carcinogenic hazard of an agent. IARC has 
identified the following characteristics of human 
carcinogens that are useful in a systematic strategy 
of assessing mechanistic data for hazard identifica-
tion [IARC 2019; Smith et al. 2016]: 

 ■ The agent acts as an electrophile either directly 
or after metabolic activation. Electrophiles are 
electron-seeking molecules that commonly 
form addition products (adducts) with cellular 
macromolecules including DNA, RNA, lipids, 
and proteins.

 ■ The agent is genotoxic, i.e., it induces DNA 
damage that may or may not result in muta-
tion. A genotoxic agent that induces mutations 
is termed mutagenic. 

†The research on CLL radiogenicity is inconsistent; however, in 2011 
after a review of the literature and consultation with subject mat-
ter experts, NIOSH recommended that CLL be considered radio-
genic for purposes of compensating workers covered under the 
Energy Employee Occupational Illness Compensation Program 
Act (EEOICPA). 

 ■ The agent alters DNA repair or causes genom-
ic instability. 

 ■ The agent induces epigenetic alterations. The 
term epigenetic refers to stable changes in 
gene expression and chromatin organization 
that are independent of the DNA sequence that 
can be mitotically inherited over cell divisions.

 ■ The agent induces oxidative stress, i.e., an im-
balance between formation of reactive oxygen 
and/or nitrogen species and their detoxification. 

 ■ The agent induces chronic inflammation. 
 ■ The agent is immunosuppressive. Immunosup-
pression is a reduction in the capacity of the 
immune system to respond effectively to for-
eign antigens.

 ■ The agent modulates receptor-mediated effects. 
 ■ The agent causes immortalization. The agent 
disrupts normal cellular replicative senescence 
to cause unlimited proliferation. 

 ■ The agent alters cell proliferation, cell death, 
or nutrient supply.

Most carcinogens demonstrate more than one of 
these traits. Assessing mechanistic data requires 
three basic steps: (1) identify relevant information, 
(2) screen and organize mechanistic data, and (3) 
synthesize mechanistic information (e.g., develop 
adverse-outcome pathways). In this way, the IARC 
approach provides a foundation for carcinogen 
classification (i.e., hazard identification); however, 
mechanistic data can also inform choices made in 
risk characterization, such as estimating the re-
sponse expected at low doses.

4.2.2 Non-cancer
For non-cancer risk assessment, it is important to 
evaluate issues of severity, reversibility, progression 
to more serious conditions, and other pertinent is-
sues. NIOSH has typically conducted quantitative 
risk assessment on non-cancer adverse effects by 
assuming chronic exposure (see Table 1-1). There 
may be instances where the effects after short-term 
or intermediate-length exposure are determined to 
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be critically important. In those cases, the risk as-
sessor must evaluate and document the impact of 
the exposure in the context of a shorter-term expo-
sure duration and any longer-term sequelae.

With respect to assessing risk persistence, a key 
question is whether the observed pathophysiologic 
change defined as the endpoint of interest is re-
versible with cessation of exposure. Unfortunately, 
data are often insufficient to answer this question; 
therefore, irreversibility is typically assumed as a 
worst-case scenario until evidence to the contrary 
becomes available. Two examples of NIOSH risk 
assessments illustrate this issue. First, NIOSH ex-
amined Parkinson’s disease–like symptoms and 
manganism resulting from manganese exposure 
in welders [Park et al. 2009]. The NIOSH risk as-
sessment quantified the relationship between 
manganese exposures in confined-space welding 
and cognitive deficits in working memory or ver-
bal IQ. However, the information was insufficient 
to conclude whether the risk of exposure-related 
neurobehavioral deficits persisted after cessation of 
exposure. Without the data, NIOSH conservatively 
assumed that excess risk accrued with exposure 
and persisted afterward. Similarly, a risk assess-
ment of diacetyl exposure and the development of 
bronchiolitis obliterans used multiple definitions of 
pulmonary dysfunction as a case-surrogate for the 
onset of the condition [NIOSH 2016]. Again, risk 
accumulation and persistence were assumed in lieu 
of contrary information. In both risk assessments, 
the assumption of irreversible adverse effects had 
large impact on estimates of lifetime risk per unit 
exposure.

4.3 Human Data 
NIOSH risk assessors prefer the direct estimation 
of risk from human data. In practice, however, risk 
assessments usually must rely on a combination of 
human and animal data for hazard identification 
and dose-response analyses. This is because both 
data sources are imperfect; human data tend to be 
vulnerable to potential biases from confounding fac-
tors, and there is large uncertainty in extrapolating 

risk in animals to humans. It is common for hu-
man data to be weighted more than animal data 
for hazard identification, but to be less informa-
tive on dose-response. In those instances, human 
studies provide evidence of an association between 
exposure and disease, which can guide the choice 
of agents, exposure routes, and pathological end-
points for examination in animal toxicology stud-
ies that might contribute greatest to quantifying 
risks.

4.3.1 Epidemiologic Study Design
Figure 4-1 shows a hierarchy of epidemiologic 
study designs, ordered by the potential contribu-
tion to WoE. Human data for WoE assessment may 
originate from experimental or observational stud-
ies. Regarding the former, study participants are 
intentionally exposed to an agent under controlled 
experimental conditions. In this context, the term 
controlled refers to design parameters intended to 
minimize the effects of factors other than the expo-
sure condition on the measured response [NASEM 
2017]. These studies are sometimes referred to as 
clinical studies, human challenge studies, or con-
trolled human exposure studies. Adherence to a 
strict experimental design is a trait of controlled 
human exposure studies that lessens the potential 
for major biases; therefore, these data tend to be well 
suited to hazard identification and dose-response 
analyses. As explained previously (see Hill’s guide-
lines), experimental designs with exposure in-
tervention can provide strong support for causal 
inference. However, human experimental data on 
exposures to hazardous agents are sparse for obvi-
ous ethical reasons; therefore, observational studies 
tend to be the most important information source 
for directly addressing the dose-risk relationship in 
humans and are the focus of the discussion on epi-
demiologic study design. 

Observational studies can be further classified as ei-
ther analytic (e.g., longitudinal and cross-sectional 
studies) or descriptive (e.g., case reports, case se-
ries, and ecologic studies), the latter being the least 
informative for risk assessment. Detailed descriptions 
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Figure 4-1. Hierarchy of human epidemiologic studies.

of epidemiologic study designs are available in semi-
nal texts [Breslow and Day 1980; Breslow and Day 
1987; Checkoway et al. 2004; Rothman et al. 2008]. 

Of observational research types, longitudinal ana-
lytic studies (e.g., cohort or panel studies) are most 
useful with respect to WoE. These studies follow 
the exposure and health status of each individual 
in a study sample or population over time. An im-
portant strength of this design is its ability to mea-
sure temporal changes in exposure and outcome 
at the individual level. Thus, this study design al-
lows for direct examination of the dose-response. 
Cohort studies are the most common source of 
human data in NIOSH risk assessment. A cohort 

comprises a group of individuals who share some 
defining characteristics, who are followed in time. 
Data can be collected prospectively; however, most 
occupational cohort studies are historical, using 
data that span a time prior to initiation of the study. 
A disadvantage of a cohort study is that it requires 
the recruitment of many participants who must 
be observed over a long period for examining rare 
outcomes (e.g., cancers); therefore, a detailed ac-
counting of individual exposures for everyone in 
the study group may be impractical. 

Measures of association can vary in cohort stud-
ies. If comparisons are made between the study 
population and an external referent (e.g., the U.S. 
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population), common measures of association 
are the standardized mortality ratio (SMR) or 
standardized incidence (morbidity) ratio (SIR) 
[Rothman et al. 2008]. These measures are sim-
ply the ratio of the observed number of cases to 
the number of expected cases, where the number 
of expected cases is calculated based on disease 
rates observed in the referent population that are 
standardized by characteristics (e.g., age, race, 
gender, and calendar period) in the study pop-
ulation. Trends in SMRs by categories of expo-
sures can offer crude dose-response information; 
however, because of indirect standardization 
methods, comparisons of SMR are vulnerable to 
bias due to differences (e.g., differences in age, 
gender, and race) in comparison groups. Inter-
nal comparisons (comparisons made within the 
study population) offer better dose-response 
data than SMR and SIR analyses. Measures of 
association from internal comparisons include 
trends across standardized rates by exposure cat-
egories or risk measures from dose-response re-
gression models. Risk measures can be expressed 
on a relative scale, such as hazard ratios (HRs), 
rate (or risk) ratio (RR), or excess relative risk 
(ERR), or in terms of risk differences, such as at-
tributable risk or excess absolute risk (EAR). 

A case-control (or case-referent) study compares 
exposure among persons with the outcome of in-
terest (i.e., cases) to exposures among persons 
preferably drawn from the same population (con-
trols). Thus, the reduction in study size saves time 
and expense relative to a cohort study. This design 
is particularly useful when examining rare ad-
verse effects. Cases can be enumerated at a point 
in time (prevalent cases) or over a period (incident 
cases). An important consideration is the number 
of matched controls per case. In the absence of a 
dose-response relationship, reasonable asymptotic 
relative efficiency is achieved with few controls 
[Breslow et al. 1983; Goldstein and Langholz 1992; 
Ury 1975]. However, the actual relative efficiency 
decreases as the strength of the exposure–response 
increases and as the skewness of the exposure dis-
tribution increases [Bertke et al. 2013]. The standard 

effect measure of the case-control study is the odds 
ratio (OR), which approximates the risk ratio (rela-
tive risk) if the disease is rare. 

A special instance of a case-control study is one 
that is nested within a specified cohort. This de-
sign retains many of the analytic advantages of the 
large cohort while reducing the number of subjects 
needing exposure estimates. Thus, a nested case-
control study allows for improvements in exposure 
data that can lead to better information on dose-
response. As in cohort studies, a nested design 
also allows for precise treatment of the timescale; 
therefore, measures of association related to events 
per unit person-time can be estimated by means of 
dose-response regression modeling (e.g., HR, RR, 
and ERR).

A cross-sectional study (e.g., survey) examines the 
frequency or level of an attribute (e.g., exposure 
and/or adverse effect) in a defined population at a 
particular point in time. This design is often used 
to examine the prevalence of nonfatal diseases or 
symptoms that typically do not rapidly lead to em-
ployment termination (e.g., mild decreases in lung 
function, changes in blood pressure, pre-clinical 
biomarkers of early effect, and skin irritation). This 
design is a poor choice for examining diseases that 
are rare or periodic. Because cross-sectional stud-
ies are based on prevalent cases, this design has 
limited value for examining etiologic relationships. 
Other disadvantages are the lack of information on 
temporal sequence between cause and effect and 
the potential for selection bias from health-related 
employment termination that took place prior to 
recruitment into the study.

Epidemiologic studies that are conducted with ob-
servation at the group level (e.g., plant, city, county, 
or nation) instead of the individual level are called 
ecologic or aggregate studies [Rothman et al. 2008]. 
These studies can involve a single cross-sectional 
survey or repeated measures (i.e., time-trend de-
sign). Ecologic studies may be a practical alterna-
tive to individual-level studies when exposures and 
disease are relatively homogeneous within a pop-
ulation but differ between populations, or when 
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individual exposure estimates are not possible. 
Within-group heterogeneity is a likely condition; 
therefore, extrapolation to the individual level is 
not feasible. Thus, an association at the group level 
does not imply the same association at the indi-
vidual level. This limitation is known as the eco-
logic fallacy. Another major limitation is that these 
studies lack the ability for adequate control of con-
founding. For these reasons, ecologic studies have 
limited value in assessing causal associations. Nev-
ertheless, ecologic studies may provide descriptive 
information on differences in populations that may 
be suggestive of a potential cause-and-effect rela-
tionship. This information can be used to support 
findings from analytic studies.

Other descriptive study reports, such as case re-
ports and case series, provide information on 
symptomology, disease history, diagnostic features, 
and outcomes for one or more subjects under ob-
servation. The term case report refers to a descrip-
tion of a person with a disease, whereas case series 
refers to a series of related case reports that were 
typically collected at a specific practice, clinic, or 
hospital over a defined time. Like cross-sectional 
studies, routine data studies are of limited value 
for examining etiologic relationships but may ini-
tiate larger investigations that are better designed 
to inform on causation. In addition, these studies 
are purposed for identifying emerging trends in 
adverse health, high-risk populations, and unrec-
ognized hazards; therefore, they can be an impor-
tant data source for hazard identification in risk 
assessment. Case reports can be very informative 
on rare diseases when exposures are well defined. 
For example, 4,4´-methylenebis(2-chloroaniline) 
(MBOCA) is considered carcinogenic in humans 
(IARC Group 1) because of sufficient evidence in 
experimental animals and strong mechanistic evi-
dence; however, evidence in humans was deemed 
inadequate [IARC 2012]. Liu et al. [2005] reported 
on a 52-year-old non-smoking male patient with 
bladder cancer who was significantly exposed to 
MBOCA while employed as a chemical worker 
for 14 years. Reconstruction of his past exposures 
yielded no other exposures to bladder carcinogens. 

Thus, this case study provided direct evidence of 
MBOCA potentially acting as a human bladder 
carcinogen. 

Data may also be available as summaries, such as 
integrative reviews [Cooper 1982; Jackson 1980], 
meta-analyses [Thacker 1988], and pooled studies 
[Blettner et al. 1999; Checkoway 1991; Frieden-
reich 1993]. For these study designs, an overarch-
ing goal is to reconcile inconsistent results among 
multiple studies to infer generalizations. Research 
integration can be accomplished qualitatively or 
quantitatively, depending on the approach. Given 
a set of relevant published observational studies, an 
integrative review gathers information to provide a 
qualitative assessment of the evidence in narrative 
form. These reviews are timely and inexpensive; 
however, findings are vulnerable to publication bias 
and the subjective judgement of the reviewer. For 
example, risk assessors should be wary of judge-
ments based mostly on a tally of observed positive 
or negative associations [Greenland 1987]. 

A meta-analysis is an extension of the integrative 
review that analytically combines the published in-
formation to provide a quantitative synthesis across 
the literature, usually in the form of a summary ef-
fect measure. Although they are quantitative, sum-
mary effect measures rely on consistency in the 
data, design, and conduct of the studies selected 
for meta-analysis; therefore, methods used to select 
studies and address heterogeneity are an important 
consideration for the risk assessor. Given that these 
studies also rely on published data, there is a poten-
tial for publication bias. 

In contrast to meta-analyses, pooled studies are 
the reanalysis of individual data from multiple 
studies [Friedenreich 1993]. Pooling allows for a 
consistent definition of study variables, improved 
examination of confounding and effect modifica-
tion, and superior statistical modeling of the dose-
response. These studies can include unpublished 
data; therefore, the potential for publication bias 
can be reduced. A potential drawback of pooling 
is that it may disregard characteristics (e.g., differ-
ences in unmeasured risk factors) of the individual 
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study populations being combined, which may bias 
summary risk estimates or lead to spurious results 
[Bravata and Olkin 2001]. As in meta-analysis, su-
perior pooled studies are designed to select data 
(or studies) using criteria that reduce the potential 
for bias and include methods to assess and account 
for residual heterogeneity. Pooled studies are less 
common because they tend to be more expensive 
and time-consuming and can require considerable 
coordination between study centers. 

When assessing human studies for WoE, NIOSH 
risk assessors often use available checklists of study 
design and analysis criteria that have been widely 
vetted. For example, clinical research has greatly 
improved under the Consolidated Standards of 
Reporting Trials (CONSORT) statement, which 
includes a 22-item checklist and flow diagram 
[Moher et al. 2001]. Similar checklists are available 
for meta-analyses of clinical trials and observation-
al studies [Moher et al. 1999; Stroup et al. 2000]. 
The checklists developed under the Strengthening 
the Reporting of Observational Studies in Epide-
miology (STROBE) initiative are useful tools for 
assessing the strengths and weaknesses of stand-
alone observational studies [von Elm et al. 2007]. 
STROBE provides separate checklists for cohort, 
case-control, and cross-sectional studies. Also, for 
longitudinal studies, risk assessors are encouraged 
to use the checklist offered by Tooth et al. [2005]. 
This checklist consists of 33 questions on study de-
sign and analysis criteria. This and similar check-
lists may augment the systemic approach to assess-
ing WoE; however, they should be viewed only as 
potentially useful tools among many. Given that 
each risk assessment is unique, reliance solely on 
published checklists should be avoided. 

In summary, most human data used in NIOSH oc-
cupational risk assessments are drawn from obser-
vational studies and (preferably) from longitudinal 
studies of working populations. These data include 
information on disease status from registries, death 
certificates, medical records, diagnostic exams, or 
self-reports (i.e., questionnaires). Exposure data 
sources include personal or ambient measurements, 
modeling, constructed proxies (e.g., job-exposure 

matrices), self-reports, or any combination of these. 
Risk assessors must fully understand the nature and 
limitations of the data in studies selected for risk as-
sessment.

4.3.2 Health Effect Data
Mortality is a common endpoint in epidemiologic 
studies. Cause of death information stems primar-
ily from death certificates, which can provide in-
formation on multiple causes of death. Typically, 
the underlying cause of death (UCOD) is pre-
ferred, given longstanding and well-accepted use 
in public health, although some studies examined 
multiple causes to increase the number of available 
cases, especially for rare outcomes. The UCOD is 
defined as the disease or injury that initiated the 
train of events leading directly to death, or the cir-
cumstances of the accident or violence that pro-
duced the fatal injury [WHO 1977]. Although the 
unidimensional UCOD is conceptually easy to 
understand, it does not consider other important 
contributors to death that may also be listed on the 
death certificate. This is especially true for complex 
chronic illnesses, which are typically characterized 
by multiple contributing causes. To make better use 
of available information, multiple causes of death 
(MCOD) data have become an appealing alterna-
tive in some studies [Chamblee and Evans 1982; 
Israel et al. 1986; Redelings et al. 2007].

For study purposes, death causes are usually trans-
lated to codes from the International Classification 
of Diseases (ICD). Coding death certificates is a 
highly specialized and interpretive process that is 
nearly always conducted only by a qualified nosol-
ogist. Agreement between nosologists tends to be 
high, but some disagreement and errors in coding 
are unavoidable, as are inaccuracies in the death 
certificates themselves. For example, the UCOD re-
corded on death certificates have differed upwards 
of 20% to 40% when compared with autopsy con-
clusions [Cameron and McGoogan 1981; Engel et 
al. 1980; Maudsley and Williams 1996; Sehdev and 
Hutchins 2001]. Coding sequence errors in trans-
lating information from the death certificate are 

https://www.strobe-statement.org/index.php?id=strobe-home
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also likely. In both cases, the effects of these errors 
may be offset in analyses using MCOD data.

Morbidity data are typically abstracted from either 
disease registries or medical records. Obtaining 
morbidity information is generally more difficult 
than obtaining mortality data, given there are few 
reportable diseases (e.g., cancer) and most U.S. 
disease registries have originated more recently 
than mortality databases. Cancer registries are 
perhaps the most informative, given that nearly all 
states have had registries for acquiring data since 
the early 1990s. Cancer incidence data are gener-
ally considered superior to mortality data, because 
of improved diagnostic information in registries 
and greater discovery of highly survivable cancers. 
In addition, incidence data are less susceptible to 
survival effects (e.g., competing risks and healthy 
worker survivor effects) in dose-response analyses, 
although incidence data are more susceptible to 
screening bias. 

The United States lacks a national cancer incidence 
database; studies of U.S. workers require matching 
to multiple state cancer registries. The number of 
cases depends on whether workers leave the cov-
ered area during the observation period. Therefore, 
interstate migration can be an important source 
of underascertainment. For example, retirement 
patterns suggest that interstate migration rates for 
retirees are upwards of 5% [Cowper et al. 2000]. 
Localized migration rates can be much higher. In a 
study of cancer among U.S. firefighters in Chicago, 
Philadelphia, and San Francisco, registry data were 
obtained for over 16% of cases via linkage to eight 
other states, with nearly 7% from Florida alone 
[Daniels et al. 2014]. Acquiring data from multiple 
state cancer registries can be onerous, costly, and 
time-consuming. Furthermore, U.S. disease regis-
tries may have limitations due to several factors, 
such as poor coverage, underreporting of some dis-
eases (e.g., melanoma), no reporting of others (e.g., 
basal cell carcinoma), duplicate reporting among 
multiple databases (e.g., neighboring state cancer 
registries), varying data acquisition procedures 
across databases, and a relatively short time span 
since registry inception. Although morbidity data 

can be generally superior in analyses, longitudinal 
studies of chronic work-related illnesses, including 
cancer, have primarily relied on mortality data. 

Most researchers have preferred registries to medi-
cal charts, when practical (e.g., for a cancer study), 
given that registries are generally less resource in-
tensive and data are less affected by losses due to 
death or follow-up. However, ascertainment from 
registries can be quite poor for some cancers that 
are underreported, such as melanoma treated in 
private clinics [Cockburn et al. 2008] or not re-
ported (e.g., basal and squamous cell carcinomas, 
excluding genital sites). A viable (and potentially 
superior) option to registry linkage is to combine 
self-reported data with medical verification. These 
methods, sometimes referred to as “medical follow-
back” [Schubauer-Berigan et al. 2015] and “active 
follow-up” [Pinsky et al. 2016], generally involve 
four steps: (1) administer questionnaires to iden-
tify prospective cases, (2) determine whereabouts 
of relevant medical records for case confirmation, 
(3) obtain consent and obtain access to the records, 
and (4) verify diagnosis and other characteristics. 
These methods also provide for gathering informa-
tion on important covariates that is not available in 
disease registries. An example of this design is the 
recent NIOSH study of breast cancer incidence in a 
cohort of U.S. flight attendants [Schubauer-Berigan 
et al. 2015]. For this study, researchers verified the 
cases that were first identified by self (or proxy) by 
contacting the physician, hospital, or other health 
care organization in which the cancer diagnosis 
was made and obtaining supporting documenta-
tion of the diagnosis.

Data on adverse effects may be self-reported alone 
or stem from expert diagnosis. For example, study 
data may originate from members (or proxies) of 
the population at risk who have reported specific 
symptoms or diagnosed conditions that may be re-
garded as caused by the exposure of interest. These 
data are vulnerable to errors from inaccurate re-
call [Atkinson et al. 2016; Howell et al. 2015; Wal-
lace and Kohatsu 2008], which may be attenuated 
somewhat by using medical information to confirm 
a reported diagnosis (e.g., Schubauer-Berigan et al. 
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[2015]). Expert assessment of signs or diagnoses 
requires uniform application of an adverse effect 
definition by knowledgeable evaluators. Evaluators 
should be blinded to the study subjects’ exposure 
status when assessing health effects to reduce the 
potential for evaluator bias. 

A recent example of using expert assessment in 
a NIOSH risk assessment is found in the criteria 
document supporting the REL for diacetyl and 
2,3-pentanedione [NIOSH 2016]. In that study, 
researchers quantitatively assessed the effects of 
diacetyl and 2,3-pentanedione exposures on pul-
monary function, using spirometry data and de-
fined case definitions based on expert assessments 
of forced expiratory volume (FEV) and forced vital 
capacity (FVC). These case definitions were used in 
models quantifying the dose-response relationship 
between diacetyl exposures and changes in pulmo-
nary function. The models also included data gath-
ered by using a medical questionnaire to collect 
self-reported information on respiratory health, 
dermal symptoms, allergies, smoking habits, coex-
posures, and protective equipment used.

4.3.3 Exposure Methods  
and Measures 

The National Research Council has defined ex-
posure science as the collection and analysis of 
quantitative and qualitative information needed 
to understand the contact between the receptors 
(e.g., workers) and the physical, chemical, or bio-
logic stressor [NRC 2012]. Exposure science plays a 
critical role in (1) systematically assessing the avail-
ability, magnitude, and validity of exposure data 
as a part of hazard identification and (2) provid-
ing input to dose-response analyses (e.g., explana-
tory variables in dose-response regression models). 
As such, the evaluation of exposure methods and 
measures supporting NIOSH risk assessment fo-
cuses on the methods used in informative studies 
to estimate or measure exposure, and a synthesis 
of exposure information for use in dose-response 
analyses. In particular, the risk assessor must 
evaluate the likelihood of potential bias in the 

dose-response resulting from exposure misclassifi-
cation or misspecification (see Appendix B).

Ideally, the dose-response relationship between an 
adverse effect and an agent is quantified by using 
complete exposure histories on each subject in the 
affected population. Of course, ideal conditions are 
rarely present in observational studies of working 
populations. Therefore, exposure assessors face 
many challenges such as these: 

 ■ The reliance on data from previous studies or 
employer information that is suboptimal for 
risk assessment purposes.

 ■ A lack of sensitive, specific, precise, accurate 
measurements of worker exposures. Expo-
sure values are often derived indirectly from 
employment information (job titles and em-
ployment) and other proxy sources (e.g., other 
research, industrial hygiene data, process re-
cords, and institutional knowledge). 

 ■ Incomplete information on exposure or other 
risk factors that could influence effect mea-
sures. For example, exposures that occur while 
a worker was employed elsewhere (i.e., outside 
of studied facilities) are rarely known.

 ■ Temporal and spatial variation in occupational 
characteristics (e.g., tasks, chemical invento-
ries, and engineering controls). These can re-
sult in wide-ranging interindividual and intra-
individual variation in exposure, differences 
which can add to the uncertainty in exposure 
indices. 

 ■ Industry settings that involve complex expo-
sures to combinations of hazardous agents 
rather than a single agent of interest. Health 
effects from exposures to an agent may be en-
tangled with effects from other agents. Fur-
thermore, the combined effects of a mixture of 
agents (i.e., cumulative risk) may differ from 
the additive effect of separate exposures to 
these agents.

Because of the evolution of workplace hazard con-
trols, present day exposures to hazardous agents 
tend to be lower than in earlier times, resulting in 
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less evident exposure-related adverse effects. Thus, 
there is increased need for the most informative 
exposure estimates for quantifying a correspond-
ingly smaller attributable risk. As such, the field of 
exposure science is rapidly progressing to meet the 
demand for improved methods for estimating ex-
posures. Many of these methods are summarized 
in several works on occupational epidemiology and 
risk assessment [Checkoway et al. 2004; EPA 1992; 
Nieuwenhuijsen 2010; NRC 1983; White et al. 2008]. 

The quality of exposure information in observation-
al studies is often limited by data availability. When 
considering data for the purpose of occupational 
risk assessment, the risk assessor generally weights 
available information by the hierarchy shown in 
Table 4-1. This order supports a general preference 
of individual exposure estimates over group esti-
mates and quantitative values over exposure classes. 
Thus, exposure information ranges from individual 
exposure estimates derived from personal monitor-
ing (most precise), to exposure status that is dichoto-
mously assigned (least precise). 

4.3.3.1 Exposure Indices
Exposure is typically quantified directly or indirect-
ly in terms of either exposure or dose [NRC 2012; 
White et al. 2008]. The metrics derived are some-
times referred to as exposure indices [Checkoway 
and Rice 1992; Loomis et al. 1999; Nieuwenhui-
jsen 2010]. The terms dose and exposure have been 

used interchangeably in risk assessment; however, 
a distinction between these terms is generally rec-
ognized [IPCS 2004; Kriebel et al. 2007; NRC 2012; 
Paustenbach 2000]. Exposure refers to contact be-
tween an agent and a target. Contact takes place 
at an exposure surface over an exposure period. 
Dose is the total amount of an agent administered 
to, taken up by, or absorbed by an organism, sys-
tem, or population. Thus, dose is also the amount 
of agent that enters a target after crossing an ex-
posure surface [IPCS 2004]. Strict adherence to 
the distinction between dose and exposure relies 
on the choice of target and exposure surface, and 
dose estimation may require a complete account-
ing of various physiologic and metabolic systems 
that modify the amount deposited into the chosen 
human target. In practice, the choice of exposure or 
dose metrics depends on the aims of the candidate 
study, which may or may not align with the needs 
of the risk assessment. Therefore, NIOSH risk as-
sessors consider how the choice affects the WoE 
provided by the study during hazard identification 
and, if data are selected for dose-response analyses, 
what additional steps (if any) are needed to convert 
the quantity used in the dose-response analysis to 
the quantity needed for a suitable REL. 

Exposure indices can be expressed in many ways 
by using information on three basic dimensions: 
intensity (e.g., concentration, mass), duration (e.g., 
hours, days), and frequency (e.g., times per day) 

Table 4-1. Types of exposure data in occupational epidemiologic studies  
(adapted from Checkoway et al. [2004])

Type of Data Dose Approximation

Quantified personal measurements on all workers Most Precise

Quantified area- or job-specific measurement data

Ordinal ranking jobs and tasks (e.g., JEMs, SEGs, using exposure categories)

Duration of employment in the industry

Ever/never employed in the industry Least Precise

Abbreviations: JEM, job-exposure matrix; SEG, similar exposure group.
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[Nieuwenhuijsen 2010; White et al. 2008]. Indices 
may include each dimension separately or in com-
bination, such as assessing ionizing radiation expo-
sure as a time-integrated dose (e.g., lifetime dose 
equivalent measured in sievert [Sv]) or a time-av-
eraged dose (dose equivalent rate measured in Sv 
per hour) [Checkoway and Rice 1992; Kriebel et al. 
2007]. Ideally, the choice of metric is determined 
from adequate information on which metrics (if 
any) best predict risk. In lieu of this information, 
the characteristics of the adverse effect might imply 
the most appropriate choice. For example, exposure 
indices used to examine acute toxicity effects are 
typically based on short-term or instantaneous in-
tensity (e.g., peak airborne concentration), whereas 
cumulative dose (i.e., the time integral of exposure 
intensity) is generally preferred for chronic effects 
in which biologic damage appears proportional to 
the delivered dose quantity (e.g., silica and chronic 
silicosis or ionizing radiation and cancer) [Checko-
way and Rice 1992; Rappaport 1991]. As another 
example, an adverse effect may be reversible by 
elimination of toxic agents from the body over 
time. In this instance, a measure of the amount of 
the hazardous agent residing in the body (i.e., body 
burden) might be preferred. 

Body burdens are a metric of internal exposure 
and are typically determined via biomonitoring 
methods that measure the hazardous agent, its 
metabolites, or other reaction products in a bio-
logic matrix (e.g., human tissues, saliva, blood, or 
excreta) [Needham et al. 2007]. Pharmacokinetic 
models can also be used to estimate body burdens. 
Thus, an understanding of the underlying biologi-
cal mechanism related to the outcome of interest is 
important for index selection. If an understanding 
of the expected response is lacking, then it may be 
necessary to assess the dose-response by examin-
ing multiple indices [Blair and Stewart 1992]. In 
this case, the choice of the best index is based on its 
validity and reliability, as well as its utility in subse-
quent dose-response analyses.

Summary (aggregate) exposure metrics (e.g., aver-
age, geometric mean, or peak exposures) are of-
ten used to assign group-level exposure indices in 

the absence of individual data. Clearly, the choice 
of summary metrics can have a marked effect on 
results from dose-response analyses. Often, the 
choice is limited to published results that may not 
be best suited for risk characterization. For exam-
ple, exposure distributions of most occupational 
agents tend to be right-skewed, and geometric 
mean values are used in many studies as a measure 
of central tendency. Although these measures may 
be appropriate for the intended purpose, the choice 
was likely made without consideration of a subse-
quent use in describing population risk. It has been 
shown that the appropriate group assignment for 
risk characterization is largely dependent on the 
expected shape of the dose-response, regardless 
of the underlying exposure distribution [Crump 
1998; Seixas et al. 1988]. In most situations, the 
anticipated response increases with dose; there-
fore, the arithmetic mean (i.e., average) provides a 
better approximation for assessing population risk 
[Crump 1998]. 

4.3.3.2 Direct Assessment Methods
Direct methods of assessing exposure refer to ob-
taining direct measurements of the agent of inter-
est (e.g., airborne concentrations) or biomarkers 
of exposure [Checkoway et al. 2004; Nieuwenhui-
jsen 2010; NRC 1991]. These data are generally the 
most informative in risk assessment and are prefer-
ably collected from measurements at the individual 
level, although group assignment is also possible. 
Information from personal monitoring is likely to 
provide the most accurate estimate of individual 
exposure. Personal monitoring can be conducted 
by using direct reading devices and breathing-zone 
air samples; by using in vivo (e.g., whole body ra-
diation counter) measurements; or by using bio-
markers of the agent of interest, its metabolites, or 
its effects (e.g., chromosome aberrations from ion-
izing radiation exposure) in biologic media such 
as blood, hair, excreta, sputum, sweat, or exhaled 
breath [Nieuwenhuijsen 2010; White et al. 2008]. 
Ideally, exposure data stem from monitoring dur-
ing tasks that are representative of the occupation 
of each worker and over an adequate period to 
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inform the exposure distribution. For example, 
many workers employed in the nuclear industry 
have worn personal radiation dosimeters in radia-
tion areas throughout their careers, beginning as 
early as the late 1940s. However, personal monitor-
ing of ionizing radiation exposure is the exception; 
limitations in logistics, costs, and technology have 
excluded widespread use of personal monitoring in 
most other industries. 

In most epidemiologic studies, the direct measure-
ment of individual exposure is not practical given 
large numbers of study participants; therefore, a 
common approach is to use group-level measure-
ments [Checkoway et al. 2004]. Group-level mea-
surements pertain to either (1) measurements 
from personal monitoring of a worker or a sample 
of workers who represent a group with similar ex-
posure or (2) ambient measurements in work ar-
eas occupied by a group with similar exposure. A 
summary measure of exposure is assigned to each 
member of the similar-exposure group; thus, esti-
mates rely on the underlying assumption of similar 
exposure level and variation among persons within 
the similar-exposure group. Group measurements 
are a source of Berkson error and may result in 
shared error (see Appendix B). The effects of these 
errors on risk estimates should be evaluated in the 
risk assessment whenever practical. 

Ambient (stationary or area) measurements are 
further limited by the required translation to in-
dividual exposure [Nieuwenhuijsen 2010]. For 
example, measurements from a fixed air sampler 
placed between the exposure source and the ex-
posed person may tend to overestimate the indi-
vidual exposure. Furthermore, sampling plans are 
often designed to describe maximum exposures 
for regulatory compliance purposes. Hence, expo-
sure estimates from such sampling plans would be 
susceptible to overestimation. Risk assessors con-
sider the potential for exposure misclassification 
resulting from the design and conduct of ambient 
exposure measurements that are subsequently used 
in risk assessment. Regarding group assignments 
based on personal monitoring, exposure estimates 
are strengthened by increased sample sizes and the 

use of repeat measures that enable an assessment 
of between- and within-worker variability. NIOSH 
risk assessors consider sample size and the avail-
ability of repeat measures when assessing the va-
lidity of group assigned exposures from personal 
monitoring data. 

4.3.3.3 Indirect Assessment Methods
There often are few historical industrial hygiene 
monitoring data available for most hazards; there-
fore, indirect methods of exposure estimation are 
commonplace in occupational studies. Exposure 
estimates can be derived indirectly from proxy 
measures, questionnaires, expert judgement, job-
exposure matrices (JEMs), statistical models, or 
any combination of these sources. Several compre-
hensive reviews on data sources, assessment meth-
ods, uncertainties, and validation techniques are 
available to risk assessors [Kauppinen 1994; Seixas 
and Checkoway 1995; Stewart et al. 1996; Teschke 
et al. 2002].

4.3.3.3.1 Self-Report or Proxy Respondent Data

When data are obtained directly from individual 
study participants or indirectly from proxy re-
sponses to a study interview or questionnaire, as-
sessments are subject to bias from recall that has 
been influenced by case status (i.e., recall bias). 
The literature is abundant with reports examining 
the validity and reliability of exposure estimation 
methods using self- or proxy-reported data [Ahl-
borg Jr 1990; Baumgarten et al. 1983; Benke et al. 
2001; Bond et al. 1988; Bourbonnais et al. 1988; 
Fritschi et al. 1996; Joffe 1992; Nieuwenhuijsen 
2010; Stewart et al. 1987; Teschke et al. 1994]. 

4.3.3.3.2 Job Exposure Matrix

A JEM is widely used by NIOSH for estimating 
exposure indices, whereby a job, which is defined 
by relevant employment information (e.g., job 
title, task, department, and plant), is systemati-
cally linked to an exposure level. Noteworthy early 
JEM examples involve assessments of exposures to 
silica, asbestos, and solvents [Dement et al. 1983; 
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Eisen et al. 1984; Gardner et al. 1986; Rice et al. 
1984; Rinsky et al. 1987; Seixas et al. 1997; Stewart 
et al. 1986]. JEMs have been used to identify simi-
lar exposure groups, to provide individual quali-
tative and quantitative exposure estimates, and in 
conjunction with algorithms and statistical models, 
to fill in gaps in exposure information during time 
periods when monitoring data were unavailable 
[Coughlin and Chiazze 1990; Dement et al. 1983; 
Eisen et al. 1984; Hallock et al. 1994; Hornung et al. 
1994; Seixas et al. 1997; Woskie et al. 1988].

In its simplest form, the JEM is a table with rows 
and columns characterizing occupation and expo-
sure, respectively. Thus, each cell represents an es-
timate of the exposure for individuals linked to an 
occupation. Strata for occupation and exposure are 
optimized to increase estimate precision while re-
flecting the exposure gradient, which is necessary 
for dose-response analyses. Of course, there is still 
a large potential for exposure misclassification in 
a two-dimensional JEM. This misclassification can 
be reduced by adding dimensions. Contemporary 
JEMs typically describe exposures along four axes, 
comprising strata for the agent, job or task, time, 
and location.

NIOSH risk assessors evaluate the quality of source 
data and methods used in the JEM to reduce ex-
posure misclassification. Given the JEM’s reliance 
on employer-provided information, the complete-
ness, accuracy, and scale of these data are typically 
scrutinized. These data fall into two categories cor-
responding to the primary dimensions: (1) indi-
vidual employment information used to establish 
task, time, and location of the worker and (2) pro-
cess information and plant industrial hygiene data 
used to assess the exposure potential (i.e., agent). 
Worker data often stem from personnel records, 
medical histories, or questionnaires. Exposure data 
often include job descriptions, chemical invento-
ries, monitoring data, and incident and accident 
reports. Information on exposure modifiers is like-
ly found in plant records on engineering controls, 
administrative policies, and personal protective 
equipment use. Employer-provided information 
is rarely complete; therefore, JEMs are sometimes 

augmented by data from other sources (e.g., new 
measurement data, statistical models, and other 
JEMs). For example, industrial hygiene data from 
routine sampling that began in the 1980s may have 
supported exposure estimates for previous decades. 
In this case, the risk assessor assesses the methods 
used to extend estimates to unmonitored periods. 

In some instances, data are available from other 
sources (e.g., measurement data, statistical mod-
els, and other JEMs) that can be used to assess the 
quality of the JEM and/or quantify the magnitude 
of potential misclassification. For example, consid-
er a cohort study that estimated exposure by using 
personnel records and ambient air measurements 
but had personal monitoring data available on a 
subset of the study population. These monitoring 
data could then be used as a standard for compari-
son to study estimates and be a means to calibrate 
the JEM. 

The exposure information in the epidemiologic re-
port is likely to be brief and have limited use for 
assessing data completeness. Fortunately, superior 
JEMs are often documented in separate detailed 
reports that are available in the literature or can be 
found in study records. For example, exposure es-
timates for a cohort mortality study of beryllium-
processing workers in multiple plants [Schubau-
er-Berigan et al. 2011] relied on data from three 
separately published JEMs [Chen 2001; Couch et 
al. 2011; Sanderson et al. 2001] for dose-response 
analyses that were subsequently used in quantita-
tive risk assessment for developing permissible 
exposure levels [Schubauer-Berigan et al. 2017]. 
When JEM data are not published, risk assessors 
are encouraged to contact investigators for addi-
tional documentation needed to assess the quality 
of the exposure data supporting study findings. 

4.3.3.3.3 Expert Assessment

Employment information and/or self-reported data 
are often used in tandem with expert judgement by 
industrial hygienists, chemists, engineers, and other 
professionals to estimate exposure [Nieuwenhuijsen 
2010; Teschke et al. 2002]. It is generally thought 



32 NIOSH CIB 69 • NIOSH Practices in Occupational Risk Assessment

that experts, having a better understanding of ex-
posure mechanisms because of their training, can 
more accurately estimate exposures than can the 
workers themselves. Furthermore, if the experts 
are kept blind to case status, the potential for in-
formation bias is reduced. Nevertheless, it may be 
impractical for experts to become suitably famil-
iar with all exposure conditions over the period 
of interest without detailed information from em-
ployer records and the affected workforce. Another 
disadvantage of expert judgment is an inherent 
inconsistency among experts, given relatively un-
structured opinions about the exposure that have 
developed from varying levels of training and ex-
perience. In preferred studies using expert judge-
ment, reliability is typically assessed by comparing 
estimates from two or more experts [Benke et al. 
1997; Kromhout et al. 1987; Ramachandran et al. 
2003; t’ Mannetje et al. 2003; Van Wendel De Joode 
et al. 2005a]. When available, comparisons with 
measurement data are preferred for assessing va-
lidity [Benke et al. 1997; Tielemans et al. 1999; Van 
Wendel De Joode et al. 2005b]. 

4.3.4 Factors Compromising  
Internal Validity 

An important consideration not listed among Hill’s 
viewpoints is refutation of alternative explanations 
of study findings. An important source of spurious 
results in research findings is systematic error (i.e., 
bias). Bias is defined as a deviation of the results 
or inferences from the truth, or processes leading 
to that deviation [Gail and Benichou 2000]. Study 
designs are typically evaluated by risk assessors to 
ensure that candidate epidemiologic studies are ab-
sent of major systematic errors. Common sources 
of systematic errors can be classified into four gen-
eral forms: 

 ■ Selection bias, resulting from procedures used 
to select participants into or out of the study 
or that inherently occurs as part of the normal 
occupational setting (e.g., healthy worker sur-
vivor bias effects described below).

 ■ Information bias, resulting from misclassifica-
tion of the study participants’ disease or expo-
sure status.

 ■ Confounding, which is a mixing of the effects 
from the exposure of interest with the effects of 
other measured or unmeasured factors (con-
founders) on the risk of the adverse effect. In-
sufficient accounting for confounding factors 
can lead to biased risk estimates.

 ■ Healthy worker effects, which are a combina-
tion of selection and confounding biases re-
sulting from relationships between heath sta-
tus, employment, and exposure. This source 
of potential bias is restricted to observational 
studies of working populations.

On the basis of these general forms, risk assessors 
must answer the following questions: 

1. Is there any evidence suggesting a potential 
for a strong selection bias that may fully ex-
plain the observed findings? 

2. Is there any evidence supporting the poten-
tial for a strong information bias that may 
fully explain the observed findings? 

3. Could the findings of the study be attribut-
ed to confounding by other risk factors, ei-
ther because of inadequate control (residual 
confounding) or because of lack of control?

4. Are there plausible alternative explanations 
that may fully account for the observed 
findings? 

5. In lieu of bias, how likely are the study find-
ings to have resulted from chance?

These questions describe the potential for a strong 
bias or imprecise findings that may invalidate risk 
estimates. Ideally, the risk assessment relies on 
study results that are not attributable to bias or 
chance; therefore, a positive response to any of the 
questions above is generally grounds for removal 
of the study from further consideration. The term 
strong is used to describe an unacceptable bias by 
its degree; therefore, it implies that a small distor-
tion of the effect relative to its reported size (i.e., 
a potential weak bias) may not be disqualifying 
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for risk assessment purposes. However, the poten-
tial for a bias that may only partially explain study 
findings still requires evaluation for proper use 
in risk assessment. To aid in responding to these 
questions, risk assessors are encouraged to review 
Appendix B of this report, which provides specific 
information on potential biases common in human 
risk assessment.

Bias can occur in any stage of the research, in-
cluding the literature review, study design, data 
collection, analysis, interpretation of results, and 
publication. When reviewing studies for validity, 
risk assessors avoid using a “guilty until proven in-
nocent” approach, whereby one assumes that the 
study design and analysis are inadequate unless 
enough information to the contrary is provided by 
the study authors. Instead, the risk assessor evalu-
ates the potential impact of study limitations and 
omissions on findings for determining WoE [Zac-
cai 2004]. Although Appendix B provides some 
discussion on specific types of biases that may be 
encountered, for additional information risk asses-
sors may consult several highly cited articles [Arri-
ghi and Hertz-Picciotto 1994; Delgado-Rodríguez 
and Llorca 2004; Greenland et al. 1999; Grimes and 
Schulz 2002; Sackett 1979] and epidemiologic texts 
[Breslow and Day 1980; Breslow and Day 1987; 
Checkoway et al. 2004; Gail and Benichou 2000; 
Rothman et al. 2008].

4.4 Laboratory Animal Data
Data from human studies are often inadequate to 
fulfill hazard identification; therefore, risk asses-
sors use toxicological information from bioassays 
in animals, either alone or in combination with 
information from human studies. As noted by 
Cohen et al. [2004], using animal data as the ba-
sis for human risk requires two fundamental as-
sumptions: (1) the findings in the animal study are 
relevant to humans (interspecies extrapolation) 
and (2) the doses used in the animal bioassay are 
relevant for estimating risk at human exposure lev-
els (dose extrapolation). In general, animal studies 
predict human health risks well [Allen et al. 1988; 

Crump et al. 1989; Griffin 1986]. For example, in 
its recent report on tumor site concordance, IARC 
confirmed that the induction of cancer in experi-
mental animals is relevant to the identification of a 
carcinogenic hazard to humans, given that all hu-
man carcinogens that have been adequately tested 
in animals have also been shown to cause cancer in 
animals [IARC 2019]. Nevertheless, tumor site con-
cordance is not assured or even routinely observed. 
For example, there are four agents for which there is 
sufficient evidence for breast cancer in humans and 
seven agents for which there is sufficient evidence 
for breast cancer in experimental animals, but only 
one of these agents causes breast cancer in both hu-
mans and animals [IARC 2019]. NIOSH recognizes 
that differences exist between species because of 
the unique inherent physiological and biochemical 
mechanisms in each species [Homburger 1987] and 
because exposure conditions in animal models can 
differ greatly from the work environment. Moreover, 
humans lack the homogeneity observed among in-
bred experimental animals. Collectively, these dif-
ferences may lead to false-positive or -negative assay 
findings [Ennever and Lave 2003; Ettlin and Pren-
tice 2002; Haseman and Elwell 1996]. 

As in human studies, not all animal studies are 
equally useful. Some studies are limited by virtue 
of their sample size, experimental design, methods, 
and the interpretation of the results by authors. It 
is very important that the toxicity evaluation of 
a substance be based on information from well-
conducted studies. Evaluation of the quality and 
reliability of individual animal toxicity studies re-
quires consideration of factors associated with a 
study’s hypothesis, design, methods, execution, 
analysis, and interpretation [Hothorn 2014; Kli-
misch et al. 1997; Lu and Kacew 2002; NTP 2015a; 
NTP 2015c; Salem and Katz 2014]. 

4.4.1 Relevance and Appropriateness 
of the Animal Model

A relevant and appropriate animal model of human 
disease is one that includes a living organism in 
which normative biology or behavior can be studied, 
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or in which a spontaneous or induced pathological 
process can be investigated, and in which the phe-
nomenon in one or more respects resembles the 
same phenomenon in humans [NRC 1981]. The 
term relevance refers to the comparability of the ob-
servations in animals to those in humans. Clearly, a 
preferred model is one in which the phenomenon 
of interest is observed equally in both animals and 
humans. In practice, the degree of direct compa-
rability can be low, which is a limitation in animal 
studies. Limited comparability does not preclude 
the use of animal information in human risk assess-
ment. In fact, animal studies may provide the best 
dose-response information to support human risk 
assessment. The term appropriateness refers to fac-
tors that support the choice of animal model for risk 
assessment, depending on the scientific questions 
to be addressed. These factors can include animal 
life span; genetic homogeneity; specific anatomical, 
physiological, or behavioral attributes; the frequen-
cy of the effect of interest and its background occur-
rence; and availability (supply and cost) [Hedrich 
and Bullock 2004; Krinke 2000; NRC 1981]. 

Understanding the mode of action (MoA) of a 
chemical helps to establish the best animal model 
for use in the toxicity testing and risk assessment 
(MoA is further described in Section 4.4.2.2). For 
example, male rats are not a useful model for evalu-
ating the risk of kidney cancer from gasoline expo-
sure in humans [Baetcke et al. 1991]. The MoA for 
kidney cancer in male rats from gasoline exposure 
(and various other chemicals, as described later 
for d-limonene exposure) involves the presence of 
alpha-2u-globulin protein. This protein combines 
with the metabolites of gasoline, which can even-
tually induce kidney tumors. Humans, female rats, 
and mice do not have this protein. From everything 
known to date, the presence of alpha-2u-globulin 
is necessary for the development of kidney tumors; 
therefore, no excess kidney cancer has been ob-
served in exposed mice or female rats. 

For test compounds that depend on a metabolite 
to produce an adverse effect in the animal (for ex-
ample, epoxide formation for some carcinogens), 
the most appropriate animal species is often the 

one that has the closest similarity to humans with 
respect to relevant metabolic processes involved 
in toxicity [Bogaards et al. 2000; Martignoni et 
al. 2006; Nilsson et al. 2012; Panchal and Brown 
2011]. Sometimes other factors besides metabolism 
are important in selecting an appropriate animal 
model. For example, an adequate number of test 
animals are needed to ensure that a study has ad-
equate statistical power to detect an adverse effect. 
Therefore, if rhesus monkeys are most metaboli-
cally similar to humans, but only small numbers of 
these animals were used in the experiment and the 
toxicologic response was equivocal, then the rhesus 
monkey may not be the best animal model for the 
risk assessment.

Ideally, animal studies used in human risk assess-
ment should be performed in animals of appropri-
ate age (adult versus newborn), of both sexes, and 
with a health status (e.g., pregnant versus non-
pregnant) that corresponds to human exposure 
and toxicity. The study should take into consider-
ation the appropriate duration and pattern of expo-
sure (acute versus chronic; single exposure versus 
repeated administration) to simulate human occu-
pational exposure.

Often, a test compound will have data from sev-
eral animal studies. The information on test ani-
mals should include species, strain, sex, age, and 
number of animals per group from any individual 
study. Ideally, an animal model with the most valid 
biological rationale (e.g., similar pharmacokinetic 
profiles) should be selected as the animal model 
most relevant to humans. However, in some cases 
no such closely relevant model exists. In such cases, 
the animal model that is most sensitive (i.e., show-
ing a toxic effect at the lowest administered dose af-
ter dosimetric adjustments are performed) is often 
used [Barnes and Dourson 1988].

4.4.2 Animal Toxicologic Study Design
Animals most often used in bioassays are rat, mouse, 
guinea pig, hamster, rabbit, monkey, and dog. Cod-
ified U.S. EPA guidelines for conducting animal 
toxicity studies are available [Health Effects Testing 
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Guidelines, 40 CFR 798]. International guidelines 
are provided by the Organisation for Economic 
Co-operation and Development (OECD), in the 
OECD Guidelines for the Testing of Chemicals, 
Section 4, Health Effects, Tests 403, 412, 413, and 
452 for inhalation exposure studies [OECD 2009; 
OECD 2018b; OECD 2018c; OECD 2018d] and 
Tests 402, 404, 410, 411, and 429 for dermal tox-
icity studies [OECD 1981a; OECD 1981b; OECD 
2010; OECD 2015; OECD 2017]. These guidelines 
provide recommendations on physical parameters 
of test substances and testing conditions; on labo-
ratory animals (e.g., species, number, sex, age, and 
condition); and on gross pathology, histopathol-
ogy, and clinical, biochemical, hematological, oph-
thalmological, and urinary excretion tests to be in-
cluded in the study. It is generally recommended to 
conduct toxicity tests for each test compound in at 
least two species, typically rats and mice [Bingham 
et al. 2001; Salem and Katz 2014]. In addition to 
improving consistency between studies, these test 
guidelines can be useful for evaluating WoE among 
studies, where deviations from these guidelines can 
indicate potential weaknesses.

NIOSH considers that for an experimental animal 
study to be useful for human risk assessment, its de-
sign should be sufficiently documented to include 
information on study aims and hypotheses tested; 
reasons for selecting the animal model used; spe-
cies, strain, weight/age, sex, and source of animal 
used; details of each experiment performed, includ-
ing its design and number of animals used; expo-
sure, including dose, route, schedule, and duration; 
and statistical methods [EPA 1994]. This informa-
tion may be found in a study protocol or in the 
methods section of the study report. Superior stud-
ies provide enough documentation of the methods 
to replicate findings. Combined with a clear and 
thorough presentation of findings, the study design 
information is a valuable resource for judging WoE. 
It is also often helpful if individual animal data are 
made available for additional analysis.

Studies should include enough test animals and 
dosing groups to support statistical analysis. The 

type of study conducted (acute, sub-chronic, or 
chronic) provides insight into the number of ani-
mals and dose groups needed. For example, chronic 
animal bioassays (2-year studies in mice and rats) 
typically involve 50 animals per sex per species per 
dose. These types of studies are useful for collecting 
information on carcinogenicity and other health 
effects that require chronic exposure. Sub-chronic 
studies, on the other hand (90-day studies in mice 
and rats) typically use fewer animals per species 
per sex per dose and are typically used to detect 
non-cancer, organ system health endpoints such as 
pulmonary inflammation, liver toxicity, and kidney 
toxicity. The toxicology study guidelines referenced 
in this section provide more detailed information 
on studies with adequate numbers and dose groups.

Datasets from studies adhering to good laboratory 
practices (GLP) [OECD 2005] and to internation-
ally accepted test guidelines (e.g., OECD, EPA, and 
EU) are preferred as candidates for risk assessment. 
In addition, studies with sufficient details on methods, 
analysis, and results that have been peer-reviewed are 
often acceptable [Klimisch et al. 1997]. 

4.4.2.1 Exposure Information 
Exposure conditions play a vital role in the experi-
mental design of animal toxicity studies. Determi-
nation of the dose that reached the test animal in 
a study is a complex process. This involves using 
proper methods for the generation, characteriza-
tion, and delivery of a test compound [EPA 1994]. 
NIOSH has established the following criteria to as-
sess the suitability of animal toxicologic studies for 
risk assessment purposes.

Ideally, the study should clearly define the physico-
chemical characteristics of the substance used, such 
as purity, stability, pH, partition coefficient, vapor 
pressure, particle size and distribution, breathing 
zone concentration, and vehicle. The concentration 
of the test compound should be reported as means 
and variances. The exposure concentration, type of 
exposure (e.g., vapor or aerosol), administration 
route, exposure schedule, and exposure duration 
should be clearly described. 
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For an inhalation study, the information should 
include a description of the generation and char-
acterization technology used (e.g., chamber de-
sign, type, dimensions, uniformity of distribution, 
source of air, generating system, air conditioning, 
and exhaust treatment) [Nelson 1992; Wong 2007]. 
The number of air changes, air flow rate, oxygen 
content, temperature, and relative humidity are 
exposure chamber characteristics that should be 
monitored and reported as means and variances. 
The description of the characterization method(s) 
should also include frequency of measurement, 
calibration of the measurement instrument, fre-
quency of the calibration, and other quality assur-
ance elements [Barrow 1989; Chen and John 2001; 
Moss and Cheng 1989; Wong 1999].

The various inhalation exposure techniques include 
whole body, head only, nose only, intra-tracheal in-
stillation, and oropharyngeal aspiration [Driscoll 
et al. 2000; Phalen 1997; Sahu and Casciano 2009; 
Wong 2007]. Factors such as safe and efficient gen-
eration, amount of material, test compound sta-
bility, exposure duration, and the measurements 
desired influence the selection of an exposure tech-
nique for a study design. For instance, in chronic 
inhalation exposure studies, whole-body exposure 
of laboratory animals in cages is the most common 
method, whereas nose-only exposures are most 
often used for short-duration particle exposures. 
However, it should be noted that several factors 
such as heat, stress, and anesthesia could affect the 
biological patterns of the animal, potentially influ-
encing results [Hughes et al. 1982; Mete et al. 2012; 
Overmyer et al. 2015; Stratmann et al. 2010; Suvra-
than et al. 2010]. Due consideration of these issues 
should be included in detail in the data analysis to 
ensure appropriate comparisons.

Test agents may affect lung ventilation, function, 
uptake, clearance mechanisms (e.g., mucocili-
ary clearance), and retention of the dose. Particle 
overloading in the lungs of test animals, especially 
rats and mice—a well-known outcome of particle 
exposures at higher concentrations and/or longer 
duration—should also be evaluated [EPA 1994; 
Morfeld et al. 2015; Morrow 1988; Oberdörster 

1995; Oberdörster 1997; Olin 2000; Pauluhn 2014]. 
Overloading results in aggregated alveolar macro-
phages (AMs) engorged with phagocytized dust 
particles. These AMs release an array of mediators, 
resulting in various inflammatory responses and 
tissue injury [EPA 1994; Kanj et al. 2005; Laskin 
and Pendino 1995]. Overloading is characterized 
by a dose-dependent decrease in the rate of particle 
clearance from the lungs; thus, first-order clearance 
kinetics would underestimate the retained particle 
dose in the overloaded rat. Overloading can be ad-
dressed in quantitative risk assessment by using 
dosimetry models that account for higher-order 
kinetics to estimate the retained particle dose in 
rodents and humans. The nature and severity of rat 
lung responses to particle overload are less certain 
than the lung responses in humans at equivalent 
doses; however, without overloading, rats would 
not reach the equivalent mass lung doses that have 
been observed in workers in dusty jobs [Kuempel 
et al. 2014; Morfeld et al. 2015; Olin 2000; Pauluhn 
2014]. Comparison of the particle burdens in the 
lungs of test animals to the particle burdens expect-
ed in the lungs of occupationally exposed humans 
is useful in evaluating whether the experimental 
study in question is relevant to occupational health 
risk assessment. Sections 5.6.2.5 and 5.6.2.7 pro-
vide additional information on lung clearance ki-
netics of particles in rodents and humans.

Animal studies have different durations (acute, sub-
chronic, and chronic) and frequencies of exposure 
(single, intermittent, and continuous). Study varia-
tions help to identify the hazard associated with a 
given test compound, but not all of them may be 
appropriate for quantitative risk assessment, de-
pending on the human exposure of concern. 

Appropriate control groups of unexposed (e.g., air-
only controls in inhalation studies) and/or vehicle-
exposed animals should be included in the study. 
The control group(s) should be treated similarly to 
the chemically treated group, except that the control 
group should not receive any of the test compounds 
[Hayes 2008; Salem and Katz 2014]. In addition, 
historical control data can also be used to evalu-
ate the differences between control and treated 
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groups. In general, historical control data should 
be submitted from the same laboratory and should 
be from animals of the same age and strain gener-
ated during the 5 years preceding the current study 
[OECD 2018d]. 

Most often, animal bioassays expose animals to 
higher doses of a chemical than those common in 
human exposure [Klaassen et al. 2013]. Sometimes 
the animal doses are comparable to occupational 
exposures, but often they are significantly higher 
(see Section 5.6.2.8 for more details). Toxicity ob-
served at high doses may or may not occur at lower 
doses. Therefore, animal studies should always be 
evaluated in the context of dose-response relation-
ships. Doses for vapor exposure are usually pro-
vided in units of parts per million (ppm) or mil-
ligrams per cubic meter (mg/m3), and doses for 
airborne particle exposures are usually provided as 
the mass concentration (mg/m3) and aerodynamic 
particle size (e.g., mass median aerodynamic di-
ameter, MMAD). Number concentration is also 
reported for airborne particles or fibers. The size 
and shape of particles determine the region in the 
respiratory system in which particles are deposited 
(see Section 5.6.2.2 for more details). Care should 
be taken to ensure that particle morphology under 
test conditions reflects human exposure patterns. 
The physicochemical properties of a particle deter-
mine whether it will be dissolved in the blood or 
removed by clearance mechanisms.

In dermal exposure, the contact area, absorption, 
concentration of the chemical, contact frequency, 
retention time, and penetration potential contrib-
ute to the dermal toxicity [Marquart et al. 2003; 
Poet and McDougal 2002; Schuhmacher-Wolz et 
al. 2003; van Ravenzwaay and Leibold 2004]. 

4.4.2.2 Consideration of Mode of Action and 
Adverse Outcome Pathways

Typically, when conducting risk assessment to in-
form the development of a REL, NIOSH evaluates 
health effects that may be experienced by humans 
or that may be related to health effects experi-
enced by humans, as evidenced by the results of 

human and animal studies. Once the constellation 
of health effects under consideration has been es-
tablished, the risk assessor critically evaluates the 
health effects to determine which effect(s) are of in-
terest. In doing so, the risk assessor clearly explains 
the rationale for selection of the health effects and 
their relevance to human health. 

As part of its hazard identification, NIOSH evalu-
ates MoA and adverse outcome pathway (AOP) 
information to determine whether evidence is 
adequate to establish that the events leading to 
adverse effects in animals are unlikely to operate 
in humans. An AOP is a construct portraying the 
sequence of events between a direct molecular ini-
tiating event and the adverse effect relevant to risk 
assessment [Ankley et al. 2010]. Whenever infor-
mation is available to describe the MoA or the AOP, 
NIOSH uses this information to evaluate the dose-
response information. MoA is generally thought 
of as the underlying biochemical interactions that 
lead to the expression of the adverse effect. Full 
information on the MoA is rarely available. MoA 
refers to the general processes and key events that 
are involved in the toxicity of a chemical. MoA 
analysis includes review of physical, chemical, and 
biological information on the substance [Boobis et 
al. 2006; Boobis et al. 2008].

It is sometimes observed that humans have a differ-
ent sensitivity to a test compound than experimen-
tal animals do [Lasagna 1987]. In addition, there 
are cases where the MoA or adverse effect identi-
fied in an animal model is not relevant to human 
health. The case of d-limonene exposure causing 
kidney tumors in male rats, but not in female rats 
or either sex of mice, is one example. The male rat 
kidney tumors have been linked to a metabolite 
of d-limonene binding to the protein, alpha-2u-
globulin, leading to toxicity, cellular regeneration, 
and tumor formation. Humans have no function-
ally similar protein; therefore, this MoA does not 
appear to operate in humans, and the male kidney 
tumors do not indicate a human cancer risk. Co-
hen et al. [2004] summarize this case and others. 
In their report, the authors describe a framework 
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for evaluating the relevance of chemically induced 
animal tumors to humans.

An understanding of the MoA of the toxic agent can 
help define which data are most appropriate for con-
sideration. The EPA has described MoA framework 
initially for cancer risk assessment in the Guidelines 
for Carcinogen Risk Assessment as a sequence of key 
events and processes, starting with interaction of an 
agent with a cell, proceeding through operational 
and anatomical changes, and resulting in cancer 
formation [EPA 2005]. Examples of possible modes 
of carcinogenic action include “…mutagenicity, mi-
togenesis, inhibition of cell death, cytotoxicity with 
reparative cell proliferation, and immunologic sup-
pression.” Later the MoA framework concept was 
expanded to assess risk for non-cancer endpoints 
[Bogdanffy et al. 2001; Julien et al. 2009; Lochner 
et al. 2005; Seed et al. 2005]. The substance may 
induce adverse effects by more than one MoA in a 
single tissue or at different sites. Therefore, a single 
MoA for an endpoint may or may not apply to all 
other health endpoints.

An expanded MoA framework focuses on the WoE 
establishing the MoA in animals and whether the 
key events identified in animals are plausible in hu-
mans, and it considers kinetic and dynamic factors 
to determine whether the MoA is plausible in hu-
mans. To use the MoA framework, the risk assessor 
asks the following questions (Figure 4-2):

 ■ Is the WoE sufficient to establish the MoA in 
animals? The first step in considering the rel-
evance of MoA information to human health 
is having sufficient MoA information on the 
animal species for the health effect of interest. 
The default position is that the health effects 
observed in animals are relevant to humans. 
As stated in Seed et al. [2005], “[W]hen data 
are insufficient to confidently characterize an 
MoA for test animals, the animal tumor data 
are presumed to be relevant to humans and a 
complete risk assessment is necessary.”

 ■ Are key events in the animal MoA plausible in 
humans? To evaluate whether the MoA is 
relevant to humans, there must be sufficient 

information available regarding the potential 
for the key events identified in the animal MoA 
to operate in humans. For example, a key enzy-
matic pathway observed in the animal should 
also be present in humans or, if the exact enzy-
matic pathway is not present, then determine 
if there are pathways that serve a similar or 
identical function. If there is insufficient infor-
mation in humans to characterize the relevant 
pathways, as described above, then the animal 
data are presumed to be relevant to humans 
and a complete risk assessment is necessary. 
However, if there is clear evidence that the 
relevant pathways do not operate in humans, 
then the risk assessor should assume that the 
observed effects in animals are not relevant for 
humans for this endpoint. Unless it is known 
that all the health effects observed in animals 
derive from a common MoA, this analysis 
needs to be conducted separately for all health 
effects under consideration for risk assessment. 

 ■ If we take into account kinetic and dynamic factors, 
as well as life stages, then are key events in the animal 
MoA still plausible in humans? This step requires 
quantitative information on the relative kinetic 
and dynamic factors that would influence risk in 
humans and animals, as well as consideration of 
life stages of potential exposure in humans. For 
example, consider the case in which the MoA has 
been identified in animals, involving toxicant me-
tabolism by a specific enzymatic pathway found 
in both animals and humans; however, there is 
a high rate of metabolism by this pathway in the 
rodent that is not evident in humans. In addition, 
humans have a competing enzymatic pathway that 
metabolizes the toxicant much more rapidly. Thor-
ough analysis of the kinetics indicates the potential 
human toxicity via this MoA is, in fact, very low, 
suggesting the conclusion that there is no need to 
conduct a risk assessment for this endpoint. The 
same type of analysis could be conducted when 
considering potential exposures during specific 
life stages, if that is deemed a critical variable. 

AOPs are structured representations of biologi-
cal events leading to an adverse effect. AOPs are 
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Figure 4-2. Framework for Mode of Action (MoA) assessment (adapted from Seed et al. [2005])

flexible frameworks that can include linking rela-
tionships that are causal, mechanistic, inferential, 
or correlation based [Ankley et al. 2010]. AOPs 
have been established for several chemical groups. 
In an AOP, a structured sequential chain of events 
is constructed with all available scientific informa-
tion. For example, a chain of events might entail 
a toxicant exposure causing a molecular initiating 
event, which then leads to a series of key events 
causing the adverse outcome of interest. Infor-
mation on key events in AOPs, the biochemical 
mechanism of action, or the processes involved in 
the presumed MoA could give insight into the tox-
icity of chemicals, including the characteristics of 
the dose-response (see Appendix C for more infor-
mation on AOPs).

4.4.2.3 Selecting the Adverse Effect  
of Interest

Ideally, the dose-response relationship is demon-
strable. The observed effects should be directly 
related to the magnitude of exposure to the test 
compounds and not influenced by concurrent ex-
posure to other compounds or already existing 
health conditions [Lewis et al. 2002]. In general, 
the recommended list of hematology, clinical bio-
chemistry, and histopathological examinations to 
be evaluated in the laboratory studies are given in 
several guidelines [Crissman et al. 2004; OECD 
2009; OECD 2018b; OECD 2018c; OECD 2018d; 
Weingand et al. 1996]. NIOSH risk assessors refer 
to these guidelines, as applicable, for a better un-
derstanding and evaluation of the study.
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Preferably, the histopathological examinations 
should be of all tissues for all treated doses and 
control groups and all tissues from animals. How-
ever, many published studies, excluding the NTP 
studies, employ histopathological examination only 
for the target endpoints, which although somewhat 
limited in scope still may be useful for risk assess-
ment. In addition, quantitative histopathological 
measures of response (e.g., dichotomous or ordinal 
categories of the occurrence and severity of an ad-
verse response) are necessary to use these data in 
dose-response modeling.

A special consideration is the appropriateness of 
selecting early biomarkers, precursor effects, and 
critical molecular/cellular changes in lieu of the 
adverse effect anticipated in humans. An example 
of this is evaluating inflammatory markers that 
lead to secondary genotoxicity and ultimately can-
cer after exposure to inhaled particulates. Cancer 
is of direct and relatable interest to human health. 
Moreover, for poorly soluble, low-toxicity particu-
lates, the MoA has been described as an irritation 
response, followed by inflammation and produc-
tion of reactive oxygen species, which leads to sec-
ondary genotoxicity and ultimately an increased 
risk of cancer. When the MoA is well-supported, 
it may make sense to conduct risk assessment on 
early biomarkers or molecular changes. Ideally, the 
causal and quantitative relationship between the 
occurrence of the biomarker or molecular changes 
and the outcome of interest is understood. When 
the relationship is correlative or the quantitative 
aspects are poorly understood, the relevance to 
human experience becomes more tenuous. Valida-
tion of the causal pathways and description of the 
quantitative relationship and attendant uncertain-
ties between the outcome of interest and the pre-
cursor events or biomarkers are important steps to 
consider in conducting this type of risk assessment. 

Similarly, tests using structurally related com-
pounds or any active metabolite of the compound 
of interest could also be considered for a compari-
son of results. However, toxicity studies of structural 

analogs and metabolites should be carefully con-
sidered in light of the MoA, metabolic issues, and 
other factors that may influence differences in re-
sponse between the alternate chemical and the 
chemical of interest. Demonstrated relevance of the 
findings for analogs or metabolites to the chemical 
of interest is necessary. In addition, the limitations 
and uncertainties associated with using toxicity 
data from alternate chemicals should be thorough-
ly and explicitly discussed when reaching any risk 
assessment conclusions. When multiple toxicity 
studies are available, the studies should be reviewed 
with reference to the types of effects observed in 
different test species and strains. Consistency of re-
sponse across species, sex, and/or route of exposure 
increases the WoE that the effect might occur in 
humans. In contrast, an effect observed in only one 
species or sex may need further evaluation. Results 
replicated by independent researchers would have 
increased credibility. 

Once the evidence is evaluated, NIOSH assesses 
the toxicological database for completeness. A 
complete toxicological database includes studies 
that evaluate carcinogenic, genotoxic, reproduc-
tive, developmental, and other organ effects (e.g., 
immunotoxic, neurotoxic, nephrotoxic, irritation, 
and sensitization). Ideally, the literature describes 
the dose-response relationship; concordance across 
species, strain, sex, exposure routes, or in multiple 
experiments with respect to adverse effects; effects 
that are biologically plausible and of human rele-
vance; and similar effects with structurally related 
compounds. However, a complete toxicological da-
tabase is not essential for hazard identification if the 
observed adverse effects are relevant to occupational 
exposures. If there are only limited data on a spe-
cific chemical, then all available studies with limited 
information should be critically evaluated to deter-
mine the usefulness of the information for risk as-
sessment. If concordance across species/strain/sex is 
not observed, then additional evaluation is needed; 
in the absence of information to the contrary, the 
more sensitive species/strain/sex is often used.
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5 Dose-Response Assessment

5.1 Introduction 
The dose-response assessment is the second step 
of NIOSH risk assessment. The aim of the dose-
response assessment is to obtain reliable and valid 
estimates of the point of departure (PoD) in a cause 
and effect relationship between the exposure and 
outcome of interest or the risk at prescribed dose 
levels (e.g., risk per unit dose) that can be used in 
risk characterization. 

The dose represents a quantitative metric d, usually 
derived from some external exposure, and believed 
predictive of an adverse effect. Whenever the rela-
tionship between the biologically effective dose and 
another dose metric (e.g., absorbed dose, inhaled 
dose, or exposure concentration) is well described 
by a constant ratio (i.e., a directly proportional re-
lationship over the range of doses under consider-
ation), then these doses are interchangeable and 
their dose-responses are equivalent. For example, if 
the inhalation rate during exposure is constant over 
the range of concentrations, then the inhaled dose 
rate is proportional to the concentration; but if the 
inhalation rate is not constant, then the dose-re-
sponse based on inhaled dose requires adjustment 
to obtain the corresponding dose-response based 
on exposure concentration. 

As another common example, consider a nonlinear 
rate of metabolic activation. The rate of metabolic 
activation of a toxicant may be best approximated 
as linear at low exposure concentrations, but it 
may become nonlinear at high concentrations. If 
the biologically effective dose is the amount that 
is metabolically activated, then the dose-response 
analysis is usually based on the amount activated 
rather than the exposure concentration, if that has 
been quantitatively described and validated. 

In general, quantitative risk analysis relies on math-
ematical models of association used to describe 

the conditional probability of the adverse effect 
at different levels of exposure to the agent, given 
levels for other direct causes of the adverse effect. 
Statistical methods used in dose-response model-
ing are numerous and diverse. The onset of per-
sonal computing has led to advancements in this 
area that continue today. For example, at the time 
of this writing, considerable advancements in the 
EPA Benchmark Dose Software suite were ongoing. 
Thus, a detailed description of modeling methods 
preferred for all situations faced in risk assessment 
is beyond the scope of this Bulletin. However, sim-
ple modeling practices that may be encountered are 
described in the following sections to broadly illus-
trate dose-response modeling concepts. In specific 
situations, NIOSH encourages risk assessors to take 
advantage of the substantial technical progress that 
has been made in dose-response modeling tech-
niques by referencing recent literature.

5.2 Dose-Response Modeling 
Dose-response regression modeling provides a basis 
to estimate the expected response as a function of 
dose d and possibly other risk factors, X1, X2, …, Xc, 
together with assumptions about the variability of 
responses. In animal toxicology studies, the dose-
response is often simplified to expected response = 
f(d) since the other risk factors are controlled by de-
sign or by the random assignment to dose levels. As 
an illustration, consider the outline of animal study 
data in Table 5-1. At each dose level d, there are n an-
imals exposed, and the corresponding response, Y, 
is number of animals presenting with the adverse ef-
fect of interest. The expected proportion of animals 
with the adverse effect is related to each dose d and 
is equivalent to the probability of the adverse effect 
f(d). The function f(d) is evaluated at any dose be-
tween the background response (when d = 0) and 
the maximum observed dose. 
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It is preferable to base model selection on biologic 
plausibility. In practice, however, model specifica-
tion with a clear advantage based on biology is sel-
dom observed. Instead, a suite of plausible models 
is usually fit to the data. When multiple models of 
a response adequately describe the data, the model 
selected for a risk assessment is generally chosen 
by using criteria that are defined beforehand. For 
example, the Akaike information criterion (AIC) is 
a measure of model fit that is often used to select 
a model from among a group of models [Akaike 
1974]. The selection process should be clearly de-
scribed in the risk assessment. Because different 
model-selection criteria can lead to different model 
choices, model selection is often an area explored 
in sensitivity analysis. Multiple (alternative) esti-
mates are then reported with a description of how 
each estimate was derived. 

5.2.1 Parametric Dose-Response 
Modeling

The function f(di ; θ), which describes the relation-
ship between dose and the expected response for 
observation i, is often assumed to have a known 
form that depends on a vector of parameters θ 
whose unknown values are estimated. This as-
sumption places strong constraints on the shape of 
the dose-response curve, and the data are used to 
estimate θ. Unknown quantities of critical interest 
such as risk associated with a given dose or the dose 
associated with a given risk are estimated based on 

the fitted dose-response f (di;θ). Within the form 
adopted for f (∙) multiple ways to describe the ef-
fect of dose may be available, e.g., θ1B1(d) + θ2B2 

(d) + … + θKBK(d), where the Bk(d) are known 
functions of dose d, and K = dimension of the vec-
tor of parameters θ  = [θ1,…,θK] and k ∈ {1, … , K} 
identifies a component of θ. As an illustration, if 
the effect of dose is to be described by θ1d + θ2d 2 
then Bk (d) = d k and θ3 = θ4 = … = θK = 0. This sug-
gests that a hierarchy of increasing flexibility may 
be examined, e.g., θ1d followed by θ1d + θ2d2, etc., 
but this should be done carefully since the inclu-
sion of unnecessary terms decreases the degrees 
of freedom and therefore reduces statistical pre-
cision. The omission of a necessary term is likely 
to introduce a statistical bias into the estimation. 
Thus, there is trade-off between a potential for bias 
associated with an overly constrained model of the 
dose-response versus a degradation of precision, 
i.e., increased variance, from an unnecessarily flex-
ible model. This relationship between potential 
bias and increased variance holds in general and is 
referred to as a bias-vs-variance trade-off. Ideally, 
a model is selected that is at the level of complex-
ity at which an increase in bias is equivalent to the 
reduction in variance. In practice, there may not be 
an analytical solution for selecting the “best” mod-
el; therefore, resampling-based measures such as 
cross-validation and theoretical measures such as 
AIC and Bayesian information criteria (BIC) may 
be used to support model selection. 

Table 5-1. Illustration of data from an animal bioassay for a dichotomous response.*

Dose (di)
Number of exposed 

animals (ni)
Number observed with  

the response (Yi)
Observed proportion 

(Yi / ni)

d0
† n0 Y0 Y0 / n0

d1 n1 Y1 Y1 / n1

… … … …
dD nD YD YD / nD

*For example, cancer incidence of a target organ or tissue.
†Typically, an unexposed group of controls is used and d0 = 0.
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5.2.1.1 Dichotomous Response  
Data Modeling

Many different parametric models have been pro-
posed for data from animal toxicology or human 

epidemiologic studies. For example, in the animal 
toxicology setting, the following model specifica-
tions are commonly used in dichotomous dose-
response modeling [EPA 2012b]: 

Equation 5-1. Logistic  

Equation 5-2. Log-logistic  , 0 ≤ γ < 1, β ≥ 1

Equation 5-3. Gamma  , 0 ≤ γ < 1, α ≥ 1, β ≥ 0 

Equation 5-4. Multistage (degree=2)  , 0 ≤ γ < 1, θ1 ≥ 0, θ2 ≥ 0

Equation 5-5. Probit 

Equation 5-6. Log-probit , 0 ≤ γ < 1, β ≥ 0.5 

Equation 5-7. Quantal-linear , 0 ≤ γ < 1, β ≥ 0

Equation 5-8. Quantal-quadratic , 0 ≤ γ < 1, β ≥ 0

Equation 5-9. Weibull , 0 ≤ γ< 1, α ≥ 1, β ≥ 0

Equation 5-10. Dichotomous Hill , 0 ≤ γ< 1, 0 ≤ η< 1, β ≥ 1
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where f (d) is the probability of adverse response at d,

  

is the (complete) Gamma function evaluated at x, 
Φ(x) is the cumulative distribution function of a 
standard normal random variable at x (i.e., the in-
tegral of a N(0,1) density from –∞ to x), and f (0) 
= γ when d = 0 for models 5-2 to 5-4 and 5-6 to 
5-9. The parameter η of Equation 5-10 represents 
an upper limit on f (d), i.e., f (d)< η for every dose; 
Equation 5-10 may be useful when an upper limit 
on f (d) < η where η < 1 is plausible and it may 
necessitate that η be estimated from the dose-
response data. Some bounds in the above models 
are arbitrarily set to prevent extreme properties 
and attendant computational problems, although 
nonlinear dose-response patterns remain avail-
able. Hence, modification of these constraints 
may be necessary when consideration of either 
pattern is unwarranted. Furthermore, although 
the models 5-1 through 5-10 encompass a wide 
variety of curves to represent the dose-response 
and have readily available software for their 

implementation, other parametric forms could 
be considered if necessary. 

Dichotomous outcomes from animal bioassays 
are often modeled under an assumption that the 
sampling variation of the underlying experimental 
process is well represented by a binomial distribu-
tion. In some cases, especially where the data are 
pooled from multiple studies or substantial genetic 
variations of the animals are present, this assump-
tion may not be appropriate and extra-binomial 
variability, or over-dispersion, may be observed. 
In these instances, beta-binomial, quasi-likelihood 
methods, or more fully defined models incorporat-
ing random effects are preferred.

5.2.1.2 Continuous Response Data Modeling
Continuous data arise when response values come 
from a continuous distribution, for example, precisely 
measured liver weights or pulmonary function tests. 
In these situations, a variety of parametric models 
can predict the mean response. For example, the 
following five parametric models are often consid-
ered when modeling continuous data [EPA 2012b]:

Equation 5-11. Linear 

Equation 5-12. Linear-Quadratic 

Equation 5-13. Power  

Equation 5-14. Hill  

Equation 5-15. Exponential  
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The parameters β0, β1, β2, and β3 are specific to the 
given model. It may be necessary to specify bounds 
on these parameters when fitting models. For ex-
ample, the parameter appearing as the exponent of 
dose d of the Power model must be restricted to be 
greater than zero. 

For continuous data, the choice of the response 
data distribution is important. Some response data 
distributions are right-skewed and are best ap-
proximated by a lognormal distribution. In others, 
the distribution of the data is symmetric around 
the mean and a normal distribution is preferred. 
To choose between multiple distributions, the AIC 
can be used to discriminate between different pos-
sible distributions. In such cases, it is necessary to 
compute the log-likelihood based on fully specify-
ing the probability density functions.

The above models describe the mean response; 
however, additional modeling assumptions on the 
variance of the response data are generally needed. 
For example, in many situations, the variance may 
be a function of the mean, e.g., it may be a positive 
constant, or it may be proportional to the mean or 
power of the mean such as its square. Model fit is 
examined to assess whether the response mean and 
variance structures are supported. 

5.2.1.3  Parametric Dose-Response Modeling 
including Other Predictors

The extension to include other predictors into the 
function f (di , X1i , X2i  , …, Xci  ; θ) to describe the ex-
pected response shares much with the dose-only 
modeling described above in that the data are used 
to estimate θ to obtain f (di , X1i , X2i , …, Xci; θ). How-
ever, the models of the data are more complex and 
the vector of parameters θ contains coefficients that 
govern the effect of dose and coefficients for the 
effects of the other variables. In epidemiological 
studies, di, is an exposure metric constructed from 
possibly complex employment histories, and iden-
tifying the optimum construct for di may, itself, be 
an important component of the modeling proce-
dure. For human observational studies, predictors 
in the function f (di, X1i, X2i,…, Xci; θ) usually include 
age, sex, and other demographic variables and may 

include interactions or effect modifiers, e.g., dose-
rate effects or other effect modifiers that allow for 
the effect of dose to depend on the other predictors. 
These additional factors can make model selection 
using human data more complex, because con-
founders, effect modifiers, and complex selection 
processes can be present and often can enter the 
model in many ways. In addition, the differences 
between the study population and the target popu-
lation should be considered for the risk estimation. 
If interactions are present, then the estimates of 
interest may be made conditional on fixed values 
of X1i , X2i , …, Xci or averaged over the appropriate 
marginal distribution of X1i , X2i ,…, Xci , or a com-
bination can be used, i.e., fixing some values and 
averaging the others. 

5.2.2 Model Uncertainty and  
Model Averaging

Model averaging takes into account model uncer-
tainty by incorporating results from all models into 
the estimation process through a weighted average 
of the model-specific excess risk estimates. This 
technique has been applied in a general modeling 
context by Raftery [1995], who suggested the use 
of the posterior model probabilities as weights de-
rived from a Bayesian analysis of all models consid-
ered. Because a full Bayesian analysis is frequently 
computationally burdensome, Buckland et al. [1997] 
proposed simpler methods, where weights are 
based upon the penalized likelihood functions 
formed from the AIC and BIC [Schwarz 1978]. The 
AIC and the BIC are defined on likelihood func-
tions where the AIC= ‒2 ln(L)+2p and the BIC= ‒2 
ln(L) + ln(n)p, where p is the number of parameters 
in the model, L is the maximized value of the likeli-
hood function of the model, and n is the sample 
size (i.e., the number of observations). 

The NIOSH approach to model averaging is to 
use a model-averaged fit to synthesize risk es-
timates across multiple fitted parametric mod-
els. An estimate of the dose-response function 
f̂MA (d)  is calculated as a weighted average of K 
model-specific dose-response estimates ),( df kk θ̂  
for k = 1, …, K. Formally this is represented as 
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f̂MA(d) ∑ ⋅= K
k=1 kk wdf k ),(θ̂ , where ),( df kk θ̂  

is the adverse effect, given the dose d using the kth 
model, θk is the estimated parameter vector for the 
kth model, and wk represents the corresponding 
weight for the kth model. Given the model Mk in 
the model space that includes K models, the weight 
wk is:

=kw
∑ =

−K

i iI1
)2/exp(

− kI )2/exp(

where Ii represents the penalized information cri-
terion described above (e.g., AIC or BIC). Other 
weighting mechanisms exist; for more informa-
tion on these different strategies, see Morales et al. 
[2006] and Moon et al. [2005].

Recently, NIOSH collaborated with the EPA to 
develop extensions of the EPA’s Benchmark Dose 
Software (BMDS) Version 3.0 that includes model 
averaging [EPA 2018b]. This method is a Bayes-
ian approach, which computes the model weights 
through the Laplace approximation [Raftery et al. 
[1997]. In almost all circumstances, results using 
this approach are qualitatively identical to (i.e., 
lead to the same risk estimates as) the approach-
es mentioned above. Given the ease of use of this 
software and methodological advances of this ap-
proach, NIOSH prefers its use; however, given the 
similarities of previous methods, other model av-
eraging approaches might be used on a case basis. 
More information on EPA benchmark dose tools, 
including BMDS Version 3.0 and later versions, is 
available at https://www.epa.gov/bmds.

5.2.3 Nonparametric Modeling
The use of parametric models to describe the dose-
response relationship may not be necessary. In-
stead, a semiparametric or nonparametric curve 
can be used that allows for a more flexible approach 
of fitting data to a dose-response curve. The meth-
odologies available to achieve this vary and often 
make the mild assumption of monotonicity with a 
possible smoothness constraint. 

Wheeler and Bailer [2012] describe a Bayesian semi-
parametric method that uses a flexible spline con-
struction for dose-response analyses. This method 
was shown to be superior to the model averaging 
method of Wheeler and Bailer [2007] in terms of 
its statistical properties. The method is fully Bayes-
ian, which requires attention to the specification of 
prior distributions, but it allows one to include prior 
information on such things as the incidence of the 
response in historical animal controls or in human 
reference populations. Even though this method is 
free of the model selection issues encountered in 
benchmark dose modeling, informed choices must 
still be addressed with this method. Its use requires 
the choice of spline basis functions located at spe-
cific knot locations, which should be selected before 
modeling begins. Ultimately, flexibility in the choice 
of these models comes at the expense of statistical 
and computational challenges in fitting such models. 

Other fully semiparametric/nonparametric mod-
eling methodologies have been developed for di-
chotomous and continuous data [Guha et al. 2013; 
Lin et al. 2015; Piegorsch et al. 2012; Piegorsch et 
al. 2013; Wheeler et al. 2015], some of which over-
come the known selection problems of Wheeler 
and Bailer [2007]. These methods are fully non-
parametric in that they assume no prior form of the 
dose-response curve except monotonicity. Lin et al. 
[2015] showed that their continuous method would 
converge to the true underlying dose-response 
curve for large samples. The method of Wheeler 
et al. [2015] accounts for uncertainty in the speci-
fied response distribution for continuous outcomes 
and the dose-response. This method was shown 
through simulation to produce accurate estimates 
of excess risk, provided studies had adequate num-
bers of observations. Like model averaging, these 
methods allow for a flexible representation of the 
dose-response curve and are often preferable to a 
single parametric model fit. 

5.3 Point of Departure
The PoD is the point on the dose-response curve 
that is established from experimental or observa-
tional data generally corresponding to an estimated 

https://www.epa.gov/bmds
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level of no effect or a low effect level that is without 
significant extrapolation to lower doses. The PoD 
can be used in conjunction with uncertainty factors 
to derive a reference level of exposure or to mark 
the beginning of low-dose extrapolation to dose 
points associated with a target risk level. Extrapo-
lation or the use of uncertainty factors is typically 
necessary when there is instability in model-based 
estimation at very low doses. These PoD concepts 
have their origins and continue to be widely used 
in animal toxicologic studies; therefore, much of 
the discussion on PoD metrics is in the context of 
methods using animal bioassay data. Nevertheless, 
these methods are adaptable to epidemiologic data 
[Bailer et al. 1997; Budtz-Jørgensen et al. 2001; No-
ble et al. 2009]. 

Three definitions of the PoD are commonly used 
in NIOSH risk assessments: (1) the No Observed 
Adverse Effect Level (NOAEL), (2) the Lowest Ob-
served Adverse Effect Level (LOAEL), and (3) the 
Benchmark Dose (BMD), which are described in the 
following sections. Of these prospective PoDs, only 
the BMD approach requires fitting mathematical 
models to data, as described in the previous section. 
Thus, issues regarding model selection are restrict-
ed to the BMD approach. It is also noteworthy that 
the description herein is in the context of a single 
endpoint. Risk characterization may require consid-
eration of multiple endpoints; therefore, additional 
methods may be necessary for comparing, contrast-
ing, or combining information from dose-response 
analyses to describe the occupational risk. Figure 5-1 
shows the relationship between the various PoD def-
initions, using a hypothetical dose-response curve. 

5.3.1 NOAEL/ LOAEL-Based 
Assessments

The NOAEL is defined as the highest dose level at 
which there are no significant increases in the fre-
quency or severity of adverse effects between the ex-
posed population and its appropriate control; some 
effects may be produced at this dose level, but they 
are not considered adverse or precursors of adverse 
effects observed [EPA 2012b]. For example, given 

a rank order series of exposure groups in an ex-
perimental study, the NOAEL is the administered 
dose level in the exposure group that immediately 
precedes the first exposure group in which the fre-
quency of the observed adverse effect significant-
ly differs from that in the control (no exposure) 
group. Similarly, the LOAEL is the lowest dose level 
or concentration at which there are significant in-
creases in frequency or severity of adverse effects 
between the exposed population and its appropri-
ate control group [EPA 2012b]. 

Usually, statistical hypothesis tests with a signifi-
cance level of 5% (one-sided) are used to identify 
NOAELs or LOAELs. As such, problems arise in 
studies with few subjects observed at low exposure 
levels, resulting in insufficient signal-to-noise ratios 
and statistical power. It has been shown in most an-
imal studies that the highest exposure group quali-
fying as a NOAEL is, on average, equivalent to a 
model-based BMD using a BMR of 10%, which is 
empirical evidence that many NOAELs were asso-
ciated with an increased response that did not meet 
the standard significance level of 0.05 [Wignall et 
al. 2014]. Other limitations in using a NOAEL/
LOAEL approach are that it does not allow for con-
sideration of the shape of the dose-response curve, 
which would inform estimation at lower levels, 
and that it is constrained to be one of the levels of 
exposure selected in the experiment. In addition,  
the spacing of exposures in an experiment can re-
sult in only high doses having sufficient power to 
detect statistically significant differences from the 
background condition [Crump 1984], even though 
biologically significant effects at lower doses may 
have been missed due to limited statistical power or 
sampling error. Hence, basing an interpretation of 
a NOAEL as representing a threshold below which 
effects are null is generally unfounded. Despite these 
limitations, the NOAEL/LOAEL approach may be the 
only alternative for determining a PoD for applica-
tion of uncertainty factors when data are insufficient 
to model the dose-response adequately. NIOSH has 
used a NOAEL/LOAEL approach in assessing risks 
of occupational exposures to ethylene glycol ethyl 
ethers and associated chemicals [NIOSH 1991].
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5.3.2 The Benchmark Dose Approach
Given the limitations of the NOAEL/LOAEL ap-
proach, the risk assessment community has widely 
adopted the BMD approach originally proposed 
by Crump [1984] for determining the PoD when 
observed data are adequate to model the dose-re-
sponse (see Section 5.5). The BMD is defined as the 
dose or concentration on the dose-response curve 
that produces a predetermined change in the re-
sponse rate of an adverse effect relative to the back-
ground response rate of this effect. This predeter-
mined change is called a benchmark response, or 
BMR. A default level is not specified, because the 

choice of the BMR should be based on biological 
and statistical considerations that are specific to 
each risk assessment. In general, the BMR should 
be biologically reasonable and should be supported 
by the observed data (i.e., the PoD does not re-
quire significant extrapolation). For quantal data, 
the BMR is usually in the range of 5%–10% extra 
risk (see Section 6.1) for animal toxicologic data, 
which is the limit of responses typically observed in 
well-conducted animal experiments [EPA 2012b]. 
Much smaller values (e.g., ≤ 1%) are typically sup-
ported by quantal human data. Ideally, the BMR for 
continuous data represents the smallest change in 

Figure 5-1. A hypothetical dose-response association from an animal study with five dose groups. The lower 
limit on the benchmark dose or concentration (BMDL/BMCL) is selected as the point of departure (PoD). Other 
potential PoDs are the No Observed Adverse Effect Level (NOAEL) and the Lowest Observed Adverse Effect Level 
(LOAEL). The figure is adapted from EPA [2010].
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specifications

Figure 5-2. The Benchmark Dose (BMD) method, selecting a single parametric model. Adapted from Davis  
et al. [2011].
Abbreviations: AIC, Akaike information criterion; BMR, benchmark response; WoE, weight of evidence on toxicity.

response that is considered biologically significant; 
however, change points greater than this level may 
be necessary because of statistical limitations. Con-
versely, a statistically significant change may not in-
dicate an adverse effect when low variability in the 
data is observed [Haber et al. 2018]. 

Given a BMR value that is selected a priori, the risk 
assessor fits various dose-response models to the 
observed data. This approach is applicable to di-
chotomous, ordinal, or continuous response data 
and categorical or continuous exposure data [Chen 
and Chen 2014; Crump 1984; Crump 1995]. For 
continuous response data, the BMR is usually based 

on a central measure of the biological effect (e.g., 
mean organ weight), a measure of its variability (e.g., 
standard error), and the number of observations at 
each dose level [Davis et al. 2011]. Regression mod-
els are fit to data that should include at least two 
dose groups above the control and in the low-dose 
range of interest (e.g., in the range of the BMR). The 
resulting curve(s) are used to calculate the BMD and 
its one-sided lower 95% confidence limit (BMDL). 
The BMDL is typically used to define the PoD. This 
process accounts for the variability and uncertain-
ty in the experimental results, but not uncertainty 
in model selection [Davis et al. 2011]. The general 
BMD approach is illustrated in Figure 5-2. 
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This BMD approach is preferred by the EPA [2012b] 
and NIOSH, who have collaborated to develop 
BMDS Version 3.0, which is readily accessible to 
risk assessors worldwide [EPA 2018b]. Specifi-
cally, the EPA software allows for the examination 
of a suite of dose-response functions for selection 
of the best single dose-response model using both 
frequentist and Bayesian methods. Additionally, 
BMDS Version 3.0 included Bayesian model aver-
aging techniques to account for model uncertainty. 
Currently, model averaging is available only for di-
chotomous response models. The remainder of this 
section refers to single models. Model averaging 
was described previously in Section 5.2.2.

Model fitting is achieved by maximum likelihood 
(traditional frequentist modeling approach) or us-
ing a Bayesian approach. The adequacy of models is 
judged by goodness of fit (i.e., testing for lack of fit), 
typically using a critical value of 0.1 as a threshold 
for acceptance. Selecting the best-fit model from a 
set of adequately fitting nested models can be ac-
complished, in part, by likelihood ratio tests. Simi-
larly, selecting a model from a set of models that are 
not hierarchically nested can be achieved by com-
paring AIC or BIC values. NIOSH risk assessors ex-
amine the variability in BMD or BMDL estimates 
across adequately fitting models. Reasonable agree-
ment in estimates among a set of models suggests 
little model dependence; therefore, selection based 
on the lowest AIC value is well supported. Con-
versely, divergence in model estimates is indicative 
of model dependence. The EPA guidance does not 
explicitly define “divergence”; however, it has been 
suggested by others that BMDL values within a fac-
tor of 3 are sufficiently close [Haber et al. 2018]. 

It is important to note that model dependence re-
sults from extrapolation; therefore, it is more likely 
to occur when the BMR value is below the observ-
able range. It is prudent to examine adequately fit-
ted models closely to determine if the variability is 
attributable to anomalies in the data. Risk assessors 
may reject models that do not adequately describe 
the low-dose portion of the dose-response relation-
ship, as determined by examining residuals and 
model plots. When the group of adequately fitted 

models is divergent and in lieu of other evidence 
supporting model rejection, a health-protective 
approach is to select the model that provides the 
lowest BMDL estimate [EPA 2012b]. In practice, 
however, selecting the lowest BMDL can be subop-
timal in some cases, such as when the BMD con-
fidence intervals are inordinately wide, suggesting 
that the true BMD might be much greater than the 
BMDL. Ultimately, the decision on model selection 
lies solely with the risk assessor, who must consider 
all available information and document the deci-
sion. Options for single-model selection include 
summary estimates from multiple models, such as 
in model averaging analyses (Section 5.2.2) or the 
use of semiparametric or nonparametric models 
(Section 5.2.3). 

Ideally, risk assessors directly estimate the dose-
response and its associated uncertainty within the 
range of the observed data. Still, frequently the 
PoD is determined at a higher response rate than 
a response of interest; therefore, extrapolation to-
ward the origin of the dose-response curve may be 
required. For example, a PoD based on a BMR of 
10% excess risk of cancer is likely to require extrap-
olation to a much lower dose-risk region of inter-
est to support a suitable estimate of lifetime risk. 
In animal toxicology, the common practice of (1) 
setting the BMR at 10% extra risk, (2) using the 
BMDL as the PoD, and (3) linearly extrapolating to 
the risk level of interest is well supported by studies 
showing that the BMD is often in the range of the 
NOAEL [Sand et al. 2011; Wignall et al. 2014]. For 
example, NIOSH typically uses linear extrapola-
tion for cancer risk assessments unless mechanistic 
or mode of action (MoA) data support a different 
approach (Section 6.2.1). In cases in which data 
support a nonlinear dose-response, then low-dose 
extrapolation is accomplished via the selected para-
metric dose-response curve or by model averag-
ing, semiparametric, or nonparametric methods. 
When extrapolation below the range of the data is 
necessary, risk estimates are of unknown validity. 
Model goodness-of-fit does not address this prob-
lem. Mechanistic data or information from biologic 
models (e.g., PBPK models) with well-understood 
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low-dose behaviors may be necessary to support 
low-dose risk estimates.

NIOSH used the BMD approach in its risk assess-
ment of occupational exposures to carbon nano-
tubes and nanofibers [NIOSH 2013b]. The dataset 
was abstracted from short-term and subchronic 
studies of nonmalignant pulmonary responses in 
exposed rats and mice. Both quantal and continu-
ous response data were examined. The BMR was set 
at 10% added risk of early stage adverse lung effects. 
The one-sided 95% BMDL was selected as the PoD. 
Modeling was conducted with the EPA benchmark 
modeling software. Although several models were 
specified, only a multistage (polynomial degree 2) 
model adequately fit quantal response data used in 
this risk assessment. The continuous dose-response 
data were fit with a second order polynomial model 
for all data with three or more dose groups, and a 
linear model for data with two groups. As a depar-
ture from traditional methods, model goodness-of-
fit was considered adequate at P > 0.05. The authors 
explained the choice as “… a trade-off in the type 
I or type II error.” Nevertheless, all selected mod-
els (i.e., NIOSH 2013b, Tables A-3 to A-5) met P ≥ 
0.10. NIOSH also applied BMD concepts to epide-
miologic data in its assessment of the risk associ-
ated with occupational diacetyl exposure [NIOSH 
2016]. Multiple BMRs describing pulmonary im-
pairment were derived from continuous data on 
pulmonary function. 

5.3.2.1 Determining the PoD with Model 
Averaging and Semiparametric 
Methods

Linear extrapolation below the PoD is unnecessary 
when using model averaging, semiparametric, or 
nonparametric approaches [Wheeler and Bailer 
2012; Wheeler and Bailer 2007] because the esti-
mation of exposures corresponding to small excess 
risks is model-based. The model-based extrapo-
lation may result in a value similar to a linear ex-
trapolation from a PoD unless substantial evidence 
against the latter is present in the data. For exam-
ple, when applied to actual data and investigated 

in simulation studies, model-averaging and semi-
parametric approaches have adequately described 
both the model and statistical uncertainties at excess 
risk levels well below the 5% or 10% level. Wheeler 
and Bailer [2013] found that for dose-responses 
that were low-dose linear, these approaches yielded 
estimates that differed negligibly from a linear ex-
trapolation from the 10% level for target risks as 
low as 0.001%. For nonlinear dose-response rela-
tionships, these methodologies were observed to 
provide superior estimates (i.e., BMDLs that main-
tained nominal coverage but were closer to the 
point estimate) than the PoD linear extrapolation 
while still accurately describing the risk. These two 
methodologies were also observed to be internally 
consistent in producing similar estimates, usually 
within a factor of three, across all excess risk levels 
examined.

Given limited information on the validity of extrap-
olations below 1% risk using model averaging in 
BMDS Version 3.0 [EPA 2018b], NIOSH recom-
mends comparing the extrapolation to the semipa-
rametric and previous model average approaches. 
If the results are similar, then it is reasonable to 
use the extrapolation using BMDS Version 3.0. If 
they are different by a factor greater than 3, then 
NIOSH computes the BMD at a BMR of 1% or 
above and linearly extrapolates below-risk levels 
less than 1%. 

In addition to examining single parametric mod-
els, NIOSH used a model-averaging method to 
summarize risk estimates from linear-quadratic, 
Weibull, and log-probit models in its risk assess-
ment of lung cancer and titanium dioxide (TiO2) 
exposure [NIOSH 2011]. This approach was cho-
sen because the dose-response relationship ap-
peared nonlinear, and the specific models used in 
the three-model-average procedure did not im-
pose low-dose linearity for risk extrapolation. In 
this model, Weibull and log-probit models were 
weighted more heavily than the linear-quadratic, 
which supported a dose-response that was sublin-
ear at low doses (Figure 5-3).
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5.4  Selecting a Dose-Response 
Modeling Method

The estimated dose-response curves from mul-
tiple biologically plausible models can differ sub-
stantially over a range of doses that can include 
the low dose region. Thus, in addition to biologic 
plausibility, the strength of the data and the sta-
tistical methodologies must be assessed to inform 
the choice on approaches to estimating risks and 
quantify relevant uncertainties. Misspecification of 
the model-form can lead to spurious dose-response 
estimates (see Appendix B). Moreover, although 
widely recognized as a fundamental component of 
statistical inference, the model selection process 

itself is seldom integrated into inference [Buck-
land et al. 1997]. Therefore, even if estimates are 
unbiased, precision (e.g., as indicated by the width 
of confidence intervals) is likely overestimated (e.g., 
confidence intervals are too narrow). In response, 
there are several statistical procedures available 
to assist in model specification and to account for 
model uncertainty (Appendix B). 

One strategy for accounting for model uncertainty 
is to use model averaging methods. These methods 
have been shown to be both robust and flexible. As 
stated previously, NIOSH generally prefers to use 
a Bayesian model averaging approach to address 
model-form misspecification and to account for 
model uncertainty in assessing dose-response (see 

Figure 5-3. BMD models and three-model-average fit to the lung tumor data (without squamous cell keratinizing 
cysts) in male and female rats chronically exposed to fine or ultrafine TiO2 [NIOSH 2011].
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Section 5.2.2). Still, every dose-response analysis 
is unique and requires careful consideration of 
the approach used. For example, possible excep-
tions to using nonparametric, semiparametric, and 
model averaging techniques are when (1) compel-
ling mechanistic or statistical evidence supports a 
specific dose-response function and (2) data limi-
tations require a simpler approach or a more parsi-
monious model. 

5.5  Laboratory Animal Data
The adequacy of the database to support dose-re-
sponse analysis based on animal studies is an impor-
tant consideration in occupational risk assessment. 
Risk assessors evaluate animal studies in the context 
of the risk assessment questions under investigation. 
Studies are identified that may shed light on the re-
search question. For example, a single-dose acute 
toxicity study may not have much relevance for as-
sessing chronic exposures to a chemical, but it may 
be useful for setting an immediately dangerous to 
life and health (IDLH) value or a short-term expo-
sure limit (STEL), depending on the specifics of the 
study. Ideally, risk assessors evaluate all studies that 
may contain relevant information on the dose-re-
sponse relationship. Each study is evaluated for ad-
equacy of study design and conduct (duration of ex-
posure, dosing regimen, species, numbers and sexes 
of animals, description of experimental conditions), 
health endpoints observed, statistical analyses con-
ducted, and how the data support the conclusions 
of the study. Risk assessors give greater weight to 
studies reporting statistically and/or biologically sig-
nificant dose-response associations. Alternatively, 
risk assessors may apply statistical methods to make 
joint inferences from multiple heterogeneous data-
sets [Triantafillou and Tsamardinos 2015; Vester-
inen et al. 2014]. Relevance of the endpoint to hu-
man health, severity of the health endpoint, and the 
sensitivity of the health endpoint should be consid-
ered. Preferably, risk assessors clearly document the 
rationale for including/excluding or grouping stud-
ies, dose groups, or health endpoints from analysis 
in the risk assessment. 

For dose-response modeling of dichotomous re-
sponse data, both the number of animals showing 
the effect in the group and the total number of sub-
jects in the group are necessary, at a minimum. For 
modeling of continuous response data, individual 
animal data are strongly recommended, although 
information on central tendency and variability 
may be sufficient; typically, data on the number 
of subjects, mean of the response, and variability 
measure (e.g., standard deviation, standard error, 
or variance) for each group are adequate to per-
form the analysis. For dose-response modeling of 
categorical responses, the number of animals ex-
amined and the counts for each response category 
of each dose group are generally sufficient [EPA 
2012b; Hertzberg 1989].

When the dose-response analysis is conducted with 
benchmark dose analysis and/or model averaging, 
there are specific requirements for the datasets. In 
general, toxicologic animal studies with more than 
one dose group are required for dose-response 
analysis. Ideally, there are responses in more than 
one dose group that are different from background 
and different from the maximal response. Multiple 
intermediate responses of this type increase confi-
dence that the study contains adequate information 
on the dose-response curve and does not represent 
only background or only maximal responses. It 
may be possible to calculate a BMD and BMDL 
with only a single dose showing a response near the 
BMR [Kavlock et al. 1996]. However, if the stud-
ies show responses in more than one dose group 
but all the responses are at the background level, 
are near the maximal response level, or appear as 
a very steep rise of the dose-response curve over 
a small range of doses, then the data may not be 
adequate for regression modeling. Thus, it is pref-
erable to have studies with observed responses suf-
ficient to provide a unique solution to the optimiz-
ing procedure. For the dichotomous data models, 
this usually requires at least two dose groups with 
responses intermediate between background and 
maximal. An additional advantage accrues from 
having at least one dose group near the BMR, to 
yield a better estimate of the BMD [EPA 2012b].
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Overall, the specific type of toxicity information 
required is dependent upon the question to be 
addressed and the interplay with human data. For 
occupational risk assessment, data from well-con-
ducted chronic bioassays, preferably in more than 
one species (typically one in rats and one in mice), 
a two-generation reproductive study, and a devel-
opmental study in mammalian species would pro-
vide a reasonable database to reduce the uncertain-
ty and increase the confidence in the risk estimates. 
A well-conducted subchronic study that evaluated 
a comprehensive array of endpoints could also be 
useful, especially in the absence of chronic bioas-
says, if significant differences in adverse effects are 
not expected from longer exposures. In most cases, 
NIOSH is concerned about chronic exposures to 
hazards, but in some cases, acute or intermediate-
duration hazards may be of concern. In other cases, 
data needs are endpoint-specific. For example, if 
acute or subchronic data demonstrate neurotoxic, 
immunotoxic, or cardiotoxic effects, then a neuro-
toxicity, immunotoxicity, or cardiotoxicity battery 
of tests could satisfy the data requirements [EPA 
1994; EPA 2002]. When the typical animal bioas-
says are not available, data from alternative test-
ing systems such as high-throughput molecular 
toxicity assays and quantitative structure-activity 
relationship (QSAR) models could be used to in-
form the risk assessment and to fill the data gaps. 
NIOSH has not had extensive experience in using 
these types of data, so each use would be on a case-
by-case basis. 

5.5.1 Parallelogram Approach
First introduced by Sobels [1977], the “parallelo-
gram approach” (Figure 5-4) is an argument by 
analogy for inferring missing data when you have 
closely related data that is especially useful for 
cross-species extrapolation. It has been used in 
genotoxicity studies to predict human germ cell 
mutations from measured mouse germ cell muta-
tions, mouse somatic cell mutations, and human 
somatic cell mutations [Anderson et al. 1994]. It 
has been used in PBPK studies to predict human in 
vivo metabolic parameters from measured mouse 

in vitro parameters, mouse in vivo parameters, and 
human in vitro parameters [Kienhuis et al. 2009]. 
NIOSH, in part, used this technique to assess com-
parative potency of the closely related chemicals 
diacetyl and 2,3-pentanedione, when both human 
toxicity and animal toxicity data were available for 
diacetyl but only animal toxicity data were avail-
able for 2,3-pentanedione [NIOSH 2016].

Figure 5-4. An example of the parallelogram approach.

The parallelogram approach is conceptually very 
simple but requires explicit assumptions. For ex-
ample, to estimate the metabolic constants for a 
substance to use in a PBPK model, one must as-
sume the following:

 ■ There is a constant and knowable relationship 
between metabolic constants measured in vi-
tro and metabolic constants measured in vivo 
within a species.

 ■ The relationship between in vivo and in vitro 
metabolic constants is the same, regardless of 
species.

Therefore, once the ratio between mouse in vitro and 
in vivo metabolic constants has been measured and 
the human in vitro metabolic constant is known, 
the mouse ratio can be applied to the human in vi-
tro constant to estimate the human in vivo metabolic 
constant.

Similarly, for genotoxicity studies, one must as-
sume the following: 

 ■ There is a constant and knowable ratio between 
somatic mutations and germ cell mutations 
within a species.
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 ■ The relationship between somatic mutations 
and germ cell mutations is the same, regardless 
of species.

Therefore, once the ratio between mouse somatic 
mutations and mouse germ cell mutations has been 
measured and the human somatic mutations have 
been measured, the mouse ratio can be applied to 
the human somatic mutations to estimate the hu-
man germ cell mutations.

For the comparative potency example, NIOSH had 
mouse toxicity data and human epidemiology data 
on diacetyl. NIOSH was also interested in a closely 
related (1-carbon different) flavoring chemical, 
2,3-pentanedione. However, there were no human 
data on 2,3-pentanedione toxicity. In this case, 
NIOSH assumed the following:

 ■ There is a constant and knowable relationship 
between the lung toxicity in mice and the lung 
toxicity in humans for a chemical.

 ■ Di-alpha-ketones such as diacetyl and 2,3- 
pentanedione are related closely enough that 
they share toxic modes of action.

 ■ The relationship between lung toxicity and 
hazardous exposure in mice and humans is 
constant for these closely related chemicals.

Although NIOSH did not follow this logic through to 
predict human risk estimates for 2,3-pentanedione, 
the same logical structure applies. NIOSH stopped 
with an assessment that 2,3-pentanedione was in 
a similar range of toxicity as diacetyl and used the 
diacetyl risk assessment to set a recommended 
exposure limit for 2,3-pentanedione. In this case, 
the uncertainties in the method and the sparse-
ness of the data argued for cautious application 
[NIOSH 2016]. 

Applying a parallelogram approach requires that 
the measured values used to construct the ratios 
reflect the same or very closely allied methods and 
data sources. This will not work if the technique 
or type of tissue used for mouse in vitro assays 
is substantially different from the human assays. 
The assumptions regarding which values in the 

parallelogram are similar should be carefully ex-
amined. The uncertainty in the parallelogram ap-
proach is lessened with cross-species validation. 
For example, similar measured ratios of in vitro 
to in vivo metabolic parameters in mice, rats, and 
hamsters strengthens the argument that it is rea-
sonable to extrapolate to humans. Depending on 
the data available, this step is not always possible. 
Finally, the parallelogram approach is a useful tool 
to consider when key data are unavailable, but it 
requires strong assumptions that must be closely 
examined and carefully justified.

5.6 Dosimetry Adjustments 
for Human Equivalent 
Concentrations

Ideally, occupational risk assessment is based on 
the biologically effective dose (e.g., tissue dose) that 
mediates the adverse response observed in workers. 
In practice, enough information to directly estimate 
the dose from exposures in humans is seldom avail-
able. Instead, dosimetry methods are commonly 
employed to estimate the dose delivered to target 
sites in laboratory animals, which are then adjusted 
for relevance in humans by accounting for the phys-
iological differences between species [EPA 1994]. 
Herein, dosimetry refers broadly to methods relat-
ing exposure metrics to a biologically effective dose 
from the agent(s) of interest. Dosimetry models are 
the foundation of animal-to-human extrapolation.

In general, a critical dose observed in an animal 
study (i.e., an estimate of the biologically effective 
dose in the animal) is extrapolated to humans by 
using dosimetry modeling. This extrapolation is 
referred to as the human-equivalent concentration 
(HEC) for inhalation exposure or dose (HED) for 
other routes of exposure [EPA 1994; FDA 2005]. 
The HEC is an amount of the agent in humans 
that is believed to induce the same magnitude of 
toxic effect as the experimental animal species’ 
concentration or dose. Describing all aspects of 
dosimetry methods that may be used in NIOSH 
risk assessment is beyond the scope of this report. 
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However, basic dosimetry modeling for estimating 
human risks from exposures to particulates, gases, 
and vapors is described in the following sections. 
The regions of the respiratory tract are also briefly 
described. 

5.6.1 Respiratory Tract Regions
The respiratory tract in both humans and labora-
tory experimental animals is divided into three 
regions based on structure, size, and function: the 
extrathoracic (ET) region extends from nose to 
larynx, the tracheobronchial (TB) region extends 
from trachea to the terminal bronchioles, and the 
pulmonary (PU) region includes the respiratory 
bronchioles, alveolar sacs, alveolar ducts, and al-
veoli (Figure 5-5). The pulmonary region is where 
gas exchange occurs (i.e., uptake of oxygen and re-
lease of carbon dioxide). Diseases of the respirato-
ry tract have been associated with exposure to sub-
stances that deposit in each of these regions. These 

regions also correspond to the inhalable, thoracic, 
and respirable particle size fractions for airborne 
sampling [ACGIH 2015].

5.6.2 Particle Exposure
5.6.2.1 Overview
In quantitative risk assessment of inhaled particles, 
the dose from particles deposited or retained in the 
respiratory tract region is estimated by dosimetry 
modeling methods. Models for particulate expo-
sures must account for interspecies differences in 
the factors that determine the deposition, clear-
ance, and retention of particles (spherical or non-
spherical) from the respiratory tract [EPA 1994; 
Kuempel et al. 2015]. Dose estimation is one of the 
major sources of uncertainty in a risk assessment 
(e.g., as discussed for carbon nanotubes in NIOSH 
[2013b], Section A.6.3). Use of validated dosimetry 
models reduces the uncertainty in extrapolating 
animal data to humans. 

Extrathoracic
Region Inspirable Mass Fraction

(Enter via nose or mouth)

Thoracic Mass Fraction
(Penetration past 
terminal larynx) 

Respirable Mass Fraction
(Penetration past 

terminal bronchioles)

Tracheobronchial
Region 

Pulmonary
Region

Figure 5-5. Human respiratory tract regions [EPA 1994].
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To estimate a human-equivalent internal dose or 
exposure concentration of particles by using ani-
mal data, the main dosimetry method options are 
(1) application of uncertainty factors (see Section 
6.3.4), (2) general/categorical adjustments (e.g., 
EPA “Regional Deposited Dose Ratio” in respirato-
ry tract), and (3) substance-specific PBPK models 
(e.g., to account for particle dissolution and trans-
location beyond the respiratory tract). Application 
of uncertainty factors (UFs) is simpler and requires 
less information but is also associated with greater 
uncertainty. Other methods generally require ad-
ditional information and involve complex analysis 
but may provide more accurate dose estimates for 
the risk assessment. 

5.6.2.2 Deposition Mechanisms
Particle size is a key factor in estimating the depos-
ited doses in the respiratory tract region. Standard 
definitions of airborne particle size fractions in-
clude inhalable, thoracic, and respirable [ACGIH 
2015]. Inhalable particles are those capable of en-
tering the nose or mouth and depositing anywhere 
in the respiratory tract. For example, particles with 
an aerodynamic diameter of 100 µm have an ap-
proximately 50% probability of being inhaled and 
deposited in the respiratory tract. The extrathorac-
ic fraction is the mass fraction of inhaled particles 
with low probability of penetrating beyond the lar-
ynx. The thoracic fraction refers to the mass frac-
tion of inhaled particles capable of reaching beyond 
the larynx into the thoracic region and depositing 
in the conducting airways. The respirable fraction 
is the mass fraction of inhaled particles that is capa-
ble of reaching and depositing in the gas-exchange 
region of the lungs [Brown et al. 2013]. 

Aerodynamic equivalent diameter is defined as 
the diameter of a sphere of standard density of 
one gram per cubic centimeter (1.0 g/cm3), hav-
ing the same terminal velocity when settling under 
gravity as the particle under consideration [Hinds 
1999]. Diffusion equivalent diameter is defined as 
the diameter of a sphere with the same thermal or 
Brownian diffusivity as the particle under consid-
eration [Hinds 1999]. For nonspherical particles 

such as fibers, shape and orientation are additional 
factors that can influence deposition [Sturm and 
Hofmann 2009]. Dosimetry models can provide 
dose estimates based on different metrics (e.g., the 
total particle mass, volume, or surface area in spe-
cific respiratory tract regions), which can be used 
in extrapolating dose-response relationships across 
species [Asgharian et al. 2018].

Respiratory tract deposition models can take into 
account these particle properties to predict the 
deposited dose in each region. In addition to the 
particle properties, lung morphology can influence 
particle deposition. Differences in airway structure, 
lung volume, and breathing patterns (e.g., nasal only 
or oronasal) have been observed among individuals 
and are also related to age, gender, and race [Schulz 
et al. 2000]. Some deposition models account for in-
terindividual variability in lung morphology [ARA 
2009; ICRP 1994]. Activity level (e.g., resting or ex-
ercising) influences the ventilation rate and breath-
ing pattern, thereby affecting particle deposition in 
the respiratory tract. 

At a minimum, data are generally available to esti-
mate the deposited dose of particles in a respiratory 
tract region of humans or animals, given the expo-
sure concentration, duration, and airborne particle 
size estimates. Examples of these basic methods 
and information sources are discussed next. 

5.6.2.3 Ventilation Rates and Activity Levels 
5.6.2.3.1 Humans

NIOSH generally uses the International Com-
mission of Radiological Protection (ICRP) stan-
dard reference value for workers for the total air 
intake (volume inhaled), which is 9.6 m3 in an 
8-hour workday [ICRP 1994]. This total air in-
take is equivalent to an average minute ventila-
tion rate of 20 liters of air per minute (L/min) 
(i.e., 9.6 m3 = 20 L/min × 480 min × 0.001 m3/L). 
These reference values are based on adult males, 
assuming 5.5 hours of light exercise and 2.5 hours 
of rest/sitting. The adult male minute ventilation 
rates are 25 L/min for light exercise and 9 L/min 
for resting (sitting). 
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Thus, the total air intake in an 8-hour workday in 
men is calculated as follows:

Equation 5-16.

9.6 m3= [(5.5 hours × 60 minutes per hour) 
 × 25 L⁄min]+[(2.5 hours × 60 minutes 
per hour) × 9 L⁄min] ÷ [1,000 L⁄m3 ]

Minute ventilation (VE , in L/min) is calculated as 
the product of the tidal volume (VT , in L) and the 
breathing (respiratory) frequency (ƒ, in min-1): 

Equation 5-17.

VE = VT × ƒ  

Tidal volume is the volume of air inspired or ex-
pired in each respiratory cycle, and the respiratory 
frequency is usually described in breaths per min-
ute [EPA 1994]. These respiratory values (tidal vol-
ume and breathing frequency) vary by age, gender, 
and activity level [ICRP 1994]. For example, VE of 
25 L/min (as used in Equation 5-16) is calculated 
from VT of 1.25 L and f of 20 min-1 (as shown in Table 
8 of ICRP [1994]). For adult female workers, the 
average air intake is 8.2 m3 in an 8-hour workday, 
assuming the same activity levels and using the 
gender-specific values for VT and ƒ in ICRP [1994]. 

For dosimetry modeling, these respiratory values 
are used to estimate deposited dose, given the 
exposure scenario. In the Multiple-Path Particle 
Dosimetry (MPPD) model, v.3.04 [ARA 2015], the 
breathing frequency and tidal volume are required 
input values. For example, for a resting adult male 
human, values of VT and f have been reported as 
625 milliliters (ml) and 12 min-1 ICRP [ICRP 1994]. 
For workers, NIOSH [2011] used the values of 1,143 
ml for VT and 17.5 min-1 for f, which are weighted 
averages of the respiratory values that correspond 
to the average male worker reference values of 20 
L/min (VE) and 9.6 m3 (total volume inhaled) in an 
8-hour workday, as described above.

5.6.2.3.2 Animals

Species-specific ventilation rates are required for 
estimating the deposited dose of airborne particles 

in the respiratory tract of animals. When experi-
mental ventilation rates are not available, species-
specific average ventilation rates can be calculated 
with the following allometric scaling equation:
Equation 5-18. 

ln(VE) = b0 + b1 × ln (BW)
where VE is the minute ventilation (L/min) as 
described previously; BW is body weight in kilo-
grams (kg), and b0 and b1 are the species-specific 
parameters (e.g., as reported in EPA [1994]). For 
example, estimates of b0 + b1 are -0.578 and 0.821, 
respectively, in rats (in Table 4-6 of EPA [1994]). 

For a 300-g rat, VE is calculated from equation 5-19 
as follows:
Equation 5-19.

0.21 L  ⁄ min = exp[–0.578 + 0.821 × ln (0.3)] 

This VE corresponds to the value estimated from 
the breathing parameters for tidal volume of 0.21 
ml and breathing frequency of 102 breaths/min, 
which have been used in estimating lung dose in 
rats with body weight of 300 g [NIOSH 2013b] as 
shown in equation 5-20: 
Equation 5-20.

0.21(L   ⁄ (min) = 2.1(ml) × 102 (min-1 ) × 
0.001 (L ⁄ ml) 

5.6.2.4 Deposited Dose Calculation
The deposited dose of inhaled particles in the re-
spiratory tract region is a biologically relevant es-
timate of equivalent dose in humans or animals. 
Equivalent dose metrics are needed to extrapolate 
dose-response relationships and risk estimates 
from animals to assess human risk. 

The deposited lung dose can be estimated as follows:
Equation 5-21.

Deposited lung dose (mg) 
= exposure concentration (mg⁄m3)  × duration in 

hours (hours per day × days per week × weeks 
exposed) × ventilation (L⁄min) × 0.001 m3 
⁄ L × 60 minutes per hour × regional deposi-
tion fraction
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Exposure concentration and duration would be as 
reported in the animal or human study, or for the 
exposure scenario of interest. Minute ventilation is 
calculated as shown in Section 5.6.2.3. The regional 
deposition fraction of interest is estimated for the 
respiratory tract region associated with the adverse 
effect in the risk assessment. The regional deposi-
tion fraction is estimated from the airborne parti-
cle diameter, and these values have been measured 
in various particle sizes, including in a study of sev-
eral small laboratory animals [Raabe et al. 1988]. 
The deposition fraction can also be estimated in 
MPPD [ARA 2015] for several species and strains 
(human, rat [Sprague-Dawley and Long-Evans], 
mouse [BALB/c and B6C3F1], rhesus monkey, pig, 
or rabbit). Airborne particle size (mean ± SD) and 
density are required input values in MPPD. 

For example, to estimate the deposited lung dose 
in a rat subchronic (13-week) inhalation study at 
a pulmonary effect level of 5 mg/m3, the exposure 
concentration and duration (in Equation 5-21) 
are as reported. The minute ventilation is calcu-
lated as shown in equation 5-19, and the pulmo-
nary deposition fraction is estimated in MPPD. 
Typically, the particle size data are also reported. 
For simplicity, assuming particle mass median 
aerodynamic diameter (MMAD) of 1 µm, mono-
disperse (geometric standard deviation of 1), and 
unit density (1g/cm3), a rat pulmonary deposi-
tion fraction of approximately 0.06 is estimated 
in MPPD [ARA 2015]. The deposited lung dose 
(Equation 5-21) in this example in rats is calculated 
as follows:

Equation 5-22.

1.5 mg = 5 mg⁄m3 × (6 hours per day × 5 days per 
week × 13 weeks) × (0.21  L⁄min ×   
 0.001 m3 ⁄ L × 60 minutes per hour) × 0.06

If lung doses are not reported in a rodent study, then 
the deposited dose can be estimated by this method. 
The worker-equivalent airborne concentration can 
then be estimated by back-calculating to determine 
the airborne concentration that would result in the 
equivalent pulmonary-deposited dose in humans 

(Figure 5-6). More biologically relevant dose esti-
mates may also take into account the clearance of 
particles by respiratory tract region to estimate the 
retained dose over time, as discussed below.

5.6.2.5 Biokinetic Mechanisms and Models 
of Inhaled Particles

5.6.2.5.1 Clearance, Retention, and Translocation

The biological mechanisms of particle clearance 
depend on the respiratory tract region in which 
the particles deposit and on the physicochemical 
properties of the particles. Particles that deposit in 
the TB region are cleared mainly by mucociliary 
transport, in which particles or other exogenous 
materials are transported toward the mouth, where 
they are swallowed or expectorated. Mucociliary 
transport occurs from the terminal bronchioles to 
the larynx. Insoluble particles that deposit in the 
TB region are generally cleared relatively rapidly, 
with biological half-times on the order of hours. 
Soluble particles may dissolve in the mucus [EPA 
1994]. Particles that deposit in the pulmonary re-
gion are cleared primarily by alveolar macrophages 
that phagocytose (engulf) particles, where they are 
dissolved or transported to the TB region for mu-
cociliary clearance [Schlesinger 1985]. Clearance of 
poorly soluble particles can differ across species be-
cause of differences in the rates of mucociliary trans-
port in the conducting airways and macrophage-
mediated clearance from the alveolar region [Miller 
2000; Snipes 1989]. Pulmonary clearance is approxi-
mately 10 times slower in humans than in rats, based 
on first-order clearance assumptions [Snipes 1989]. 

Retention is described as the temporal distribu-
tion of uncleared particles in the respiratory tract 
[Lioy et al. 1984]. In humans, two distinct phases of 
particle retention occur. The first phase is thought 
to represent mucociliary clearance of particles de-
positing in the TB region and is complete within 
approximately 24 hours, although a particle size–
dependent slow clearance fraction has also been 
demonstrated [ICRP 1994; Stahlhofen et al. 1989]. 
The second phase, which involves retention half-
times from approximately 30 to several hundred 
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Figure 5-6. Dosimetry and risk assessment steps used by NIOSH to develop occupational exposure limits for 
airborne particles extrapolated from animal data (adapted from Kuempel [2011] and Oberdörster [1989]).

days or longer, may represent particle clearance 
within the alveoli (air sacs) and interstitium (con-
nective tissue separating the alveoli) of the pulmo-
nary region.

Particles or fibers retained in the lungs can move 
into the lung interstitial tissue (either alone or in-
side macrophages). Particle retention in the inter-
stitium increases the risk of fibrosis for poorly sol-
uble particles. Translocation of particles from the 
lungs to the lung-associated tissues and systemic 
organs has also been reported, for particles from 
coal dust to carbon nanotubes [LeFevre et al. 1982; 
Mercer et al. 2013]. The physicochemical proper-
ties that influence the clearance or retention of par-
ticles from the respiratory tract include the chemi-
cal composition, size, surface properties, solubility, 
and shape [Kreyling et al. 2013]. 

5.6.2.5.2 Models of Long-term Particle Retention in Humans

Studies in workers have shown that the long-term 
retention of respirable particles involves the seques-
tration of some portion of the dust in the lungs, even 
at low exposures that would be below overloading 

in rats [Gregoratto et al. 2010; Kuempel et al. 2001]. 
These independent studies include workers exposed 
to particles from relatively low (radioactive cobalt) 
to high (coal dust) mass concentrations. The hu-
man pulmonary clearance and retention models 
that include an interstitial sequestration compart-
ment have been shown to provide better prediction 
of long-term retained lung burdens in humans with 
either low or high dust exposures compared to mod-
els with either simple first-order clearance or dose-
dependent overloading (first-order clearance until 
reaching a critical dose associated with decreasing 
clearance rate) [Gregoratto et al. 2010; Kuempel and 
Tran 2002; Kuempel 2000; Kuempel et al. 2001; Tran 
and Buchanan 2000]. Consistent with these findings, 
a study comparing rat and human particle retention 
patterns in the lungs showed that coal miners re-
tained a greater proportion of particles in the alveo-
lar interstitial tissue, whereas rats retained a greater 
proportion of particles in the alveolar spaces [Ni-
kula et al. 2001]. 

In a dosimetry model of the respiratory tract, the 
ICRP [1994] included three first-order pulmonary 
(alveolar-interstitial, or AI) clearance compartments. 
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A fixed proportion of respirable particle deposition 
in the alveolar region is assigned to each compart-
ment (i.e., 30%, 60%, and 10% for AI1 , AI2 , and 
AI3 , respectively). The first-order clearance rate 
coefficients are 0.02, 0.001, and 0.0001 day-1, cor-
responding to retention half-times of 34, 693, and 
6,930 days, respectively. More recently, the ICRP 
published an updated model [Paquet et al. 2015]. 
Regarding long-term particle clearance, the main 
difference between models is a much higher par-
ticle retention fraction in the pulmonary region in 
the updated model.

In the studies reported in ICRP [1994], the particle 
lung clearance in humans was quantified for up to 
approximately one year after inhalation. Based on 
those studies, ICRP [1994] estimated that 50% of 
the alveolar deposited particle dose remains at 300 
days following inhalation. Studies published since 
that report show much higher long-term particle 
retention in the lungs of humans. For example, in 
workers accidentally exposed to radioactive par-
ticles, “a significant fraction (>10%)” of particles 
was retained in the thorax at 10 years after the acute 
exposure (Paquet et al. [2015], Section A.2.3). An 
interstitial sequestration compartment was found 
to be necessary to adequately fit the particle reten-
tion data in coal miners [Kuempel et al. 2001]. This 
model structure is more biologically reasonable, 
including an alveolar compartment with clearance 
to the bronchial region, and an interstitial com-
partment that clears slowly to the lymph nodes. 
The kinetics of particle clearance in human lungs 
differs from that in rodents. In rodents, first-order 
clearance is faster and the translocation of particles 
to the interstitium occurs primarily after overload-
ing of alveolar clearance. In humans, a fraction of 
the respirable particles that deposit in the alveolar 
region may not be cleared but may enter the inter-
stitium and be retained for a longer duration. These 
findings were confirmed in additional studies in 
humans, including at much lower particle expo-
sures [Gregoratto et al. 2010; Paquet et al. 2015]. 
Gregoratto et al. [2010] applied the Kuempel et al. 
[2001] model to the more recent data in humans, 
as well as to the original data that had been used 

in ICRP [1994]. The parameter values fitted to 
the pooled data resulted in an alveolar clearance 
half-time estimate of approximately 250 days, with 
approximately 33% of the initial alveolar deposited 
mass dose of insoluble particles being sequestered 
in the interstitium [Paquet et al. 2015].

The MPPD human clearance and retention model 
(including v. 1.0 to current v. 3.04) [ARA 2015; 
Price et al. 2002] uses the ICRP [1994] model to 
predict clearance and retention in humans. Consis-
tent with the updated ICRP model, higher worker 
lung burdens were estimated in the interstitial se-
questration model [Kuempel et al. 2001] than in 
the MPPD, v. 1.0 [Price et al. 2002], as reported in 
Dankovic et al. [2007]. Thus, the earlier ICRP mod-
el (or models using it as their basis) may under-
predict the average long-term particle retention in 
humans and therefore may underestimate the risk 
of adverse effects associated with retained particle 
dose in the lungs. 

5.6.2.6 PBPK Models to Estimate Dose
Physiologically-based pharmacokinetic (PBPK) 
models provide mathematical estimates used to 
simulate the distribution of chemicals and metabo-
lites in the body after exposure to a substance over 
time. These models incorporate the use of a series 
of differential equations to account for physiologi-
cal parameters such as blood flow and volume, and 
metabolic capacity of discrete tissue types (e.g., lung, 
richly perfused tissues, poorly perfused tissues, and 
liver). Many of these parameters were compiled for 
several animal species by Brown et al. [1997]. Other 
factors such as dosing route are also considered for 
the physiological differences in uptake rate, metabo-
lism, and distribution of chemicals that occur when 
exposures are by differing routes. 

Some examples of PBPK models that have been 
used in NIOSH risk assessments include respira-
tory tract models to estimate the particle deposition 
and clearance kinetics for inhaled particles, such as 
titanium dioxide and carbon nanotubes [NIOSH 
2011; NIOSH 2013b]. PBPK or dosimetry models 
are used to estimate more biologically relevant doses 
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for use in dose-response modeling in quantitative 
risk assessment. These models can be useful for 
temporal extrapolation of dose when the relation-
ship between the external exposure and internal 
dose is nonlinear. This is because PBPK models 
can account for capacity-limited processes in the 
absorption/uptake, distribution, metabolism, and/
or excretion of a toxicant. Capacity limitation may 
be due to saturation of a key process, e.g., involv-
ing a receptor or enzyme. An example of an im-
portant capacity-limited process that influences 
the clearance kinetics and dose of inhaled particles 
in rodents is the overloading of pulmonary (alveo-
lar macrophage-mediated) clearance of particles, 
which results in a dose-dependent increase in the 
retained particle dose [Bellmann et al. 1991; Bolton 
et al. 1983; Morrow 1988; Stöber et al. 1990]. As 
a result, the biological mechanisms and pathways 
operating at lower, non-overloading doses can dif-
fer from those operating at higher doses, when 
defenses of cells or organisms are overwhelmed 
[McClellan 1997; Oberdörster et al. 2005b]. In this 
case, a dosimetry model that does not account for 
changes in clearance kinetics may provide a poor 
estimate of dose and underestimate the retained 
lung dose at higher airborne exposures [Kuempel 
et al. 2015]. 

Additionally, PBPK models provide mathematical 
modeling estimates of aggregate exposure dosing 
(oral, inhalation, dermal) and target tissue dose es-
timates of both parent chemical exposure and me-
tabolites. This information may reduce uncertainty 
in risk assessment calculations compared to those 
using dose estimates based on absorption only. 

In addition to the use of PBPK models for particle 
dose estimation, these models are also applicable 
to dose estimation for other chemical forms, in-
cluding gases and vapors (see Section 5.6.3.6). In 
an example involving a liquid, a PBPK model for 
dichloromethane was used to illustrate the steps 
to estimate tissue dose in chemical risk assess-
ments [Andersen et al. 2005]: 1) identify toxic 
and critical effects in animals and humans; 2) 
catalogue MoAs, metabolism, parent compound/
metabolite data; 3) identify potential MoA for the 

critical effect; 4) develop potential relationship 
between tissue dose (associated with toxicity) and 
the response; 5) develop the PBPK model based 
on relevant routes of exposures, exposure concen-
trations, and species; 6) provide estimates of dose 
metrics during exposures that produce toxicity; 
and 7) use outputs to estimate risk for human ex-
posures of interest with the assumption of a similar 
dose-response relationship between PBPK test spe-
cies and humans. 

Although risk assessment methods may be ad-
vanced using PBPK models, there are important 
limitations to consider. PBPK models often re-
quire data intensive inputs on physiological and 
biochemical/metabolic processes that often come 
from separate sources or may be missing or poorly 
characterized [Khalil and Laer 2011]. In addition, 
validation of PBPK model outputs using empiri-
cal data can be difficult or impractical given data 
limitations. Lastly, PBPK modeling efforts typically 
require specialized software and expertise that may 
have limited availability in some situations.

Detailed guidance on developing PBPK and/or 
computational fluid-dynamics models is beyond 
the scope of this report. Additional information on 
these topics is available in Andersen et al. [2005] 
and in guidance provided by the U.S. EPA: “Ap-
proaches for the Application of Physiologically 
Based Pharmacokinetic (PBPK) Models and Sup-
porting Data in Risk Assessment” [EPA 2006a].

5.6.2.7 Overloading Considerations in 
Rodent Model and Dose Estimation

The effects of particle overloading of lung clear-
ance in rats and mice involve a sequence of events 
including persistent pulmonary inflammation in 
both species, fibrosis primarily in rats, and cancer 
in rats [Baan 2007; Elder et al. 2005; Oberdörster 
1995]. Rats have been shown to be better predictors 
of lung cancer from inhaled particles that are carci-
nogenic to humans (i.e., classified by IARC as hav-
ing limited or sufficient evidence), in comparison 
with mice or hamsters, which yield false-negative 
results more often [Mauderly 1997]. 
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This well-studied rodent phenomenon of particle 
overloading of pulmonary clearance is the basis for 
the risk assessment approach of identifying the 
non-overloading dose in rats as the NOAEL to 
extrapolate to humans [Morrow et al. 1991; Pau-
luhn 2010]. Although this concept seems reason-
able on the basis of the rat data, it may not be ad-
equate to estimate chronic responses in humans 
because of differences in the clearance and reten-
tion kinetics (as discussed in Section 5.6.2.8). 

The dose metrics associated with overloading of 
lung clearance include particle mass (unit density 
particles), particle volume (particles with den-
sity other than 1.0 g/cm3), and particle surface area 
(nanoparticles) [Bellmann et al. 1991; Morrow 
1988; Tran et al. 2000]. In contrast to microscale 
particles, nanoscale particles or highly toxic par-
ticles have been shown to cause impaired pulmo-
nary clearance at a lower mass or volumetric par-
ticle dose than for microscale poorly soluble low 
toxicity (PSLT) particles [Bellmann et al. 1991; 
Oberdörster et al. 1994]. Particle surface area has 
been shown to better describe the decreased clear-
ance and pulmonary responses to nanoscale com-
pared to microscale particles [Tran et al. 2000]. 
Since particle dosimetry models are generally 
based on the particle mass, dose conversion may 
be necessary between the estimation of effect level 
in the rodent study (e.g., surface area dose associ-
ated with adverse effect) and the estimation of the 
equivalent dose in humans. 

5.6.2.8 Interspecies Dose Estimation in  
Risk Assessment

Scientific models are generally available to esti-
mate the human-equivalent lung doses of inhaled 
particles from those in rodents [ARA 2015; Paquet 
et al. 2015]. Less well understood are the human 
and rat biological responses to equivalent mass, 
surface area, or volumetric particle lung doses. For 
example, the biological MoA for the development 
of lung tumors in rats exposed to PSLTs by chronic 
inhalation appears to involve secondary genotox-
icity resulting from chronic inflammation and 
cell proliferation [IARC 2010; NIOSH 2011; Olin 

2000]. Thus, at low lung doses in rats (i.e., below 
lung overload), where inflammation and cell pro-
liferation are not present, lung cancer would not be 
anticipated [Greim et al. 2001]. Mice also showed 
overloading of lung clearance but had lower in-
flammatory response than rats in a subchronic in-
halation study of a PSLT (carbon black); hamsters 
did not show overloading or lung inflammation in 
that study [Elder et al. 2005].

The interpretation and use of rat dose-response 
data of inhaled particles in human hazard and risk 
assessment and OEL development has been dis-
cussed and debated for many years [Cherrie et al. 
2013; IARC 2010; Kuempel et al. 2014; Morfeld et 
al. 2015; Oberdörster 1995; Olin 2000; Pauluhn 
2014; Warheit et al. 2016; Yu 1996]. Yet, the rat 
chronic bioassay data have been shown to give few-
er false negatives for inhaled particles classified by 
IARC as human carcinogens than have the mouse 
and hamster data [Mauderly 1997]. Moreover, hu-
man particle lung doses in workers in dusty jobs 
such as coal mining have been shown to be equiva-
lent to the mass-overloading doses in rats exposed 
chronically to particles [IARC 2010; Kuempel et al. 
2014; NIOSH 2011].

In general, the rat is considered a useful model for 
human non-neoplastic lung responses to PSLT, and 
in the absence of mechanistic data to the contrary, 
the rat model is relevant to identifying potential 
carcinogenic hazards in humans [Olin 2000]. Rat 
chronic inhalation data of PSLT were used by IARC 
[2010] in its evaluation of the carcinogenicity of in-
haled PSLT (titanium dioxide and carbon black) and 
by NIOSH [2011] in its hazard classification and 
REL for nanoscale and microscale titanium dioxide.

Scientific questions on rat lung overload that still 
need to be resolved were discussed by Borm et al. 
[2015], who cite two publications that contribute 
to the debate [Morfeld et al. 2015; Pauluhn 2014]. 
To date there is no clear resolution of this issue in 
the scientific community. Therefore, interpretations 
of the rat dose-response data for risk assessment 
have differed widely for inhaled PSLT, including 
those for nanoscale titanium dioxide, using the 



64 NIOSH CIB 69 • NIOSH Practices in Occupational Risk Assessment

same basic data [NIOSH 2011; Relier et al. 2017; 
Warheit et al. 2016]. Although the scientific de-
bate may continue, dosimetric adjustments to ac-
count for differences in PSLT aerosol particle size 
and respiratory tract disposition and/or clearance 
between rodents and workers have been used to ac-
count for toxicokinetic differences, and uncertainty 
factors can be applied to account for toxicodynam-
ic differences [EPA 1994; ICRP 1994; Jarabek et al. 
2005; Kuempel et al. 2015; Oller and Oberdörster 
2016]. Animal inhalation studies used in risk as-
sessment should include sufficient doses to char-
acterize the dose-response relationship, including 
low doses to overloading doses [Kuempel et al. 
2014; Oberdörster 1997; Olin 2000; Pauluhn 2011].

Despite the differences in particle clearance and re-
tention kinetics, the overloaded rat model may be 
relevant to predicting risk to workers exposed to 
inhaled particles. Overloading doses of microscale 
PSLT in rats have been observed as low as 0.5 mg/g 
lungs, with complete cessation of clearance at dos-
es >10 mg/g lungs [Muhle et al. 1990; Oberdörster 
1995]. By comparison, workers in dusty jobs histor-
ically have had average retained particle mass doses 
>10 mg/g lungs [Douglas et al. 1986; Freedman and 
Robinson 1988; Stöber et al. 1965]. Thus, only at 
overloading doses does the particle lung burden in 
rats reach the higher levels that have been reported 
in coal miners. These findings suggest that the rat is 
an appropriate model for human health risk assess-
ment of respirable particles. 

Studies in mice and hamsters are not as predictive 
of the human particle-associated lung responses, 
and results were negative for some particles that 
have been classified as known human carcinogens 
[Mauderly 1997]. In a quantitative comparison of 
lung cancer risk estimates in rats and humans as-
sociated with chronic exposure to various types of 
respirable PSLT (coal mine dust, carbon black, tita-
nium dioxide, or crystalline silica), the rat- and hu-
man-based estimates were statistically consistent, 
given the level of imprecision in the animal and 
human data [Kuempel et al. 2009; NIOSH 2011]. 
These studies suggest that the rat may be the most 
reasonable and sensitive rodent model to estimate 

the risk of chronic exposure to respirable particles, 
despite the species differences in the clearance and 
retention kinetics, which can be adjusted for by us-
ing dosimetry modeling. 

5.6.2.9 Tools/Models (deposition and/or 
clearance) 

The most widely used dosimetry models for in-
haled particles and fibers are found in the MPPD 
suite of models [ARA 2015; Price et al. 2002]. These 
models have largely replaced the U.S. EPA Regional 
Deposited Dose Ratio (RDDR) model, which al-
lowed estimation of the equivalent deposited dose 
in the respiratory tract across species but did not 
include clearance [EPA 1994]. However, the MPPD 
does not include models for all test species. For ex-
ample, the RDDR model is still needed for studies 
using hamsters, because this species is not included 
in the MPPD.

Several deposition and clearance models are in-
cluded in MPPD, as described in the model over-
view and details in the software (MPPD v. 3.04). 
The MPPD has been developed over a decade or 
more with funding by various U.S. governmental 
sources (including EPA, Navy, and NIOSH) and 
nongovernmental sources. It is publicly available to 
download at https://www.ara.com/products/multi-
ple-path-particle-dosimetry-model-mppd-v-211.

NIOSH-funded revisions to earlier versions include 
batch capability in running the deposition and 
clearance models in humans and rats (in MPPD 
v. 2.1 [ARA 2009]); addition of oronasal deposi-
tion in animals and humans, including olfactory 
deposition of nanoscale particles [Garcia and Kim-
bell 2009; Garcia et al. 2015]; and extension of the 
spherical particle model to include nonspherical 
and fibrous particles based on aerosol character-
ization and measurement of deposition efficiency 
in human respiratory tract replicas [Su and Cheng 
2015; Su and Cheng 2014]. 

The MPPD is for poorly soluble particles (spherical 
or nonspherical) but does not account for particle 
dissolution. It is also limited to the respiratory tract 
and does not include translocation to other organs. 

https://www.ara.com/products/multiple-path-particle-dosimetry-model-mppd-v-211
https://www.ara.com/products/multiple-path-particle-dosimetry-model-mppd-v-211
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Other dosimetry/PBPK models are needed to esti-
mate internal dose of soluble particles in the lungs 
or other organs. 

In general, data available for PBPK modeling are 
limited. When validated models are available, they 
are preferred to application of uncertainty factors 
to estimate human-equivalent dose because they 
account for material- and species-specific factors 
influencing the dose-to-target tissues. Many indi-
vidual PBPK (dosimetry) models have been de-
veloped for inhaled particles and fibers; their use 
would need to be evaluated on a case-by-case basis. 
Some useful tools and references associated with 
dosimetry modeling are listed in Table 5-2.

When searching the literature for information 
on lung dosimetry models of aerosols, note that 
multiple databases might need to be used, such as 
PubMed, Web of Science or Scopus, Toxline, and/
or Embase. Although PubMed is a major research 
database and perhaps the most widely used, it does 
not provide citations for some of the journals in 
which aerosol research is published (e.g., the Jour-
nal of Aerosol Science). Past practices have demon-
strated that broader search strategies may be need-
ed to identify relevant articles in this area.

5.6.3 Gas and Vapor Exposures
In general, the major factors influencing the inter-
nal dose from gas or vapor inhalation are anatomy 
(ventilation rate), physiology (diffusion, dissolu-
tion, blood flow, metabolism, and elimination rates), 
and physicochemical properties (e.g., gas or vapor 
solubility, reactivity) of the chemical [Bogdanffy and 
Jarabek 1995; Hanna et al. 2001; Jarabek 1995; Kue-
mpel et al. 2015]. The components of the inhalation 
dosimetry adjustment for gases are the following.

1. Conversion of units from ppm to mg/m3: The 
concentration in the inhalation toxicity studies 
on gases are usually reported in units of ppm 
or mg/m3. For exposure levels reported as ppm, 
this should be converted to the standard units of 
mg/m3 by using the following formula:

ppm × MW
24.45

mg/m3 =

where MW is the molecular weight in grams and 
22.45 is the volume occupied by 1 g-mol of any com-
pound in the gaseous state at 25°C and 760 mm Hg.

2. Duration adjustment: Many inhalation toxicity 
studies in laboratory animals are conducted with 
discontinuous exposure, often with exposure 
frequencies of 6 to 8 hours per day and 5 days per 
week. Occupational risk estimates are derived 
with the intention to protect workers against the 
exposure of 8 hours per day for 5 days per week, 
totaling 40 hours per workweek. Therefore, 
duration-adjusted exposure level is

Adjusted concentration (mg ⁄  m3) = 
E (mg/m3) × D  ⁄ 8 ×W ⁄ 5

where E is the experimental exposure concen-
tration, D is the work day adjustment of the 
number of hours exposed in 8-hour daily incre-
ments, and W is the workweek adjustment of 
the number of days of exposure in 5-day work-
week increments. 

3. Human Inhalation Rate: The human inhalation 
rate for light exertion while doing work of 9.6 m3/8 
hours should be included in the risk estimate. 

4. Human Equivalent Concentration (HEC): The 
HEC is the concentration of a substance in humans 
that is believed to produce an effect equal to a 
dose in experimental animals, adjusted for ex-
posure duration and physiological parameters 
such as breathing rate. 

5.6.3.1 NIOSH Practice
The current NIOSH practice for calculating HEC 
is as follows:
1. Experimental animal dose in ppm is converted 

to daily mg/kg inhaled dose.

2. In the absence of chemical-specific information on 
metabolism or dosimetry, this dose is extrapolated 
to humans, assuming dose equivalence in units of 
mg/kg∙day, scaled according to body weight to the 
0.75 power [Kleiber 1932; Sidhu 1992]. 

3. The human mg/kg∙day dose is then converted to 
ppm for an 8-hour workday.
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Table 5-2. Examples of available tools and resources for dosimetry modeling  
(adapted from Kuempel et al. [2015]).

Name of Tool or 
Resource Description Source and Availability

Multiple-path 
particle dosimetry 
model (MPPD)

Deposition, clearance, and 
retention estimation of inhaled 
particles in the respiratory tract 
of the human, rat, and mouse 

ARA [2015], http://www.ara.com/products/mppd.htm
Based on several models including Anjilvel and Asgharian 
[1995], Asgharian et al. [2001; 2014], and ICRP models 
[ICRP 1994; Paquet et al. 2015] 

Respiratory tract 
region deposited 
dose equations

Deposited-dose estimation of 
inhaled particles or vapors 
Interspecies dosimetric 
adjustments
Derivation of reference 
concentrations

U.S. EPA [1994; 2012a], https://www.epa.gov/risk/
methods-derivation-inhalation-reference-concentrations-
and-application-inhalation-dosimetry

http://cfpub.epa.gov/ncea/cfm/recordisplay.
cfm?deid=244650

Human respiratory 
tract model 

Deposition, clearance, and 
retention estimation of inhaled 
particles (including non-
radioactive) in the human 
respiratory tract 

ICRP Publication 66 [ICRP 1994], http://www.icrp.org/ 

http://www.sciencedirect.com/science/
journal/01466453/24/1-3

Physiologically 
Based 
Pharmacokinetic 
(PBPK) modeling 
guidance

Guidance on principles of 
characterizing and applying 
PBPK models in risk 
assessment

U.S. EPA [2006a], https://cfpub.epa.gov/ncea/risk/
recordisplay.cfm?deid=157668

IPCS [2010], http://www.who.int/ipcs/en/

http://www.inchem.org/documents/harmproj/harmproj/
harmproj9.pdf 
Loizou et al. [2008] and McLanahan et al. [2012] 

Human reference 
values 

Anatomical and physiological 
parameters (reference values) 
in humans
Inter-individual variability by 
age and gender
Parameters for PBPK models

ICRP Publication 89 [Valentin 2002], http://www.icrp.org/ 

http://www.sciencedirect.com/science/
journal/01466453/32/3-4

Interspecies 
reference values

Physiological parameters for 
dose normalization or PBPK 
modeling 
Application to Biological 
Exposure Indices

Brown et al. [1997], Davies and Morris [1993], Mercer 
et al. [1994], Stone et al. [1992], Boxenbaum [1982], and 
Fiserova-Bergerova [1990]

Particle size 
definitions 

Criteria for airborne sampling 
of particle size fractions by 
probability of deposition in 
human respiratory tract regions

ACGIH [2015], ACGIH [1985], and Lioy et al. [1984] 

http://www.ara.com/products/mppd.htm
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=244650
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=244650
http://www.icrp.org/
http://www.sciencedirect.com/science/journal/01466453/24/1-3
http://www.sciencedirect.com/science/journal/01466453/24/1-3
http://www.who.int/ipcs/en/
http://www.inchem.org/documents/harmproj/harmproj/harmproj9.pdf
http://www.inchem.org/documents/harmproj/harmproj/harmproj9.pdf
http://www.icrp.org/
http://www.sciencedirect.com/science/journal/01466453/32/3-4
http://www.sciencedirect.com/science/journal/01466453/32/3-4
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The following example is taken from a hypothetical 
study of the effects from 1-bromopropane inhala-
tion using a 2-year bioassay of B6C3F1 mice dosed 
6 hours per day. The PoD for lung tumors in female 
mice (the outcome of interest) in this study was 
0.64 ppm. The experimental animal dose in ppm is 
converted to a daily mg/kg inhaled dose:

Mouse BMDL = 0.64 ppm × 5.031 ×

0.060 m3/day × 6 hour/24 hour/
0.0353 kg

=  1.37 mg/kg . day

ppm
mg/m3

where 0.64 ppm is the dose; 5.031 mg/m3 per ppm 
is the molecular weight (122.99 g/mol) divided by 
24.45; 0.060 m3/day is the reference inhalation rate 
for female B6C3F1 mouse; and 0.0353 kg is the ref-
erence body weight for female B6C3F1 mouse in a 
chronic study. 

This dose is extrapolated to humans, assuming 
dose equivalence in units of mg/kg∙day scaled ac-
cording to body weight to the 0.75 power:

Human BMDL = Mouse BMDL (1.37 
mg ⁄ kg ∙ day) × (0.0353 kg ⁄  70 kg) 0.25 = 
0.205 mg   ⁄  kg∙day

where 70 kg is the reference human body weight. 
Here the exponent value of 0.25 reflects body 
weight (BW) scaling to the ¾ power (i.e., BW3/4) in 
units of mg/kg-day (rather than mg/day), such that 
BW1/1 / BW3/4 = BW1/4. 

The human mg/kg∙day dose is then converted to 
ppm for an 8-hour workday:

Human BMDL = 0.205 mg/kg . day × 

×
9.6 m3/8 – hour workday

70kg

= 0.297 ppm, or about 0.3 ppm

1ppm
5.031mg/m3

where 9.6 m3 per 8-hour workday is the reference 
inhalation rate for humans.

5.6.3.2 U.S. EPA Practice
The HEC is calculated from a PoD (e.g., NOAEL, 
LOAEL, or BMDL) by using the following formula:

PoD[HEC](mg ⁄ m3) = PoD[ADJ](mg ⁄ m3) × RGDR

where RGDR is the regional gas deposited ratio, 
which is the ratio of regional gas dose in labora-
tory animal species to that of humans for the target 
region.

The EPA categorized the gas, on the basis of the 
physicochemical properties and the regions of the 
effect in the respiratory tract, into categories 1, 
2, and 3. Category selection for a given chemical 
should be based on the properties of the chemical 
and its target effects in the body, as described in 
Table 5-3. 

5.6.3.3 Category 1 Gases
Category 1 gases are highly water soluble or reac-
tive and thus produce an effect mostly in the respi-
ratory tract itself. Because of the high-level deposi-
tion along with high reactivity, local tissue damage 
is expected from these gas exposures. Only a small 
fraction of these gases could penetrate deeper than 
the ET region under normal circumstances. How-
ever, during heavy exercise, fires, explosions, etc., 
these gases could penetrate deeper, leading to tis-
sue damage in the distal respiratory tract. The fol-
lowing equations are used to calculate RGDR for 
different regions of Category 1 gas. If the calculated 
value is greater than 1, then RGDRET is set to 1.

1. RGDRET for Category 1 gas:

where VE is the minute volume (cm3/min), SAET is 
the surface area of the extrathoracic region (cm2), 
and terms A, H represent laboratory animal and 
human, respectively. Later EPA guidance suggested 
that there is internal dose equivalency in the ET re-
gion for rats and humans. This guidance suggests 
that in lieu of specific modeling data, the default 
RGDRET is 1, rather than 0.2–0.3 as predicted by 
the equation above [EPA 2012a].

RGDRET =
(VE / SAET)A

(VE / SAET)H
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2. RGDRTB for Category 1 gas:

RGDRTB =
(VE / SATB)A

(VE / SATB)H

where VE is the minute volume (cm3/min), SATB is 
the surface area of the TB region (cm2), and terms 
A, H represent laboratory animal and human, 
respectively.

3. RGDRPU for Category 1 gas:

where Qalv is the alveolar ventilation rate (mL/
min) and is equal to 0.6 × VE.

5.6.3.4 Category 2 Gases
Category 2 gases are moderately water-soluble and 
have the potential to penetrate bronchi and thereby 
the blood. Therefore, both local and systemic ef-
fects could be observed following exposure to these 
gases. HECs for respiratory tract effects are calcu-
lated by the equations for a Category 1 gas, whereas 
HECs for extra-respiratory effects are calculated by 
the Category 3 equations. In cases where respiratory 
tract effects are caused by systemic distribution of 
the chemical, such as chloroform and naphthalene, 
the HEC should be calculated as a Category 3 gas.

RGDRPU =
(Qalv / SAPU)A

(Qalv / SAPU)H

5.6.3.5 Category 3 Gases
Category 3 gases have very low water solubility 
and limited reactivity with respiratory epithelium. 
These gases readily penetrate to the pulmonary 
region and are absorbed into the systemic circula-
tion. Most of the effects are observed distal to the 
respiratory system except in cases where metabo-
lism in the upper-respiratory tract leads to local 
effects. The following equation is used to calculate 
the RGDR for Category 3 gases:

RGDR =   
(Hb/g)A

(Hb/g)H

where the value 
  

(Hb/g)A

(Hb/g)H   is the ratio of the blood:gas 
(air) partition coefficient of the chemical for the lab-
oratory animal species to the human value. A value 
of 1.0 is used for the ratio of (Hb/g)A > (Hb/g)H. A 
value of 1.0 is used as the default when one or both 
of the partition coefficients are not available. Blood: 
air partition coefficients for some chemicals are 
available from Gargas et al. [1989]. 

5.6.3.6  PBPK and Computational Fluid 
Dynamics Approaches

PBPK modeling (see Section 5.6.2.6) also applies 
to gas and vapor exposures to derive target tissue 

Table 5-3. Gas categories and characteristics.

Category
Water 

Solubility Reactivity
Accumulation 

in blood
Site of 

toxicity Examples

1 High Rapidly irreversibly 
reactive

Not significant Portal of entry Hydrogen 
fluoride, chlorine, 
formaldehyde, volatile 
organic acids and 
esters

2 Moderate Rapidly reversibly reactive, 
or moderately to slowly 
irreversibly metabolized in 
respiratory tract tissue

Potential Portal of 
entry, maybe 
systemic

Ozone, sulfur dioxide, 
xylene, propanol, 
isoamyl alcohol

3 Low Unreactive in surface 
liquid and tissue

Yes Systemic 
toxicity

Styrene

Adapted from EPA [2012a].
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dose estimates in various species. As stated previ-
ously, the construction and development of a PBPK 
model for an individual chemical involves a large 
amount of data and understanding of the absorp-
tion, metabolism, distribution, and elimination 
of the chemical in the test species and in humans. 
One of the examples of PBPK modeling used in oc-
cupational risk assessment is use of the methylene 
chloride PBPK model to derive target tissue dose 
estimates for lung tumors in mice [OSHA 1997].

Computational fluid dynamics–PBPK (CFD/PBPK) 
models are designed to model the fluxes of vapor 
between tissue phases (e.g., between epithelial and 
submucosal tissues) and allow for a differential 
blood flow and coupling the respiratory tract to the 
whole body. This type of model has been used to 
evaluate the dosimetry of many compounds, in-
cluding diacetyl and styrene [Gloede et al. 2011; 
Sarangapani et al. 2002]. NIOSH used CFD/PBPK 
modeling in its risk assessment of occupational di-
acetyl exposure [NIOSH 2016].

5.7 Dose-Response Modeling 
with Epidemiologic Data

NIOSH prefers the direct estimation of occupa-
tional risks in working populations because: (1) 
data reflecting actual exposures and responses 
within the population of interest are inherently su-
perior for risk assessment, and (2) the uncertainty 
in extrapolating data from animal toxicologic stud-
ies can be much larger than that in well-designed 
epidemiologic studies [Hertz-Picciotto et al. 1995; 
Smith 1988; Stayner et al. 1999]. Of the NIOSH risk 
assessments listed in Table 1-1, nine (70%) quan-
titatively examined the dose-response relationship 
by statistical models using epidemiologic data. In 
contrast, epidemiologic data have been used in less 
than 10% of Integrated Risk Information System 
(IRIS) assessments conducted by the EPA [Persad 
and Cooper 2008]. 

Many of the concepts discussed previously con-
cerning animal data are also applicable to human 
data, especially for experimental designs or when 

modeling binary outcome data from observation-
al studies without time-dependent variables (e.g., 
using logistic regression). Although methods of 
analyses may be identical, the majority of human 
data for risk assessment stems from observational 
studies, which have less control of extraneous fac-
tors and are more prone to bias than studies of ex-
perimental data (see Section 4.3.4). The design of 
epidemiologic studies contributing to risk assess-
ment can vary, as can study aims, which also may 
not fully align with risk assessment goals. 

NIOSH risk assessors first decide, in a systematic 
way, if human data are suitable for quantitative dose-
response analyses, and if so, whether the data will 
serve as (1) the primary basis for risk extrapolation 
or (2) supporting information for a risk assessment 
primarily based on animal toxicologic data. The 
evaluation may be made concurrently with the WoE 
assessment in hazard identification, although data 
supporting hazard identification may lack the rigor 
necessary for dose-response analyses. In any event, 
all decisions on data suitability should be fully de-
scribed in the risk assessment documentation. As a 
starting point, risk assessors have applied the frame-
work first described by Hertz-Picciotto [1995], who 
suggested judging the suitability of epidemiologic 
data for quantifying dose-response by using five 
criteria. These criteria, slightly modified for NIOSH 
risk assessment purposes, are as follows:

1. The data consistently indicate a stable positive 
statistical association between the agent and ad-
verse effect.

2. The data are abstracted from studies that are of 
high overall quality.

3. There is no substantial potential for confound-
ing or other source of major bias.

4. There is a quantitative assessment of exposure 
that is deemed appropriate for dose-response 
analyses.

5. There is evidence of a monotonic dose-response.

Hertz-Picciotto [1995] suggested that compliance 
with criteria 1 through 4 provides a minimum basis 
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for risk extrapolation using human data; compli-
ance with 2 of the first 3 criteria is considered suit-
able for quantifying risks as a plausibility check 
with animal-based assessments. Thus, it is clear 
that more weight is to be placed on criteria 1, 2, and 
3. Criterion 1 is directly related to Hill’s guidelines 
on strength of association and consistency (see 
Section 4.1). This criterion differs from that origi-
nally specified, which included only moderate to 
strong positive associations [Hertz-Picciotto et al. 
1995]. This modification was made in recognition 
that excellent studies reporting weakly positive but 
consistent associations can inform the dose-re-
sponse relationship. For example, Park et al. [2004] 
conducted a quantitative risk assessment of lung 
cancer from exposure to hexavalent chromium that 
used data from Gibbs et al. [2000], who reported 
modestly elevated lung cancer risk (e.g., SMR <2) 
in chromium production workers compared to the 
general population (SMR = 1.80; 95% CI: 1.49–
2.14). This risk assessment helped form the basis 
for the NIOSH REL on hexavalent chromium ex-
posure [NIOSH 2013a]. Criteria 2 and 3 are related; 
both prefer study designs that reduce the potential 
for an inaccurate estimated effect. Criterion 4 was 
modified to recognize that quantitative exposure 
data at the individual level, as originally recom-
mended [Hertz-Picciotto et al. 1995], is sparse in 
epidemiologic studies. The lack of individual-level 
measurements should not disqualify study data 
from quantitative risk assessment; however, their 
presence is preferred to aggregate exposure mea-
sures that are more vulnerable to bias from shared 
error or exposure misclassification (see Appendix 
B). Criterion 5 coincides with Hill’s guideline on 
a biologic gradient, which is not necessary in ei-
ther case but certainly supports data use. Note that 
there are many explanations for a lack of observed 
monotonicity in dose-response data, such as mea-
surement error, biologic saturation, and depletion 
of a susceptible population [Stayner et al. 2003]. 
Last, there may be exceptional circumstances in 
which other criteria may better apply or in which 
modification to existing criteria is prudent. Risk as-
sessors should describe these exceptions in the risk 
assessment document. For example, a potential for 

substantive confounding may exist (criterion 3); 
however, data may allow for an examination and/
or adjustment of its effect on dose-response esti-
mates. In this example, the risk assessment docu-
ment should fully describe the potential for bias, 
the alternative analyses for examining the effects 
on dose-response estimates, and any consequent 
actions. 

NIOSH risk assessors strive to make the best use 
of epidemiologic data that are available in dose-
response modeling strategies, given that these data 
provide the important advantage of directly ad-
dressing human risk. When epidemiologic data 
are available and appear suitable for quantifying 
exposure-related effects, the risk assessor gener-
ally adopts a statistical modeling approach that in-
cludes an evaluation of potential sources of biases. 
NIOSH risk assessors endeavor to select statistical 
methods that best account for identified sources of 
uncertainty and therefore improve the reliability 
and validity of dose-response estimates. 

As discussed previously, exposure estimation in 
human studies is often fraught with limitations. 
Risk assessors consider ways to account for expo-
sure uncertainty in developing a risk modeling ap-
proach. Given the relative uniqueness of most epi-
demiologic datasets, it is not feasible to describe all 
possible modeling strategies in this report. How-
ever, this section discusses some overall modeling 
approaches using human data methods that are 
unique to aggregate data from published reports 
and time-to-event data from longitudinal studies. 

5.7.1 Limited Data
Although dose-response analyses using individual 
exposure and outcome data are preferred, the lack 
of these data does not preclude examining statistical 
associations and regression relationships between 
aggregate measures of exposure and measures of 
population risk using summary estimates from hu-
man data. In fact, risk assessments have used lim-
ited data comprising only an aggregate exposure 
measure (e.g., average cumulative exposure) and a 
measure of relative risk (e.g., SMR, SIR, and OR). 
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For example, a simple dose-response model can be 
specified with data from a study reporting only a 
cohort SMR and average exposure by assuming a 
linear relationship exists between the SMR (or any 
measure of relative risk) and exposure (x): SMR = 1 
+ xβ, where the dose-response slope, β, represents 
the change in relative risk (e.g., the SMR) per unit 
dose [Smith 1988; Stayner et al. 1995]. Figure 5-7 
shows a plot of this relationship for a hypothetical 
cohort. 

An SMR from an occupational study may be nega-
tively biased from a healthy worker hire effect (see 
Appendix B for more information). This effect can 
be countered by using an adjusted SMR, derived on 
the basis of the study type and outcome [Park et al. 
1991] or by fitting another parameter to the model 
to adjust for the background hazard rate [Stayner et 
al. 1995]. Similarly, information on other potential 
sources of bias can be included as model covariates. 
As another example, if SMRs are reported at differ-
ent levels of exposure, then weighted least-squares 
regression or maximum likelihood estimation 
methods can be used. Examples of these techniques 
have been described in several reports [Breslow and 
Day 1987; Crump and Allen 1985; Hanley and Lid-
dell 1985; Rothman et al. 2008; Smith 1988; Smith 
et al. 1994; Steenland and Savitz 1997]. 

There are some important limitations in the meth-
ods described above. First, we assume the true 
dose-response is linear, given that it is biologically 
plausible, generally appears conservative in the 
low-dose range compared to alternative models, 
and tends to fit epidemiologic data. Alternatively, 
a nonlinear dose-response function could be fit-
ted, which may result in marked differences in esti-
mates in the range of interest. In practice, however, 
adequate data preferring a nonlinear model are 
unlikely in most situations. Second, pooling SMRs 
in dose-response analysis is less than ideal, given 
that multiple SMRs (stratum-specific) may not be 
comparable because of indirect standardization. 
Pooling SMRs could bias estimates from differ-
ences in age, race, sex, or some other confounder 
across exposure groups. Fortunately, strong statisti-
cal confounding from stratum heterogeneity is not 

typically observed in most cases [Breslow and Day 
1987]. Nonetheless, risk assessors must address the 
potential for bias from heterogeneous comparison 
groups. Third, using weighted least squares to re-
gress multiple responses at different exposure levels 
(e.g., SMRs or log-SMRs) does not account for cor-
relations between response measures induced by 
sharing a common reference group. Methods have 
been developed to account for these correlations 
in trend estimation in both single study and meta-
analytic (meta-regression) designs [Greenland and 
Longnecker 1992; Hamling et al. 2008; Orsini et 
al. 2012]. Of course, these methods are crude and 
generally inadequate to serve as the sole basis for 
NIOSH recommendations on OELs. Instead, they 
may be informative in risk characterization when 
used in conjunction with other supporting data.

A NIOSH example of a limited data approach is 
not available; however, examples are available in 
the literature [Chovil et al. 1981; Crump and Al-
len 1985; Hanley and Liddell 1985; Smith 1988; 
Steenland and Savitz 1997]. For example, Steenland 
and Savitz [1997] used a simple linear model to ex-
amine the dose-response between airborne nickel 
levels and lung cancer mortality. The dataset was 
abstracted from a previous epidemiologic study of 
Ontario nickel refinery workers (n = 495) followed 
from 1963 to 1978 [Chovil et al. 1981]. The relative 
risk per unit exposure was estimated by the slope 
parameter from a weighted least-squares linear re-
gression of the SMRs at specified cumulative dose 
levels. The expected numbers of lung cancer deaths 
were used as weights and the model forced the 
intercept at unity. A simple estimate of lifetime ex-
cess cancer was estimated by RAR = R0(xβ), where 
RAR is the added lifetime risk from exposure x, R0 is 
the background lifetime risk of lung cancer death, 
and β is the upper 95% confidence limit on the 
slope parameter. 

5.7.2 Longitudinal Data
In longitudinal studies, data on observation time, 
demographics (e.g., age, race, and gender), and time-
varying predictors (e.g., exposures) are available. 
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Figure 5-7. Linear dose-response slope estimates using average cumulative exposure and reported standardized 
mortality ratio (SMR) from an epidemiologic study (adapted from Smith et al. [1988]).

Approaches to modeling must be consistent with 
the data, although more than one approach may 
be available. For example, data from a cohort study 
of cause-specific mortality can be expressed as the 
amount of observation time and an observed count 
of adverse responses cross-classified on the basis of 
other predictors in order to estimate the incidence 
rate. 

In general, previous risk assessments have applied 
a tiered approach, whereby categorical analyses 
and splines are first used to evaluate the shape of 
the dose-response curve, which aids in defining a 
set of parametric models that are most appropri-
ate for risk assessment [Steenland and Deddens 
2004]. The risk assessor may then select a preferred 
model from the set of models on the basis of prior 
knowledge of the expected response (biologic plau-
sibility) and model fit. In any event, the choice of 

the best model should not rest solely on statistical 
grounds [Breslow 1990]. This is because competing 
statistical models can often yield roughly equiva-
lent fits to the data in the observable-effect dose 
range, yet extrapolation below the observable range 
(i.e., in the range of interest) can result in estimates 
that are orders of magnitude apart [Brown and 
Koziol 1983; Stayner et al. 1995]. Methods within 
the framework of this approach can vary, and an 
exhaustive discussion of all modeling possibilities 
is beyond the scope of this report. More informa-
tion is available in many important epidemiologic 
texts [Breslow and Day 1987; Rothman et al. 2008; 
Woodward 2013]. 

Dose-response modeling of longitudinal data has 
been approached with use of a wide array of meth-
ods but is generally conducted by regression of sur-
vival data (i.e., failure-time data) or person-years 
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data. Survival regression models can be fully para-
metric models of the distribution of failure times 
(e.g., Weibull models) or semi-parametric (i.e., Cox 
proportional hazards model). Poisson regression 
modeling is an example of a modeling approach for 
data on response counts and person-years of ob-
servation. Most epidemiologic studies have exam-
ined dose-response relationships from longitudi-
nal study data by using general relative risk models 
with maximum likelihood estimates obtained from 
Cox proportional hazards or Poisson regression 
techniques for cohort data and conditional logistic 
regression for nested case-control designs.

5.7.2.1 Poisson Regression 
Follow-up data can be recorded as counts of re-
sponses, i.e., the number of events (e.g., deaths) and 
the number of person-years in strata of other vari-
ables (e.g., age, sex, exposure, etc.). Furthermore, 
dose-response curves can be fitted to the count data 
Yi and person-years  based on Poisson regression 
modeling, i.e., Yi  ~Poisson[  f (di, X1i, X2i, …, Xci ; θ) · τi ] 
where Yi represents the count observed during 
an accumulation of person-time τi ; if each record 
of the data is constructed from one person, then 
Yi ~Binomial [ f (di , X1i , X2i ,  …, Xci ; θ) · τi | η1 = 1 may be 
substituted. If a reference population is available 
that provides information on the rate associated 
with age, sex, and other demographic variables, 
then it can be incorporated to improve estimate 
precision. However, the assumption of Poisson or 
binomial variations is a strong one, and it may be 
necessary to accommodate response variation ex-
ceeding that predicted by the model (i.e., over-dis-
persion), such as using quasi-likelihood methods 
or models that incorporate random effects. 

Examples of Poisson regression modeling in 
NIOSH risk assessment include dose-response 
models of the relationships between lung cancer 
and hexavalent chromium [NIOSH 2013a; Park et 
al. 2004] and asbestos [Stayner et al. 1997]. 

5.7.2.2 Cox Proportional Hazards Regression 
In survival analyses, the hazard function (or haz-
ard) is the rate of failure at an instant in time, t, 

given that the individual survives up to t. In other 
words, it is the instantaneous risk that the event 
(e.g., death, cancer diagnoses) will occur at t. In 
most longitudinal studies, the time scale of interest 
is age. The hazard ratio (HR) is the hazard of one 
individual (e.g., the exposed) divided by another 
individual (e.g., the unexposed), typically hold-
ing all other predictors constant; therefore, it is a 
measure of the relative risk. Since its introduction 
in 1972, the Cox proportional hazards (CPH) re-
gression model has become the most widely used 
approach to quantifying conditional hazards [Cox 
1972]. A general form of the CPH model for the 
hazard, h, cumulative dose, D, and attained age, t, is

h(t|D(t),Z(t)) = h0(t) f(D(t); β) exp[γTz],

where h0 is the baseline hazard, Z represents a vec-
tor of model covariates, model parameters β and 
γ are to be estimated, and f(D(t); β) is the relative 
rate as a function of cumulative dose at attained 
age. This model is semi-parametric because the 
baseline hazard is an unspecified function, but a 
parametric form is assumed for the effect of predic-
tors on the hazard. Several options for specifying a 
dose rate function are available; the most common 
is an exponential form, i.e., (D(t); β) = exp (βD(t)), 
which is sometimes referred to as a log-linear dose-
response model. In this form, the CPH model is a 
simple additive model of the log of the hazard. An-
other common form is a linear response function, 
f(D(t); β) = 1+βD(t), where β is the excess relative 
rate per unit dose in the exposed individual relative 
to the unexposed. Validity of this model relies on 
a rather strong assumption that the hazards in the 
group of interest are proportional to the hazards in 
the referent group, and this proportionality is con-
stant over time when D(t) is constant. A significant 
interaction between D(t) and t would be evidence 
against such proportional hazards. Additional statis-
tical methods (e.g., stratification, fully parametric, 
or piecewise proportional models) may be neces-
sary in the event of strong modification of the dose 
effect on the hazard over time [Allison 2010]. 

Examples of CPH regression methods in NIOSH 
risk assessment include dose-response modeling of 
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the relationships between lung cancer and exposures 
to radon [Hornung and Meinhardt 1987] and cad-
mium [Stayner et al. 1992a; Stayner et al. 1992b]. 

5.7.2.3 Conditional Logistic Regression
Case-control designs are typically analyzed with 
logistic regression, as previously described. The 
fitting of matched or stratified logistic regression 
models is sometimes referred to as conditional lo-
gistic regression [Breslow and Day 1980; Rothman 
et al. 2008]. When time-dependent predictors are 
present, nested case-control studies often rely on 
conditional logistic regression. For nested case-
control studies with one case per matched set (i.e., 
1:n matching), the form of the likelihood function 
for conditional logistic regression reduces to that 
of the CPH model for the continuous time scale. 
In both cases, the data are organized into risk sets 
(sometimes referred to as a matched set in con-
ditional logistic regression), whereby a risk set is 
the collection of individuals at risk for the event 
at each time point in which a failure is observed. 
For example, a nested case-control study may 
specify a conditional logistic regression model that 
uses controls drawn from risk sets of individuals 
matched to cases on attained age. In this instance, 
the controls are selected by using incidence-density 
sampling methods [Beaumont et al. 1989; Richard-
son 2004]. Computational limitations may restrict 
full risk-set analyses (i.e., CPH model); therefore, a 
nested case-control study using conditional logistic 
regression is an appealing alternative to full cohort 
modeling.

5.7.2.4 Additional Considerations
In epidemiological studies, di is an exposure met-
ric constructed from possibly complex employment 
histories, and identifying the optimum construct 
for di may itself be an important component of the 
modeling procedure (see Section 4.3.3.1). More-
over, predictors in the function f (di , X1i , X2i , …, Xci ; θ) 
usually include age, gender, and other demographic 
variables and may confound or modify the effect of 
dose. Thus, the risk assessor must consider effects on 
estimates from the selected model or set of models 

that are due to the exposure metric construct and 
other predictors (see Appendix B for discussion on 
possible study biases). 

Attenuation of the dose-risk relationship at higher 
doses is a common observation in occupational 
epidemiologic studies [Stayner et al. 2003; Steen-
land et al. 2015]. This effect typically presents as 
a monotonically increasing slope at low exposure 
levels that diminishes or becomes negative at high 
exposure levels. Among possible explanations are 
a depletion of the susceptible population; healthy 
worker survivorship; a natural limit on the rela-
tive risk for diseases with a high background rate; 
measurement error; influence of unknown risk fac-
tors that may vary by the level of exposure adaptive 
responses; and biologic saturation. Regardless of 
cause, the risk assessor must consider the possible 
effects of high-dose attenuation when estimating 
responses at low doses, given that a “best fit” model 
may be a poorer choice for risk assessment. For ex-
ample, a linear excess relative risk model that is best 
fit to the full range of exposures may underestimate 
the low-dose response as a result of risk attenuation 
(artifactual or otherwise) at high doses. Converse-
ly, using a logarithmic transformation of exposure 
(i.e., a power model) may improve the model fit; 
however, this model is prone to overestimation of 
the response at low doses [Ginevan and Watkins 
2010; Steenland and Deddens 2004; Steenland et al. 
2011]. The potential for high-dose attenuation can 
be explored with categorical models, transforma-
tions of the exposure metric such as square-root 
or logarithmic, and the use of splines. However, 
the response in the low-dose region of the dose-
response curve can widely vary between these ap-
proaches [Steenland and Deddens 2004; Steenland 
et al. 2011]. When selecting preferred models for 
risk assessment, the risk assessor must evaluate the 
low-dose behavior of the models with respect to 
the potential effects of attenuation. Modification or 
replacement of the best-fit model may be required 
in order to avoid unrealistic estimates of effects in 
the range of dose that is most meaningful to the 
protection of workers. For example, simple piece-
wise linear models that allow for different slopes 
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between high- and low-dose regions (e.g., a two-
piece linear spline) may be appealing, given they 
account for high-dose attenuation but allow for in-
terpretation of risk at low dose that is suitable for 
risk assessment purposes [Steenland and Deddens 
2004; Steenland et al. 2011]. 

Dose-rate effects are of interest because they can 
have a substantial impact on low-dose extrapola-
tion common in risk assessment. A dose-rate effect 
occurs when, for a given dose (e.g., the product of 
the chemical concentration and exposure dura-
tion), the dose-response relationship depends on 
the exposure intensity (e.g., the magnitude of the 
airborne chemical concentration).  A positive dose-
rate effect (i.e., higher exposure intensities having a 
greater effect) suggests that transient or peak ex-
posures may have an important role in disease in-
duction [Checkoway and Rice 1992; Esmen 1984; 
Rappaport 1991]. For example, peak exposure is 
obviously most important for evaluating acute tox-
icity. Peak exposure can also be the primary index 
when the agent is rapidly eliminated from the body 
or when nonlinear rates of biologic damage occur 
during periods of intense exposure [Esmen 1984; 
Rappaport 1991]. Nonlinearity may result from ex-
posure-related responses that are reversible and/or 
have a threshold for the onset of biologic damage. 

Dose-rate effects that act to attenuate the response 
at higher exposure intensities are sometimes re-
ferred to as protraction enhancement or inverse 
dose-rate effects. These effects were evident in 
studies of the dose-response association between 
lung cancer and radon exposures in underground 
uranium miners [Lubin et al. 1995b]. The actual 
mechanisms involved in the radon inverse dose-
rate effects are unknown; however, some suggested 
plausible explanations are nonlinear cellular re-
sponses, such as a bystander effect (i.e., a dose effect 
observed in non-irradiated cells) at very low dose 
rates [Brenner et al. 2001], or physical differences 
in the particle size distribution of radon progeny at 
different airborne concentrations [Leonard 2007]. 
Addressing dose-rate effects is challenging in dose-
response modeling. Interpretation will be largely 
dependent on the dose index used; however, given 

the complex and largely unknown biology associ-
ated with these nonlinear effects, mechanistic data 
are likely insufficient to inform a modeling strat-
egy. Nevertheless, complete understanding of the 
underlying cause-and-effect relationship may not 
be necessary if a dose-response relationship be-
tween the chosen exposure metric and the adverse 
effect can be quantified.

Finally, there has been considerable advancement 
in statistical methods used in dose-response mod-
eling of epidemiologic data since the onset of per-
sonal computing. New techniques are emerging to 
model nonlinear dose-response functions and to 
address data and modeling uncertainty. Modeling 
strategies might draw on newly developed statisti-
cal methods to account for modeling uncertainty 
and data incompleteness or imperfection, such as 
the following: 

 ■ Unobserved variables that affect observed 
exposure-response associations (e.g., using la-
tent-variables methods and finite mixture-dis-
tribution models) [Leisch 2004; Rosseel 2012] 

 ■ Missing data values (e.g., using multiple impu-
tation and conditional expectation methods, 
data augmentation, and the expectation-max-
imization [EM] algorithm) [Schafer and Olsen 
1998; Wei and Tanner 1990] 

 ■ Measurement errors and estimation errors in 
exposure and other explanatory variables (e.g., 
using regression calibration or Monte Carlo 
simulation techniques; see Appendix B) [Car-
roll et al. 2006] 

 ■ Model specification errors and model uncer-
tainties (e.g., using model average methods; 
see Appendix B) [Buckland et al. 1997; Raftery 
et al. 1997] 

 ■ Inter-individual heterogeneity and variability 
(e.g., using mixed models accounting for ran-
dom effects) 

 ■ Correlated or interdependent explanatory 
variables.
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5.8 Alternative Analysis
The choice of modeling approach can markedly 
influence risk estimates. Moreover, limitations in 
available data often make the correct model speci-
fications impossible to determine with confidence. 
When this occurs, risk assessors should candidly 
acknowledge the uncertainty in risk characteriza-
tion. Limitations in available data often require 
scientific judgment in order to fill gaps in model 
specifications. Risk assessors identify and charac-
terize these judgements by conducting additional 
analyses to test plausible alternative assumptions, 
examine the robustness of main analyses, and im-
prove transparency in the risk assessment process. 
These alternative analyses comprise sensitivity and 
modeling uncertainty analyses. NIOSH defines 
sensitivity analysis as a study of the uncertainty in 
estimates from the mathematical model that can be 
apportioned to uncertainties in its inputs. In other 
words, it is a study of the robustness of the model-
ing outputs to uncertainty in model inputs. Mod-
el uncertainty addresses the possibility that the 
model itself—that is, the formula or algorithms for 
calculating outputs from inputs—is incorrect (see 
Appendix B). In alternative analyses, plausible al-
ternative risk assessment strategies, defaults, and 
assumptions are quantitatively evaluated for their 
impact on risk estimates. As stated in Science and 
Decisions [NRC 2009], 

“… analysis could be performed when risk es-
timates for alternative hypotheses that are suf-
ficiently supported by evidence are reported. 
This approach would require development of a 
framework with criteria for judging when such 
an analysis should be performed. The goal is not 
to present the multitude of possible risk estimates 
exhaustively but to present a small number of 
plausible cases to provide the risk manager a 
context for understanding additional uncertain-
ty contributed by considering assumptions other 
than the default.” 

This means a targeted, hypothesis-driven strategy 
for conducting alternative analyses is preferred. 

In large part, alternative analyses are examinations 
of risk estimates over a range of plausible values for 
uncertain data that are used in the risk assessment. 
Largely divergent estimates (or large uncertain-
ties) suggest a high degree of model dependence, 
whereas reasonable agreement in findings suggests 
estimate robustness. Sensitivity analysis of a model 
that is known to correctly describe the causal re-
lationship between inputs (including exposure 
histories) and outputs (including worker risks) is 
also useful for identifying how changes in factors 
change worker risks, which could then be targeted 
as priorities in risk management. Finally, alterna-
tive analyses can be a useful tool for model devel-
opment and refinement [Frey and Patil 2002]. 

Alternative analysis should be part of the initial 
risk assessment plan. Analysis planning generally 
includes a description of any iterative methods in-
tended for model development and refinement. 
Alternative analysis can be structured into the 
main analysis so that a variety of risk estimates is 
produced and the decision path to the final risk 
estimate is well supported and transparent. Risk 
assessors are cautioned against post hoc analyses 
as a substitution for planned alternative analyses. 
Nevertheless, there are instances when these analy-
ses are appropriate or even expected. For example, 
subsequent analyses may occur in response to re-
view comments. 

It is not practical to list all alternative analyses pos-
sible in risk assessment; however, Table 5-4 lists 
some examples of analyses that appear most often 
in the literature. Some areas of typical analyses are 
discussed in subsequent sections.

5.8.1 Choice of Adverse Effect
There may be more than one adverse effect avail-
able for dose-response analysis. Decisions about 
which adverse effect to analyze rely on consider-
ation of the site of the effect and its relevance to 
the human toxicity of concern, severity of effect, re-
versibility of effect, MoA, sensitivity of the test spe-
cies (or human subpopulation), and consistency of 
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effects across sex/species (or population groups). 
When multiple adverse effects are possible, and 
there is no clear choice for a single health effect 
of interest, it is a general course to examine mul-
tiple endpoints and choose the most limiting as 
the critical effect. Sensitivity analyses should in-
clude plausible alternative adverse effects and/or 
multiple indicators of a common effect. For exam-
ple, different respiratory endpoints could include 
different measures of lung function (e.g., forced 

expiratory volume in 1 second [FEV1], forced vi-
tal capacity [FVC], and the ratio of FEV1 to FVC), 
self-report of symptoms, and/or diagnosed respi-
ratory effects. For cancer studies, a variety of tumor 
sites could be analyzed. In animal toxicology stud-
ies, adverse effects could include analysis of both 
cancer and non-cancer effects, a selection of tumor 
sites, and more. The rationale for selecting the ad-
verse effects in the main analysis and the sensitivity 
analysis should be explained.

Table 5-4. Example scenarios for alternative analyses.

Source of 
Uncertainty Research Question Possible Sensitivity Analysis 

Response variable Are there alternative definitions of 
the adverse effect? If so, how do these 
definitions affect dose-response estimates?

Alternative models using different 
specifications of the response variable

Is more than one adverse effect (not on the 
same causal pathway) associated with the 
hazardous exposure? If so, how do risks 
differ?

Alternative models using array of plausible 
responses

Explanatory variables How does measurement error in the 
primary exposure affect risk estimates? 

Alternative models using array of plausible 
estimates of exposure based on uncertainty

Are there alternative exposure metrics? 
If so, how do risk estimates differ across 
metrics?

Alternative multiple models using array of 
exposure definitions

If exposure is categorical, how does the 
choice of category cutpoints affect risk 
estimates?

Alternative models with varying exposure 
cutpoints

Is there a potential for unmeasured 
confounding (e.g., smoking data unavailable 
in analysis of cancer) by one or more 
sources? Can these effects be estimated?

Alternative models using array of plausible 
estimates of the confounder

Model specification How does model choice of dose-response 
function affect risk estimates?

Alternative models using array of plausible 
dose-response functions

How does the choice of confounding 
control (e.g., stratification versus covariate 
control) affect risk estimates?

Alternative models using array of methods 
for confounding control 

Animal to human risk 
extrapolation

How do assumptions on the animal-human 
relationship for metabolism, distribution, 
and toxicity affect risk estimates? 

Alternative models using array of plausible 
assumptions



78 NIOSH CIB 69 • NIOSH Practices in Occupational Risk Assessment

5.8.2 Model Uncertainty Analyses
When practical, it is generally preferable to use 
non-parametric causal graph modeling techniques 
or model averaging methods to address model 
uncertainty (see Appendix B). That said, a stan-
dard practice in NIOSH dose-response modeling 
involving model selection is to specify models of 
interest beforehand and then test the specification 
by examining alternative specifications. When dif-
ferent plausible assumptions lead to very different 
estimates, then multiple ranges of plausible esti-
mates, with the key assumptions leading to each, 
can be more informative and useful than a single 
range. Alternative models should be plausible and 
parsimonious. It is preferred that the model uncer-
tainty analysis approach used, including the suite 
of alternative models to be examined, be specified 
a priori; however, model output information has 
been used in post hoc specification of alternative 
models in some analyses. This is likely to occur 
when results from main models point to the need 
for further development or if new information is 
found during analysis or in review afterward. 

The validity of modeling defaults should be ex-
amined in a sensitivity analysis when additional 
chemical-specific information is available that 
challenges those values. In addition, when there are 
alternative plausible assumptions on explanatory 
variables used in an analysis, it is reasonable to ex-
plore the impact of these assumptions in sensitivity 
analysis. Typical examples of key assumptions in 
epidemiologic studies include exposure lag times, 
homogenous dose-response among grouped out-
comes (e.g., all cancers) and irreversible effects of 
chronic exposure, especially for non-cancer ad-
verse effects. When examining alternative assump-
tions or default vales, it is important to use credible 
values that reflect the available data.

In some cases, the potential effects of measurement 
error or unmeasured confounding can be exam-
ined by sensitivity analysis [Chu et al. 2006; Green-
land 1996; Groenwold et al. 2010]. For example, 
consider a study reporting a positive dose-response 
association between lung cancer and exposure to 

chemical X. Smoking data are unavailable. One 
could assume a range of plausible smoking behav-
iors (and their effects) that vary by degree of corre-
lation with chemical X to examine the potential for 
residual confounding by smoking in main analyses. 
If a significant effect is not observed under plau-
sible scenarios, then it is unlikely that smoking pat-
terns explain the dose-response observed. 

The complexity of these sensitivity analyses can vary 
widely, from a simple examination of a single binary 
variable to complex computer simulations for exam-
ining joint effects of multiple factors. Some exam-
ples of sensitivity analyses over this range are readily 
available in several highly cited articles [Frey and 
Patil 2002; Greenland 1996; Greenland et al. 2005; 
Lash and Fink 2003; Lin et al. 1998]. Regardless of 
analysis design, it should be evident that reason-
ableness hinges on the range and values examined; 
therefore, risk assessors must carefully consider the 
choice of plausible values. 

In all modeling efforts, including sensitivity analy-
ses of alternative models, NIOSH risk assessors must 
clearly describe the approach used in sufficient detail 
such that results can be replicated. Special attention 
should be given to providing a sound basis for any 
post hoc analyses conducted. Risk assessors should 
be aware that model specifications made using post 
hoc information, say, from a stepwise regression ap-
proach, can introduce bias from a lack of accounting 
for the informed choices made [Harrell 2015]. 

For example, consider a dose-response model that 
includes an exposure lag period accounting for dis-
ease latency. Risk estimates from models using a lag 
that is fixed a priori lack consideration of the un-
certainty attributable to the lag choice. This uncer-
tainty could be examined in a sensitivity analysis of 
models fit using alternative lags, although the main 
analysis still assumes a fixed lag. Alternatively, the 
lag could be estimated from the data (e.g., the lag 
that maximizes the likelihood) using methods fully 
accounting for the uncertainty in the lag [Richard-
son et al. 2011]. 
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5.8.3 Extrapolation Methods
Model extrapolation occurs when inferences are 
made beyond the calibration or validation of the 
model [Frey and Patil 2002]. This can occur when 
model inputs used to predict risk are beyond the 
dataset used to develop the model. For example, 
the application of animal toxicologic data to assess 
human risk is a common extrapolation. When ex-
trapolating risk from animals to humans, depend-

ing on the metabolism, distribution, and toxicity 
of the chemical, assessors may have a choice of ex-
trapolation methods. In this case, it is reasonable 
to explore the impact of plausible extrapolation 
methods in the sensitivity analysis. An example of 
this can be found in the diacetyl risk assessment, in 
which the BW3/4 extrapolation method was com-
pared to the EPA RGDR method for reactive gases/
vapors [NIOSH 2016].
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6 Risk Characterization

Risk characterization is the third and final step in 
the NIOSH risk assessment process. It is the quali-
tative and, wherever possible, quantitative deter-
mination, including attendant uncertainties, of the 
probability of occurrence of known and potential 
adverse effects of an agent in a given organism, 
system, or population, under defined exposure 
conditions [IPCS 2004]. In environmental risk as-
sessment, risk characterization describes the likeli-
hood and severity of exposure-related adverse ef-
fects using information on the degree of potential 
exposure to the hazard within a population and its 
dose-response relationship with the adverse effect. 
Risk characterization in NIOSH risk assessments is 
restricted to health risks and focuses on the trans-
lation of information on the risk of workplace ex-
posures into a basis for recommendations on lim-
iting exposure. The process of extrapolating risks 
observed in animals in an experimental study to 
workers exposed over the course of their employ-
ment is an example of NIOSH risk characteriza-
tion. In particular, NIOSH used the dose-response 
relationship observed in chronic inhalation studies 
in rats to predict lung cancer risks in humans from 
exposure to titanium dioxide to form the basis of 
recommended airborne exposure limits corre-
sponding to increased risk in humans of about 10-3 
over a working lifetime [NIOSH 2011]. That said, 
an underlying principle in NIOSH risk character-
ization is the preference for direct estimation of the 
risk in the affected working population, data per-
mitting.

Risk characterization is the culmination of infor-
mation gathered for the risk assessment in order 
to meet its intended purpose of informing risk 
management decisions. Risk characterization syn-
thesizes and communicates the risk assessment 
science to a broad audience, primarily in NIOSH 
Criteria documents or Current Intelligence Bulletins 

containing RELs, RML-CAs, and alternative au-
thoritative recommendations, such as the NIOSH 
occupational exposure banding process (see Ap-
pendix C). Thus, to the maximum extent prac-
ticable, NIOSH risk assessors follow the guiding 
principles of transparency, clarity, consistency, and 
reasonableness in risk characterization as first de-
scribed by the EPA [Fowle and Dearfield 2000] (see 
Table 6-1). Above all, NIOSH risk characterization 
serves to (1) characterize and communicate the risk 
basis for NIOSH recommendations, (2) describe the 
overall confidence in this basis, and (3) provide other 
information that may assist in decision-making on 
mitigating risk.

6.1 Risk Definitions Common to 
NIOSH Risk Assessment

As described in Section 1.0, occupational risk (in 
the context of this document) is simply the poten-
tial (probability) and severity of adverse health ef-
fects in workers from their exposure to workplace 
hazards. This definition is consistent with that of-
fered by the WHO for risk assessment: risk is the 
probability of an adverse effect in an organism, sys-
tem, or (sub)population caused under specified cir-
cumstances by exposure to an agent [IPCS 2004]. 
In most NIOSH assessments risk is portrayed as 
the incidence of the adverse effect (e.g., disease on-
set) occurring in subject(s) over a specified period, 
given that the subject(s) were disease free at the 
beginning of that period. Under this definition, it is 
a measure corresponding to an average individual- 
specific risk (i.e., cumulative incidence). 

Quantitative risk assessment relies on estimates of 
excess risk per unit dose obtained from the dose-
response assessment. In most settings, NIOSH 
broadly defines excess risk as the increased inci-
dence or prevalence of the adverse effect above a 
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control level or background that is attributable to 
the exposure. However, one can express excess risk 
in multiple ways, such as the following.

 ■ Added Risk: The difference in risk (or in the prob-
ability of a response) between subjects exposed 
and those not exposed to a hazard. For example, 
it is the increment by which the probability of ad-
verse effect exceeds background probability, calcu-
lated as P(d)–P(0), where P(d) is the probability of 
response at dose d and P(0) is the probability of 
response at zero dose (i.e., background risk). By 
this definition, added risk is also attributable risk.

 ■ Extra Risk: The measure of the proportional 
increase in risk of an adverse effect adjusted 
for the background incidence of the same ef-
fect. In other words, extra risk is the added 
risk relative to the proportion of the popu-
lation not responding to the background 
risk, calculated as [P(d)–P(0)]/[1–P(0)]. For 
example, dose-response analyses of quantal 
toxicologic data often use a BMR of 10% 
extra risk, which generally coincides with 
the sensitivity of animal bioassays. Extra 
risk approaches added risk with decreasing 

Table 6-1. Guiding principles of NIOSH risk characterization.* 

Principle Definition Criteria for Risk Characterization

Transparency Explicitness is key in the risk 
assessment process.

Use a risk analysis plan
Describe assessment approach, assumptions, 
extrapolations, and use of models 
Describe plausible alternative assumptions
Identify data gaps 
Distinguish science from policy
Describe uncertainty 
Describe relative strength of assessment
To the extent practical, use published information 
and make data available to other researchers

Clarity The assessment itself is free from 
obscure language and is easy to 
understand.

Be brief and concise†

Use plain English (avoid jargon)†

Avoid technical terms 
Use simple tables, graphics, and equations

Consistency The risk assessment conclusions 
harmonize with those in other 
risk assessments and with other 
NIOSH actions.

Follow NIOSH policies on technical writing and 
peer review
Place assessment in context with similar risk 
assessments 

Reasonableness The risk assessment uses sound 
science and sensible judgment.

Use review by peers 
Use best available scientific information 
Use good judgment 

*Adopted from the EPA Risk Characterization Handbook [Fowle and Dearfield 2000]. 
†Because complex analyses may require detailed explanations for understandability, brevity may be at odds with clarity. 
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contributions from background. This value 
is most commonly used in risk assessment 
[Haber et al. 2018]. 

 ■ Relative Risk: Typically reserved for human 
studies, the relative risk is the ratio of the risk 
in the exposed population to that observed in 
those unexposed (or exposed to a lesser degree). 
Relative risk is synonymous with risk ratio. One 
typically expresses or approximates relative risk 
as rate ratios, hazard ratios, odds ratios, SIRs, 
and SMRs. Some studies report excess relative 
risk (ERR), which is relative risk (or rate) - 1.

6.2 Risk Characterization 
Framework

The direct measurement of exposure-related risk in 
the region of interest is not practical in most cases, 
given that acceptable risks dwell below the obser-
vational level in most toxicologic and epidemio-
logic research. Instead, risk characterization relies 
on the extension of dose-response information by 
means of one of two general approaches to using 
dose-response data: 

 ■ Extrapolation Approach (Risk-based): Ob-
tain quantitative estimates of low-dose risk by 
model-based extrapolation of the risk at doses 
below the observable data. For example, a lin-
ear non-threshold (LNT) model would sup-
port extrapolation by extending a line from 
the origin of the dose-response curve (i.e., the 
point of no exposure and no excess risk) to the 
human equivalent point of departure (PoD) in 
the observable range. This approach generally 
assumes an absence of a response threshold; 
therefore, one estimates the residual risk under 
one or more exposure scenarios using probabi-
listic means and target risk levels (e.g., the dose 
estimated to cause a lifetime excess risk of 1 in 
10,000). Most NIOSH risk assessments have 
used this approach (Table 1-1).

 ■ Point of Departure/Uncertainty Factor (PoD/
UF) Approach (Health-based): Divide the es-
timated PoD by factors (see Section 6.3.4) that 
account for identified sources of uncertainty to 

arrive at an estimate of safe dose. Here the term 
safe implies an exposure level in which the as-
sociated risk is absent or negligible. The PoD/
UF approach is appropriate for systemic toxicity, 
in which hemostasis and adaptive mechanisms 
must be overcome before an adverse effect can 
manifest (i.e., a threshold response). In this ap-
proach, risk is not explicitly quantified (i.e., the 
dose is implicitly risk-free); however, probabi-
listic means may be used to quantify risk from 
exposure above the safe level. 

The concept that toxic effects have exposure-
response thresholds is fundamental to toxicology 
[Aldridge 1986; Klaassen et al. 2013; Rhomberg et 
al. 2011; Rodricks et al. 2007]. As such, chemical 
risk assessments related to occupational diseases, 
excluding cancer, have mostly used a PoD/UF ap-
proach. In contrast, early risk assessments of can-
cer from ionizing radiation exposure recognized 
that induced mutagenesis exhibited effects that 
were proportional to dose and absent of a dose-
response threshold [NRC 1956; Sievert and Failla 
1959]. Continued research into low-dose radiation 
effects led to the now widely accepted notion of the 
LNT dose-response for radiocarcinogenesis [NRC 
2006; UNSCEAR 2015]. Assuming the LNT dose-
response was also applicable to chemical carcino-
genesis, the EPA adopted LNT extrapolation in its 
risk assessments of carcinogens beginning in the 
late 1970s [Albert et al. 1977]. 

Refinements in risk assessment methods since the 
1970s have placed more emphasis on MoA evalu-
ations, given that some carcinogens exhibit non-
linearity at low doses. In fact, many of the factors 
contributing to nonlinearity in the dose-response 
curve at low doses for noncarcinogenic agents 
(e.g., clearance pathways, cellular defenses, and re-
pair processes) may also support nonlinearity at low 
doses for some carcinogens. Conversely, some non-
cancer endpoints may be better suited to risk ex-
trapolation, with an allowance for a dose-response 
that appears LNT at low doses. In fact, reference 
points (e.g., occupational exposure limits, known as 
OELs) derived in PoD/UF assessments often reside 
at levels well below observation. Thus, quantitative 
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substantiation of the absence of harm is not possi-
ble. Large interindividual variability in the low-dose 
threshold of a noncancer endpoint (i.e., widely vary-
ing susceptibility) can result in a dose-response that 
approaches linearity at low dose. 

Exceptions to the existing cancer/noncancer dichot-
omy have prompted calls for the harmonization of 
risk characterization methods [Barton et al. 1998; 
Crump 2011; Crump et al. 1997; NRC 2009; Rhom-
berg et al. 2011; White et al. 2009]. In response, some 
researchers have suggested a unified approach to risk 
characterization that is either extrapolation [NRC 
2009; White et al. 2009] or PoD/UF-based [Crump 
2011; Crump et al. 1997; Gaylor et al. 1999] or some 
combination of the two [Baird et al. 1996; Chen et 
al. 2007; Chiu and Slob 2015]. Still others have sug-
gested a framework continuing to allow both ap-
proaches [Barton et al. 1998; Rhomberg et al. 2011]. 
For example, Rhomberg et al. [2011] suggested that 
the cancer/noncancer paradigm is valid in most 
cases, yet acknowledged that exceptions may occur; 
therefore, the choice between approaches should be 
based on the degree of compatibility of the methods 
on a case-by-case basis. 

The approach used for risk characterization can 
have major impact on its findings; therefore, its se-
lection is a critical decision point in NIOSH quanti-
tative risk assessment. Unfortunately, risk assessors 
often face a difficult choice given sparse MoA data, 
uncertainty in the dose-response at very low doses, 
and other limitations (such as measurement error 
and interindividual variability in the dose-risk 
relationship). For example, uncertainty in the pres-
ence of a toxicity threshold is unavoidable; there-
fore, risk-extrapolation may predict residual risk 
when the true (but unknown) risk is zero, and the 
POD/UF approach may underestimate risk in the 
absence of a response threshold. Therefore, meth-
ods can appear interchangeable and a preference for 
one over the other can appear less than objective. 

To avoid inconsistency among risk assessments 
and to ease transparency, NIOSH has developed a 
risk characterization framework that incorporates 
decision logic for systematically selecting a strategy 

for using extrapolation and PoD/UF approaches 
in conjunction with current science and NIOSH 
policy (Figure 6-1). NIOSH risk assessors are en-
couraged to follow this logic for planning and con-
ducting risk characterization. NIOSH realizes that 
exceptions to the framework are possible, given nu-
ances in every risk assessment; therefore, risk asses-
sors are discouraged from forcing a fit. Above all, a 
WoE approach for evaluating and applying MoA 
must be the foundation of any method selected for 
risk characterization. 

For example, linear extrapolation is the default 
approach for characterizing the general class of 
chemical carcinogens. However, it is plausible that 
a non-genotoxic or non-DNA-reactive carcinogen 
may have sufficient MoA information to support 
nonlinearity or even a practical response threshold 
at low doses. In this instance, it may be more ap-
propriate to use nonlinear extrapolation (or even 
a PoD/UF approach) rather than LNT. In addition, 
data availability is an important factor for deciding 
on a risk characterization approach. For example, a 
PoD can be determined from a NOAEL or LOAEL 
even if data are insufficient to quantify the dose-
response relationship. Furthermore, this frame-
work is applicable only to NIOSH risk assessments; 
factors used in its development may be unrelated 
to, or may weigh differently on, risk characteriza-
tion conducted elsewhere.

6.2.1 Carcinogens
NIOSH has separately published its policy on the 
classification and risk characterization of chemical 
carcinogens [NIOSH 2017]. The policy establishes 
the process for determining a Risk Management 
Limit for Carcinogens (RML-CA), which is an 
exposure limit for chemical carcinogens, prefer-
ably based on a target risk; this represents a start-
ing place for controlling exposures.§ In forming the 
policy, NIOSH surmised that for most chemical car-
cinogens there is no known safe level of exposure; 

§Prior to the policy [NIOSH 2017], NIOSH expressed limits on car-
cinogens as RELs. 
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therefore, an extrapolation approach is gener-
ally required for characterizing carcinogenic risk 
at low doses. However, there is emerging scientific 
evidence that some carcinogens may have enough 
MoA information to allow conclusion that the dose-
response is nonlinear at low doses. In these situa-
tions, simple linear extrapolation may substantially 
overestimate cancer risk. Thus, the policy allows for 
nonlinear extrapolation for chemical carcinogens 
with enough MoA evidence supporting nonlinear 
dose-response relationships at low doses. 

As shown in Figure 6-1, the NIOSH Chemical Car-
cinogen Policy does not explicitly address using a 
PoD/UF approach for carcinogens with threshold 
responses [NIOSH 2017]. Instead, when data are 
adequate for modeling the dose-response, NIOSH 
prefers addressing potential threshold responses in 
carcinogens by using a sublinear, but non-threshold, 
mathematical model. Nevertheless, the policy does 
not expressly disallow other methods, including a 
PoD/UF approach, when data support an alterna-
tive approach. 

NIOSH recognizes three general types of carcino-
gens, based on the weight of MoA evidence for car-
cinogenesis (adapted from Streffer et al. [2004]):

 ■ Genotoxic carcinogens consistent with LNT. 
These include all mutagens and most direct-
acting (DNA-reactive) genotoxic carcinogens, 
separated into two subgroups: (1) those in 
which the WoE supports LNT (e.g., ionizing 
radiation and vinyl chloride) and (2) those in 
which mechanisms are uncertain or generally 
unsupportive of a threshold at low doses (e.g., 
acrylamide, acrylonitrile). For the latter, LNT 
is used as a default health-protective measure. 
For example, acrylamide is clearly genotoxic 
at the chromosome level and is metabolized 
through the cytochrome P450 CYP2E1 path-
way to a potentially reactive metabolite; there-
fore, it has generally been treated as a direct-
acting mutagen [Streffer et al. 2004]. There is 
a growing body of evidence of nonlinearity 
in the slope of the response for acrylamide; 
however, underlying genotoxic mechanisms 

are still poorly understood [Maier et al. 2012; 
Shipp et al. 2006]. Until the WoE is supportive 
of an alternative approach, risk characteriza-
tion for acrylamide would likely utilize LNT 
extrapolation as a primary risk characteriza-
tion approach. 

 ■ Genotoxic carcinogens inconsistent with 
LNT. These genotoxic carcinogens have ad-
equate evidence of underlying mechanisms 
suggesting nonlinearity in the response at low 
doses. These carcinogens are primarily non-
DNA-reactive substances in which the inter-
action is with proteins or protein systems at 
the chromosome level (e.g., aneugenicity or 
clastogenicity). These substances have a weak 
potency for direct mutagenicity relative to sec-
ondary mechanisms. This group also includes 
those substances in which carcinogenesis is 
associated with repetitive local tissue damage 
and cell proliferation (e.g., chloroform and vi-
nyl acetate). For example, evidence suggests 
that chloroform is a substance in which carci-
nogenicity occurs through cytolethality and re-
generative cell proliferation. As such, the EPA 
considers chloroform to be a probable human 
carcinogen that is not likely to cause cancer 
in humans without exposure conditions that 
cause cell death and regrowth (i.e., a practical 
threshold exists) [EPA 2001]. 

 ■ Non-genotoxic carcinogens that act solely 
through secondary mechanisms (e.g., endo-
crine modification, tumor promotion, immu-
nosuppression, and inflammation). These are 
non-genotoxic carcinogens that have widely 
varying MoA and tissue specificity but gener-
ally act through perturbation of cellular struc-
tures that can result in genomic instability. 
These processes tend to exhibit a threshold and 
be complex (i.e., requiring alteration of mul-
tiple pathways for cancer induction); there-
fore, non-genotoxic carcinogens are generally 
thought to be best described by sublinear or 
threshold responses at low doses [Hernández 
et al. 2009]. For example, TiO2 is not directly 
genotoxic; however, a plausible mechanism for 
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carcinogenesis is a nonchemical interaction 
of inhaled particles with the cells in the lung, 
causing persistent inflammation and media-
tion by secondary genotoxic processes. This 
complex mechanism may explain the sublinear 
carcinogenic response observed at low doses, 
as described in the NIOSH risk assessment 
[NIOSH 2011].

Genotoxic carcinogens consistent with LNT ex-
trapolation have been the most commonly ob-
served in risk assessment. The other types of car-
cinogens form a much smaller subset that either are 
non-genotoxic or have genotoxicity that is limited 
compared to other mechanisms (e.g., cell prolif-
eration); therefore, nonlinear extrapolation may be 
preferred in risk characterization. For example, Be-
van and Harrison [2017] identified a small number 
of genotoxic substances that have recommended 
health-based OELs, founded on MoA evidence of 
practical thresholds (Table 6-2). Similarly, Hernán-
dez et al. [2009] estimated that non-genotoxic car-
cinogens comprise about 12% of substances listed 
in IARC Groups 1, 2A, and 2B. 

Figure 6-2 shows a logic diagram for choosing an ex-
trapolation approach. This diagram is a slight mod-
ification of concepts adopted by the Scientific Com-
mittee on Occupational Exposure Limits (SCOEL) 
[Bolt and Huici-Montagud 2008]. As in the risk 
characterization framework, this diagram is a gener-
alization that may not accurately depict the specific 
situation encountered in an actual risk assessment. 
Mechanisms of carcinogenesis are highly complex 
and vary widely among chemicals; therefore, ex-
ceptions to this diagram are inevitable. Above all, 
the risk assessor must thoroughly evaluate the evi-
dence of nonlinearity to determine the appropriate 
course. When the information is equivocal, it may 
be informative to characterize risks by using mul-
tiple approaches.

Methods for carcinogenic risk characterization have 
varied within the risk assessment community. In 
assessments supporting regulation in the United 
States, most have estimated the carcinogenic risk 
at low doses by using LNT, with the exception 

of the EPA’s assessment of chloroform [EPA 2001]. 
In contrast, others have used a PoD/UF approach 
to derive safe levels for non-genotoxic and some 
genotoxic carcinogens [Bevan and Harrison 2017; 
Kirman et al. 2016; Pecquet et al. 2018; Seeley et al. 
2001; Thompson et al. 2016]. For example, Pecquet 
et al. [2018] determined a no-significant-risk level 
for tetrabromobisphenol A (TBBPA), using a PoD/
UF approach, based in part on MoA data support-
ive of a threshold in carcinogenic response. NIOSH 
carcinogenic risk assessments have exclusively used 
extrapolation by mathematical models to quantify 
risks at low doses. Of agents assessed, only TiO2 
demonstrated a nonlinear response, which NIOSH 
accounted for in the dose-response modeling. The 
lack of evidence of a threshold at low doses for any 
carcinogen does not prove the absence of an ex-
posure level at which effects are negligible or zero. 
Similarly, strong evidence of a threshold may still 
be insufficient to estimate a numerical value for ex-
posure that is considered risk-free, given statistical 
limitations, interindividual variability, and analysis 
uncertainty [Crump 2011]. Thus, PoD/UF meth-
ods and threshold-based mathematical models are 
absent in previous NIOSH risk assessments of oc-
cupational carcinogens, but they may be viable al-
ternatives to linear and nonlinear extrapolation in 
future assessments. 

NIOSH generally assumes carcinogenic effects from 
exposures are cumulative and irreversible; there-
fore, NIOSH estimates lifetime carcinogenic risk. 
In most cases, nontrivial background cancer risk is 
expected in a population (i.e., due to factors other 
than the occupational exposure); therefore, a com-
peting risk model is preferred. NIOSH typically 
estimates risks for an array of exposure scenarios 
and uses a target risk level to recommend a limit 
on exposure to carcinogens. The target risk level 
for cancer, as stated in the NIOSH Chemical Car-
cinogen Policy [NIOSH 2017], is one excess cancer 
case in 10,000 workers exposed in a 45-year work-
ing lifetime (i.e., 10-4 risk). In the absence of oppos-
ing evidence, NIOSH assumes that the attributable 
risk persists up to the age at death. The age at death 
used in NIOSH risk assessments has varied over 
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Figure 6-2. Risk characterization of chemical carcinogens using WoE (adapted from Bolt and Huici-Montagaud [2008]).
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time; however, recent assessments have projected 
risks to age 85 years, based on the availability of 
stable population rates (see Section 6.3.2).

Recent examples of NIOSH risk assessments in-
clude occupational carcinogens such as hexavalent 
chromium [NIOSH 2013a] and titanium dioxide 
[NIOSH 2011]. The MoA evidence for these ma-
terials differs, supporting low-dose linear response 
modeling for hexavalent chromium and nonlinear 
dose-response modeling for titanium dioxide. Risk 
characterization for these carcinogens follows the 
framework discussed, except NIOSH used a target 
risk level of 10-3 as the risk basis for RELs of both 
materials, according to the policy in place at the time. 

6.2.2 Non-Carcinogens
The NIOSH risk characterization framework gen-
erally considers a nonmalignant disease to have a 
toxicity threshold unless there is evidence to the 
contrary. Therefore, the PoD/UF approach is preferred 

for many noncancer endpoints. However, there can 
be exceptions to this rule. For illustration, consider 
the case of a chemical in which endogenous levels 
are near threshold levels (e.g., endogenous estro-
gens and androgens); thus, very low exogenous ex-
posure may appear to have a non-threshold effect 
for some endpoints. Similarly, several endocrine-
disrupting chemicals have been determined to be 
hormonally active at extremely low doses, making 
an assumption of a threshold for these chemicals 
untenable [Futran Fuhrman et al. 2015]. Finally, 
the response may vary so widely within the ex-
posed population that it is best modeled with the 
assumption that there is no practical threshold. 

Ideally, adequate MoA information would be avail-
able to support the decision on risk characteriza-
tion without equivocation; however, in practice this 
is rarely the case. Instead, a decision against PoD/
UF usually follows careful consideration of the na-
ture and severity of the adverse effect, its observed 
association with the agent of interest, and the 

Table 6-2. Examples of genotoxic carcinogens with evidence against LNT response 
 (adapted from Bevan and Harrison [2017]).

Substance Primary Cancers
Mechanism and OEL  

Supporting Document*

Cadmium (and cadmium 
compounds)

Lung, kidney, and 
prostate

Indirect genotoxic MoA characterized 
by different and non–mutually exclusive 
mechanisms, including oxidative DNA damage, 
induction of oxidative stress, inhibition of DNA 
repair, and deregulation of cell proliferation 
[SCOEL 2010]

Formaldehyde Nasopharynx Genotoxic amplification (at low exposures) by 
chronic proliferative processes caused by the 
cytotoxic effects [SCOEL 2008]

Nickel compounds (water 
soluble)

Lung, nasal cavity, and 
paranasal sinuses

Indirect genotoxic MoA characterized by 
interference with DNA repair systems and 
DNA methylation patterns, which lead to 
clastogenicity and an increased genomic 
instability [SCOEL 2011]

*All are OEL recommendations made by SCOEL, which advises the European Commission. 
Abbreviations: DNA, deoxyribonucleic acid; MoA, mode of action; OEL, occupational exposure limit; SCOEL, Scientific Committee on 
Occupational Exposure Limits.
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heterogeneity of the population at risk. For example, 
occupational pneumoconioses (e.g., silicosis, as-
bestosis, and coal worker’s pneumoconiosis) are 
severe apical health effects in terms of disability, 
survivorship, and risk persistence. As such, lung 
diseases are among the most common noncancer 
endpoints investigated in NIOSH quantitative risk 
assessments, and most have invoked an extrapola-
tion approach to risk characterization when quan-
titative dose-response data were available [NIOSH 
2016; Park et al. 2002; Park and Gilbert 2018]. An 
illustration is NIOSH’s recently completed assess-
ment of the risks from diacetyl exposure in the 
workplace [NIOSH 2016]. Diacetyl, and some re-
lated chemicals such as 2,3-pentanedione, is used 
in the manufacture of food flavorings. Obliterative 
bronchiolitis is a rare, fibroproliferative, incurable, 
potentially fatal disease of the small airways of the 
lung linked to diacetyl exposure in some epidemi-
ologic studies of flavoring workers. However, data 
from these studies were insufficient for direct quan-
tification of the excess risk of obliterative bronchi-
olitis (i.e., the apical adverse effect) from diacetyl 
exposure. Instead, NIOSH assessed data on chang-
es in lung function in exposed workers believed to 
precede obliterative bronchiolitis, given that respi-
ratory obstruction is a common presentation of the 
disease. Pulmonary dysfunction observed among 
exposed diacetyl workers appeared irreversible. 
The natural history of obliterative bronchiolitis is 
highly variable, and there is little information on 
its pathology related to initiation by toxic exposure; 
therefore, a practical threshold for diacetyl toxic-
ity is not known (although this is perhaps present 
on an individual basis). As with cancer risk assess-
ments, NIOSH estimated airborne concentrations 
corresponding to a variety of target risk levels, while 
assuming a 45-year working lifetime. In this case, 
the risk-based REL was derived by using a target 
excess risk of one case in 1000 [NIOSH 2016]. 

6.3 Using Risk Assessment as a 
Basis for RELs or RML-CAs

NIOSH risk assessments provide the quantitative 
scientific basis for NIOSH recommendations, 

including RELs for noncancer agents and RML-
CAs for carcinogens. Although the ultimate deci-
sion on a REL or RML-CA is a risk management 
decision and outside the scope of this report, it is 
important for risk assessors to understand the is-
sues that contribute to those decisions in order to 
provide well-supported advice for the risk manager. 

Although NIOSH may develop RELs to protect 
against occupational exposures of any duration—
and, in fact, the bases of many RELs are adverse 
effects due to acute exposures—RELs (and RML-
CAs) based on quantitative risk assessment usu-
ally focus on the prevention of chronic illnesses 
from longer duration exposures to lower levels 
of hazardous agents. In other words, NIOSH has 
typically conducted quantitative risk assessments 
for serious, chronic adverse effects such as cancer, 
pneumoconioses, neurological disorders, repro-
ductive outcomes, and other exposure-related cu-
mulative health effects. In part, this is in response 
to the NIOSH mandate in the Occupational Safety 
and Health Act of 1970 [29 USC 15] (as amended 
through January 1, 2004) to 

 “. . . develop criteria dealing with toxic 
materials and harmful physical agents 
and substances which will describe exposure 
levels that are safe for various periods of 
employment, including but not limited to the 
exposure levels at which no employee will 
suffer impaired health or functional capacities 
or diminished life expectancy as a result of his 
work experience” [29 USC 669 (a) (3)]. 

It also is in response to the codified directive to 
OSHA to ensure: 

“. . . on the basis of the best available 
evidence, that no employee will suffer 
material impairment of health or functional 
capacity even if such employee has regular 
exposure to the hazard . . . for the period of 
his working life” [29 USC 655 (b) (5)].

Because data describing health effects to workers 
exposed over a working lifetime are rare, risks are 
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estimated according to the guidelines described in 
this document. This includes integration of hazard 
identification and dose-response analysis. In ap-
plying these procedures, some assumptions and 
defaults are generally necessary to synthesize the 
information into risk estimates. The following sec-
tions describe the targets, defaults, and assump-
tions typically used in the NIOSH risk assessment 
process to provide an integrated picture of risks to 
workers.

6.3.1 Target Risk Levels
As previously discussed, model-based extrapola-
tion in quantitative risk assessment assumes that 
any level of exposure to the agent, no matter how 

small, has an associated health risk (i.e., no response 
threshold). Complete removal of the agent, albeit 
ideally preferred, is not practical in many industrial 
settings; therefore, a continuum of exposure-related 
risk must be managed. This continuum represents 
a gradient of occupational health risks, ranging 
from high levels that are clearly unacceptable to 
extremely low levels in which efforts further reduc-
ing exposure result in a negligible reduction in risk 
[Hunter and Fewtrell 2001]¶. The upper and lower 
boundaries of this gradient define the unacceptable 

¶The concept of acceptable risk implies a risk level that everyone will 
find acceptable. This notion is difficult to reconcile and rarely achiev-
able given individual perceptions of risk. Nevertheless, many situa-
tions require a baseline for residual risk that is generally accepted 
[Hunter and Fewtrell 2001]. 

Tolerable Region

Broadly Acceptable

Unacceptable

Figure 6-3. Framework for the tolerability of risk (adapted from HSE [2001]).
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and broadly acceptable regions, respectively (Fig-
ure 6-3). Between these regions lies the tolerable 
region, which is characterized by a general willing-
ness to tolerate risks in the region, given assurances 
that the risk is managed to an extent that is reason-
able and practical [HSE 2001; Tchiehe and Gauthier 
2017]. Here the terms reasonable and practical refer 
to using risk mitigation strategies that are propor-
tionate to the magnitude of the risk involved [Jones-
Lee and Aven 2011]. This is a commonly used risk-
reduction principle sometimes referred to as the As 
Low as Reasonably Practicable (ALARP) principle. 
Historically, NIOSH used this principle in its rec-
ommendations for exposure to carcinogens. In-
stead of a numerical REL, the carcinogen was given 
a “Ca” designation, which indicated that employers 
should implement substitution, engineering, work 
practice, and personal protective equipment strate-
gies to reduce exposures as low as feasible [NIOSH 
2007; NIOSH 2017].

When there is residual risk, quantitative risk as-
sessment will often estimate an array of risk lev-
els for risk management purposes. For example, 
NIOSH uses quantitative risk assessment to esti-
mate chemical exposures corresponding to risks 
ranging from one excess cancer case in 100 work-
ers, or 10-2, to 10-6, assuming continuous workday 
exposure over a 45-year working lifetime [NIOSH 
2017]. NIOSH typically estimates the airborne 
concentration corresponding to a hazard at a sin-
gle level within the tolerable region, designated 
as a target risk level. Multiple methods and prin-
ciples are available for establishing risk acceptance 
criteria, and the adopted methods and principles 
will undoubtedly influence the choice of criteria 
[Vanem 2012]. Moreover, risk acceptance is often 
founded more on sociopolitical significance rather 
than science. Thus, risk acceptance (or tolerance) 
criteria are more likely to be unique to the situation 
at hand rather than be pre-defined [Rodrigues et al. 
2014; Vanem 2012]. Nevertheless, some examples 
of target risk levels are available for major hazards 
[HSE 2001; NIOSH 2017]. For example, the Brit-
ish Health and Safety Executive (HSE) established 
that the tolerable region for work-related fatality 

lies between an individual risk of 10-3 and 10-6 per 
annum [HSE 2001]. The HSE recommends using 
ALARP to manage risks within the tolerable range 
but toward the lower bound. 

As another example, NIOSH has established a 
target risk level for non-threshold carcinogens of 
one excess case per 10,000 workers continuously 
exposed over a 45-year working lifetime [NIOSH 
2017].** Prior to this policy, assessments have used 
a target risk of 10-3 lifetime catastrophic disease risk 
of cancer and non-malignant outcomes from occu-
pational exposures [NIOSH 2011; NIOSH 2013a; 
NIOSH 2016]. As in the HSE, NIOSH target risk 
values have established reasonable starting places 
for risk mitigation strategies for chemical car-
cinogen exposure where residual risk is assumed. 
Figure 6-4 depicts a simple framework for deter-
mining target risk levels based on the relationship 
between the severity of the adverse effect and its 
probability of occurrence. For example, given a 
relationship between a catastrophic adverse effect 
and some hazardous exposure (e.g., leukemia from 
benzene exposure), the chart reveals a target level 
for a remote excess working-lifetime risk that lies 
between 10-3 and 10-5. 

The setting of target risk levels is a fundamental 
component of risk management; therefore, actions 
are primarily the responsibility of the decision-
makers and not the risk assessor. As such, a de-
tailed discussion on the various principles in play 
for determining these levels is beyond the scope 
of this report, although discussion is available in 
several published reports [Aven 2016; HSE 2001; 
Rodrigues et al. 2014; Tchiehe and Gauthier 2017; 
Vanem 2012]. Finally, it should be clear that health 
risk is among many aspects considered to derive a 
target risk level, given that risk tolerance can de-
pend on the combination of individual, societal, 
economic, and environmental impacts. Although 
these other factors may be considered by employ-
ers in managing risks, NIOSH quantitative risk 

**When practical, NIOSH bases its risk estimates on the 95% lower 
confidence limit of the central estimate [NIOSH 2017].
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assessment focuses solely on characterizing health 
risks according to its mandate; therefore, criteria for 
establishing NIOSH target risk levels to date have 
not considered costs and benefits [NIOSH 2017]. 

6.3.2 Working Lifetime and 
Persistent Risk

NIOSH currently defines a working lifetime of ex-
posure to a chemical as an 8-hour shift, 5 days a 
week, 50 weeks a year, for 45 years of exposure (i.e., 
from age 20 to age 65). This represents the maxi-
mum amount of exposure anticipated for a worker. 
However, because the adverse effects of interest are 
typically chronic effects, the distribution of expo-
sure over a week (or a year) does not usually affect 
the risk estimate. Therefore, whether a worker is 
exposed 4 days a week for 10 hours a day or 5 days a 
week for 8 hours a day does not usually make a dif-
ference in the final working lifetime risk estimate 
or the resulting 8-hour time-weighted average 
(TWA) REL or RML-CA. For chronic, cumulative 
hazards, NIOSH typically assumes that if the expo-
sure duration was less than working lifetime, then 
risks would be lower than estimated. For risks that 
do not accumulate across a lifetime (for example, 
short-duration hazards or adverse effects with an 
exposure threshold), the 45-year working lifetime 
is not a relevant measure.

The exposure-related biologic insult may be irre-
versible for some toxicants, and the initiated toxic-
ity pathway may progress throughout life after ex-
posure has ended. For example, significant excess 
solid-cancer risk persists in the Japanese atomic-
bomb survivors 60 years after their acute expo-
sure to ionizing radiation [Ozasa et al. 2012]. To 
account for risk persistence, NIOSH projects the 
added or extra risk used in developing the OEL 
to end of life. Recent NIOSH risk assessments as-
sume a terminal age of 85 years. This value takes 
into account the limitations on data describing 
background rates of chronic illnesses at older 
ages. Examples of NIOSH risk assessments pro-
jecting persistent lifetime excess risk are available 
for diacetyl exposure and pulmonary impairment 

[NIOSH 2016]; nonmalignant respiratory disease 
and silica exposure [Park et al. 2002]; as well as 
lung cancer and exposure to asbestos [Stayner et 
al. 1997], hexavalent chromium [NIOSH 2013a; 
Park et al. 2004], silica [Rice et al. 2001], and cad-
mium [Stayner et al. 1992a; Stayner et al. 1992b].

6.3.3 Competing Risks in Projecting 
Lifetime Risk

Many exposure-related chronic illnesses present 
very late in life and have multiple risk factors other 
than occupational exposure to the agent of interest. 
Therefore, risk assessments include an accounting 
of competing risks of mortality and background 
disease rates when projecting lifetime risks. Among 
many available approaches, competing risk models 
have most commonly been accomplished by using 
actuarial methods (life-table analysis) that account 
for age-specific death rates and background disease 
incidence, under the common assumption that the 
relative risk, conditional on exposure, is indepen-
dent of age [Cornfield 1957; Goldberg et al. 1956; 
NRC 1988; Zdeb 1977]. A life table provides a sys-
tematic record of the rate at which members of a 
hypothetical cohort (say, 10,000 workers who are 
‘risk free’ at beginning of working age) withdraw 
during follow-up by either death or the illness, 
based on reference mortality and incidence rates 
that vary by age. 

The life table predicts risks within age intervals that 
are conditional on survival to each age interval for 
intervals specified over the working lifetime period. 
The summation of the conditional probabilities of 
diagnoses (or death) in each interval using baseline 
disease rates provides an estimate of the lifetime 
risk in the unexposed (R0). Likewise, summing the 
conditional probabilities calculated from rates ad-
justed for exposure provides a corresponding risk 
measure, Rx  , in the exposed. These measures can 
then be used to determine the excess lifetime risk 
[e.g., lifetime additive risk = (Rx – R0) or lifetime 
extra risk = (Rx – R0)/(1 – R0)]. NIOSH uses these 
excess lifetime risks to determine the health basis 
for the REL or RML-CA.
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6.3.4 Application of  
Uncertainty Factors (UFs)

To address uncertainty in non-cancer adverse ef-
fects, NIOSH risk assessors have typically adjust-
ed estimates by using UFs. The adjusted estimate 
represents a “safe” level of exposure, which is es-
sentially the human equivalent PoD (e.g., NOAEL, 
LOAEL, or BMDL) for the critical effect, divided by 
a series of UFs. For example, NIOSH based its REL 
for occupational exposure to glycol ether on a PoD 
(i.e., NOAEL and LOAEL) and application of UFs 
[NIOSH 1991]. In this assessment, NIOSH deter-
mined a NOAEL from animal studies of reproduc-
tive and developmental toxicity (the most sensitive 
adverse effect), which was then adjusted to account 
for the animal inhalation rate, body weight, and 
fraction of the day exposed and converted to an 
equivalent exposure for humans. NIOSH applied 
two UFs: a factor of 10 for interspecies variability 
and another factor of 10 for intraspecies variability 
(i.e., a divisor of 100). Examples of NIOSH appli-
cations of UFs are in risk assessments for carbon 
nanotubes and nanofibers [NIOSH 2013b] and 
toluene diisocyanate [Daniels 2018].

In general, UFs are conservative approximations 
meant to protect workers against adverse effects 
from exposure to an agent by increasing the margin 
of safety [Dankovic et al. 2015]. UFs are preferred 
when data are insufficient to derive substance-
specific or analogue-specific adjustment factors 
known as chemical-specific adjustment factors 
(CSAFs). For example, chemical-specific data on 
interspecies differences or human variability in 
toxicokinetics or toxicodynamics are useful for 
deriving CSAFs [Meek et al. 2002; WHO 2005]. 
The scientific bases for UFs have been previously 
described [Dourson et al. 1996; Dourson and Stara 
1983; Naumann and Weideman 1995]. 

6.3.4.1 Animal-to-Human Uncertainty 
Factor (UFA)

UFA accounts for the uncertainty in extrapolating 
laboratory animal data to average healthy workers. 
When using laboratory animal data to assess the 

risks to workers, the risk assessor applies UFA to 
address the differences in sensitivity between ani-
mals and humans, generally assuming that humans 
are more sensitive to substances than animals. It 
may be that humans are equally or less sensitive 
than animals for specific exposures, but unless 
this is demonstrated with experimental data, a UFA 
should be applied.

The UFA comprises separate factors that account 
for toxicokinetic and toxicodynamic differences 
between species. Toxicokinetic differences arise 
because of differences in body size and metabolic 
rate. One way to address the toxicokinetic differ-
ence is by using an allometric scaling approach. 
In the absence of cross-species data on chemical-
specific metabolism, allometric scaling assumes 
that physiological parameters and basal metabolic 
rate are drivers of toxicological effects. As discussed 
previously in Section 5.6.3.1, risk assessors calcu-
late an allometric scaling factor, or species-specific 
dosimetric adjustment factor (DAF), by

DAF = (BWa  ⁄ BWh)0.25 

for body weights (BW) of the animal (a) and hu-
man (h). Thus, different allometric scaling factors 
correspond to different species. Allometric scaling 
is generally applicable in most cases, except when 
the substances cause toxicity only at the portal of 
entry, such as can occur for the skin, respiratory 
tract, or gastrointestinal tract (i.e., not dependent 
on absorption or metabolic rate), and for the acute 
lethal effects [EPA 2006b]. Allometric adjustments 
replace the toxicokinetic portion of the UFA.

Other replacements for the toxicokinetic portion 
of the UFA are (1) a DAF that is applied when in-
formation is available, describing a more proximal 
(and presumably more relevant) dose; and (2) com-
pound-related metabolic information that is avail-
able on humans and animals in the form of physio-
logically based pharmacokinetic (PBPK) modeling, 
provided that the model is validated and applicable 
to the specific agent. 
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Different agencies apply different defaults for UFA. 
For instance, WHO applies a sub-factor of 4 for 
toxicokinetics and 2.5 for toxicodynamics [WHO 
1994; WHO 2005], whereas the EPA typically uses 
equal sub-factors of √10, or approximately 3 [EPA 
2002]. The UFA of 1–10 should be applied based on 
available data on toxicokinetics and toxicodynam-
ics. NIOSH risk assessors use the WHO values of 4 
for toxicokinetics and 2.5 for toxicodynamics.

6.3.4.2 Interindividual (Human) Variability 
Uncertainty Factor (UFH )

UFH accounts for response heterogeneity among 
the members of worker populations at risk. Like 
UFA, UFH is a result of toxicokinetic and toxico-
dynamic differences between the average and the 
most sensitive worker population. NIOSH consid-
ers the overall UFH to be a factor of 10, with the sub-
factors for toxicodynamics and toxicokinetics each 
accounting for   10 of the variability (often rounded 
to 3). UFH is modifiable with chemical-specific 
toxicokinetic information. For example, one typi-
cally adjusts the UFH to a value of 3 for chemicals 
that cause respiratory irritation upon inhalation, 
because irritation is unrelated to metabolism (i.e., a 
toxicokinetic sub-factor reduced to unity).

Some organizations consider a working population 
to be less heterogeneous than the general popula-
tion and use a UFH of less than 10. For example, 
the European Chemicals Agency recommends a 
UFH of 5 to address interindividual variability in 
workers and a UFH of 10 for the general population 
when establishing derived no-effect levels [ECHA 
2008]. However, working populations might also 
include sensitive individuals such as asthmatics, 
pregnant women, older workers, and others who 
may be more susceptible. Therefore, NIOSH typi-
cally uses a factor of 10 for the overall UFH unless 
chemical-specific information is available to the 
contrary. Risk assessors must fully explain the ra-
tionale for using a factor other than 10. 

6.3.4.3 LOAEL-to-NOAEL Uncertainty  
Factor (UFL  )

UFL accounts for the uncertainty in extrapolating 
from LOAELs to NOAELs. When the starting point 

for the exposure level of concern calculation is a 
LOAEL, an additional UFL between 3 (for minimal 
toxicological severity, such as fatty liver) and 10 
(for severe effects, such as hepatic necrosis) should 
be applied to estimate a dose where no adverse ef-
fect would occur [Dourson et al. 1996; Dourson 
and Stara 1983; Naumann and Weideman 1995].

When the starting point is a NOAEL or a BMDL, 
no additional UFL is required and the UFL value 
should be unity (equal to one). However, risk as-
sessors might apply a UF >1 in certain cases, such 
as (1) with a poor-quality study in which very few 
animals and doses are used or (2) when very severe 
effects occur at the slightly higher next dose, which 
is the LOAEL. 

6.3.4.4 Shorter-Term-to-Longer-Term 
Uncertainty Factor (UFS )

Ideally, data from long-term (chronic) animal tox-
icology studies are available to estimate lifetime 
excess risks of chronic disease in humans. In prac-
tice, however, data may be limited to those from 
shorter-than-lifetime bioassays (e.g., two years 
for mice and rats). In these cases, a shorter-term 
to longer-term uncertainty factor (UFS) may be 
necessary to adjust for differences in duration of 
exposure. The UFS (also known as a subchronic to 
chronic factor) assumes that an effect observed at 
subchronic exposure levels will be seen at lower 
levels of chronic exposure [Dourson et al. 1996]. 
An exception would be evidence that risk (i.e., the 
incidence or severity) is unrelated to exposure du-
ration or fully characterized by the shorter-term 
study. For example, some effects like sensory ir-
ritation of the skin/respiratory tract and effects 
caused by a reactive metabolite may not increase 
with duration. In these circumstances, addition-
al correction using UFS >1 may be unwarranted 
[Dankovic et al. 2015].

Typically, a factor from 3 to 10 is applied for sub-
chronic to chronic extrapolation, with allowance 
for factor modifications using chemical-specific 
experimental data. Extrapolation to chronic expo-
sure from subacute (28-day) or acute (<24-hour) 
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studies is not generally recommended, although 
prediction of chronic effects from short-term stud-
ies is an active area of research. 

6.3.4.5 Database Inadequacy (Incomplete 
Data) Uncertainty Factor (UFD )

UFD accounts for the inability of the available toxic-
ity database to address all likely adverse effects in 
humans. Evaluation of the total toxicological data-
base should address whether the derived exposure 
level of concern is protective enough against all po-
tential adverse outcomes for the substance. 

Risk assessors apply a UFD (1 to 10) in the absence 
of sufficient data. For example, if preliminary data 
indicate some evidence of neurotoxic/immuno-
toxic effects, then the absence of a detailed study 
evaluating neurotoxicity and immunotoxicity may 
be grounds for a UFD >1. The use of this factor is 
infrequent; NIOSH has not applied UFD in any of 
its risk assessments to date. 

6.3.4.6 The Composite Uncertainty  
Factor (UFC )

Generally, the product of individual UFs yields 
the overall composite factor (UFC ). Typically, when 
a UF of   10 is used, convention says that   10 is ap-
proximately 3.16, which is rounded to 3. However, 
when multiplying UFs of 3 and 3, the result used 
should be  10 and not 9. A risk estimate incorpo-
rating UFS of all five types should trigger concern 
over database sufficiency and appropriateness of 
risk characterization. Multiplying several factors 
could result in an overly conservative UFC value 
because the set of factors may not be independent 
[Calabrese and Gilbert 1993]. In general, the UFC 
value is usually less than 300. A UFC value greater 
than 300 should be questioned. In rare instances, 
the UFC may be greater than 300 but should not 
exceed 3,000 when providing a basis for a REL.

6.3.4.7 Alternatives to Uncertainty Factors
In most situations, the use of standardized UFS 
provides an appropriately conservative margin of 

safety against underestimation of the health risk 
from a hazardous agent. Occasionally, however, 
the product of several default factors can lead to 
incongruous overestimation of risk. Alternatives 
to applying UFS are available. Most recently, prob-
abilistic methods for adjusting for uncertainty 
have been proposed [Chiu et al. 2018; Simon et 
al. 2016; Swartout et al. 1998]. Stemming from its 
review of the process used by the EPA to derive 
toxicity values for IRIS, the National Research 
Council (NRC) of the National Academies rec-
ommended a Bayesian hierarchical modeling ap-
proach as a means to modernize the use of UFS 
in risk assessment [NRC 2014]. In general, the 
NRC proposed accounting for overall uncertain-
ty by representing UFC as a Bayesian lognormal 
prior distribution to combine with a lognormal 
distribution representing uncertainty in the PoD. 
Simon et al. [2016] refined the NRC method to 
allow for simultaneous adjustment of individual 
factors rather than adjusting the UFC . Simon et al. 
[2016] provided several examples that cover most 
situations risk assessors may encounter. Overall, 
probabilistic methods tend to reduce the size of 
uncertainty adjustment compared to the standard 
UF approach, with the magnitude of the differ-
ence depending on the number of UFS and com-
plexity of the assessment. 

6.3.5 Characterizing Multiple 
Outcomes

Many hazardous agents are associated with more 
than one adverse effect. In general, NIOSH risk 
assessment focuses on hazards with the greatest 
consequences affecting the largest group of work-
ers and that have sufficient data to quantify occu-
pational risk. Candidate endpoints arise from 
hazard identification and dose-response analyses 
that provide valid estimates of the utmost unmiti-
gated risk associated with the hazard (e.g., per unit 
exposure to a hazardous chemical agent). Even so, 
a clear distinction in risk among some important 
stressor-outcome relationships may be lacking; there-
fore, risk characterization can involve comparisons 
of multiple endpoints that inform risk management 
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decisions on which stressor-outcome relationship 
best supports the intended purpose of the risk as-
sessment and end-user needs. NIOSH typically ac-
complishes this by drawing on the scientific judge-
ment of a multidisciplinary team and through input 
from stakeholders. In basing a REL, NIOSH gener-
ally seeks health endpoints that are: 1) most relevant 
to risk management goals (i.e., the risk assessment 
purpose), 2) most specific to the stressor(s) of inter-
est (e.g., the chemical exposure); and 3) most sensi-
tive to apical adverse effects of interest. 

As a NIOSH example, recall that the apical health 
effect for diacetyl exposure is obliterative bronchi-
olitis (OB). Human data on the association between 
diacetyl exposure and OB were limited; therefore, 
NIOSH examined the associations between diacetyl 
exposure and several different markers of human 
lung function, assuming each may indicate future 
onset of OB. NIOSH presented all analyses in its 
published risk assessment [NIOSH 2016]. For the 
REL, NIOSH relied primarily on the human data 
showing significant exposure-associated reductions 
in the FEV1/FVC ratio and percent predicted FEV1 
used in multiple outcome definitions. Rather than 
selecting data from a single outcome, NIOSH con-
sidered the range of estimated risk across outcome 
definitions and determined the REL accordingly. 

When multiple outcomes arise from apparently in-
dependent mechanistic origins, it may be appropri-
ate to consider aggregating risk to base the REL. 
To illustrate, Park [2018] estimated excess lifetime 
risk from occupational exposure to metalworking 
fluids by combining data from published stud-
ies reporting excess cancer mortality from one of 
12 tumor sites. Park [2018] reported attributable 
cancer deaths (assuming 10 years lag) of 0.48 per 
thousand person-years at age 60 after 40 years of 
work from 1.0 mg/m3-year exposure to metalwork-
ing fluids, with excess cancer in five sites (larynx, 
esophagus, brain, female breast, and uterine cer-
vix) contributing over 90% of the aggregate risk. 
Mortality from cancer of the larynx was the largest 
contributor, resulting in nearly 40% of the attribut-
able risk. 

6.4 Special Considerations 
When Developing a Short-
Term Exposure Limit (STEL)

In some cases, the available health effects data 
may elicit a concern for short-term exposure lim-
its (STELs). For example, if peak exposures increase 
CNS symptoms, asthma attacks, or other acute-onset 
health effects, the data may be informative for de-
veloping STELs. Risk assessors should consider 
evidence of peak exposures causing specific health 
effects when evaluating the need for a STEL. For 
example, if the 8-hour TWA REL is 1 ppm and 
peak exposures at 25 ppm cause nasal and eye irrita-
tion, it is prudent to consider those data in devel-
oping a STEL. A NIOSH STEL is typically defined 
as a 15-minute TWA exposure that should not be 
exceeded at any time during a workday. Without a 
STEL, in this case, workers exposed for 15 minutes 
to 32 ppm and zero exposure for the remainder of 
the day are compliant with the REL (i.e., 32 ppm × 
0.25 hour/8 hours = 1 ppm) but still receive expo-
sures related to adverse effects. If there is good dose-
response data at levels of concern for acute adverse 
effects, it is possible to conduct a quantitative risk 
assessment to support a numerical STEL. More of-
ten, quantitative data on the effects of peak expo-
sures are not available. In those cases, a concern for 
acute exposures may be supported by data or a plau-
sible concern may exist based on MoA, analogous 
chemicals, or other considerations. 

A simple way of testing this is to multiply the TWA 
REL or RML-CA by 32 (8 hours/workday ÷ 0.25 
hours). One should estimate a STEL if the result-
ing exposure would elicit concern for short-term 
effects. For example, consider a REL based on 
quantitative risk assessment of 10 ppm. If adverse 
effects are evident for the same chemical at short-
term exposure to 320 ppm, then estimate a STEL. 
If there are quantitative data showing health effects 
from short-term exposures (for example, respirato-
ry irritation after exposure to 200 ppm for 10 min-
utes), that should be used to inform or establish the 
STEL. Alternatively, if there is a concern for short-
term exposures but no data for quantitative assess-



99NIOSH CIB 69 • NIOSH Practices in Occupational Risk Assessment  

ment, then a STEL may be determined based on in-
dustrial hygiene practice (for example, STEL = 5 × 
8-hour TWA REL). This provides a maximum peak 
exposure that serves to both reduce peak exposures 
and reduce overall TWA exposure. 

6.5 Addressing Uncertainty  
and Variability

NIOSH risk estimates and RELs are most useful 
when combined with a reasonable understanding 
of the magnitude of the attendant uncertainty and 
variability. In risk assessment, the term variability 
describes the spread of true values of an estimated 
quantity (e.g., risk per unit dose) within the speci-
fied target population, given heterogeneity in the 
response in that population. Once a population is 
identified, variability is an irreducible property of 
the true distribution of the quantity in that popu-
lation [Nayak and Kundu 2001]. In contrast, “un-
certainty” refers to a lack of precise knowledge on 
the true dose-risk relationship between the agent 
and the adverse effect caused by the randomness 
(e.g., sampling error) and incompleteness of data. 
For example, imperfect knowledge of the relation-
ships among components of a system being mod-
eled (i.e., model uncertainty) is usually a dominant 
source of estimate uncertainty. Uncertainty and 
variability are unavoidable consequences in hu-
man health risk assessment. Moreover, uncertain-
ty is pervasive in each assessment step; therefore, 
summed overall, the propagated cumulative uncer-
tainty can become quite large. 

Appendix B provides details on common sources 
of uncertainty in NIOSH risk assessments. Briefly, 
in addition to model misspecification errors de-
scribed above, some of the major sources are: 

 ■ Measurement error in exposure estimation 
(how much of the agent workers were exposed 
to in the study) 

 ■ The impact of exposure timing and limits on 
observation (e.g., projecting working lifetime 
risk from less than lifetime exposure) 

 ■ Errors in health effects ascertainment (how ac-
curate the health effects data are and whether 
and how the health effects are related to the ex-
posure of interest) 

 ■ Extrapolation from animal models or specific 
populations of workers to the general worker 
population (i.e., external validity)

 ■ Influence of mixed exposures and other risk 
factors in the study population. 

Risk assessors should evaluate these sources, to the 
extent practicable, and describe the approach taken 
to reduce their effects. The description should in-
clude an assessment of potential biases in risk esti-
mates resulting from these sources. At a minimum, 
risk characterization should include an assessment 
of the analyst’s confidence in the estimate (e.g., 
confidence intervals or qualitative ratings), esti-
mates of the magnitude and direction of potential 
biases, and areas of future research that will reduce 
uncertainty and improve risk estimates.

In some situations, NIOSH may conduct detailed 
quantitative analyses to present a reasonable range 
of plausible risks at a given dose. Typically, these 
analyses employ complex statistical methods, such 
as second-order distributions and two-dimensional 
Monte Carlo simulation techniques [Burmaster and 
Wilson 1996; Kelly and Campbell 2000; Nayak and 
Kundu 2001], to account for variability and uncer-
tainty in data. However, these analyses often require 
considerable judgment on the distribution of values 
around true but unknown parameters used to de-
rive risk estimates. There are several statistical tech-
niques for dealing with data imperfections (e.g., 
latent variable analyses for unobserved variables, 
missing data imputation methods, and ensemble 
methods for countering model specification errors); 
however, there is no perfect remedy for data incom-
pleteness other than obtaining more and better data. 
Nevertheless, the continued evolution of personal 
computing constantly improves the field of quantita-
tive analyses; therefore, keeping current with uncer-
tainty analysis methods is paramount to safeguard-
ing best practices in NIOSH risk assessment.
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Appropriately communicating uncertainty and 
variability to risk managers and other stakehold-
ers is challenging [Schulte 2003]. In fact, convey-
ing these concepts can actually act to reduce public 
confidence in risk assessment findings [Johnson 
and Slovic 1995]. For example, Johnson and Slovic 
[1995] examined whether discussing uncertainty 
in risk assessments reduces the perceptions of risk 
and increases respect for the risk-assessing institu-
tion. They concluded from their findings that 

 ■ People are generally unfamiliar with uncer-
tainty in science and in risk assessment.

 ■ People are more likely to recognize uncertainty 
when simply presented, although graphics had 
mixed results in communicating uncertainty.

 ■ People’s views appear less influenced by uncer-
tainty manipulations than by attitudes toward 
risk, government, and authority.

 ■ Discussion of uncertainty in risk estimates ap-
pears to signal honesty (i.e., improved trans-
parency).

 ■ Discussion of uncertainty in risk estimates may 
also signal incompetence for some.

 ■ The magnitude of estimated risk levels may af-
fect views of expert knowledge (i.e., confidence 
in estimates diminishes with decreasing risk 
levels).

 ■ Although risk communication is beyond the 
scope of this document, risk characterization re-
quires its consideration. Therefore, NIOSH risk 
assessors consider the findings above in devel-
oping and implementing a strategy for treating 
and portraying uncertainty and variability. 

To reiterate, uncertainty is a property of the risk 
assessment, whereas variability is a property of 
the population at risk. For a risk assessment to be 
informative on decision-making, it is imperative 
that risk characterization adequately describes the 
uncertainty and variability in its risk estimates. 
Whether describing them quantitatively or qualita-
tively, risk assessors should maintain a distinction 
between variability and uncertainty to improve risk 

communication [NRC 1994]. As practical, risk as-
sessors should describe variability as the extent of 
actual risks to individuals within the affected popu-
lation above and below the reference point. Risk as-
sessors should also identify vulnerable populations 
and specific conditions of vulnerability. This infor-
mation allows for tailoring risk management strat-
egies to specific conditions or subgroups within a 
population to account for differences in suscepti-
bility. For example, ionizing radiation exposures 
are limited in pregnant workers compared to other 
workers, to protect the more vulnerable fetus. For 
uncertainty, risk assessors should provide enough 
information to aid risk managers in judging the ro-
bustness or believability of the reference point in 
decision-making. 

Risk characterization should include a discussion on 
analysis limitations and known or suspected biases. 
Any discussion on bias, known or otherwise, should 
clearly describe its source, magnitude, and direc-
tion. For example, a common practice is to err on 
the side of worker protection to create a margin of 
safety, given incomplete information. For example, 
selecting a PoD based on the lower 95% confidence 
limit on the BMD rather than the central estimate is 
a “protective” practice common to benchmark dose-
response modeling. Risk assessors should describe 
steps to increase the safety margin in enough detail 
to inform risk managers. Conversely, it may be ap-
propriate to describe a tendency to underestimate 
risk when comparing workers to other populations 
without accounting for selection differences (i.e., a 
bias from healthy worker effects [HWEs]). In sum-
mary, risk assessors should make clear to risk man-
agers any tendency to underestimate or overestimate 
true risks as a part of risk characterization.

6.6 More on NIOSH RELs  
and RML-CAs

Adequate control of causative agents of occupa-
tional illness and disability is fundamental to the 
health and safety of the American workforce. To 
that end, NIOSH synthesizes relevant informa-
tion on occupational hazards to formulate hazard 
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mitigation strategies, including publication of RELs 
and RML-CAs as discussed in this report. Prefer-
ably, these OELs stem from a quantitative assess-
ment of the occupational risk associated with the 
hazard, although analytic and technical feasibility 
is also considered. For example, the NIOSH REL for 
occupational diacetyl inhalation exposure is 5 ppb 
and was based primarily on the findings from a 
quantitative risk assessment using epidemiologic 
data [NIOSH 2016]. From these data, NIOSH pre-
dicted that the risk of significant lung impairment 
was in the range of a target risk of 10-3 excess life-
time risk for workers exposed to 5 ppb over a 45-year 
working lifetime. 

The occupational risk to workers from exposure 
to a hazard is best characterized by a probability 
distribution rather than a point estimate, given un-
avoidable variability in exposure and response. 
In addition, NIOSH typically integrates both risk 
science and health policy, such as the feasibility of 
analytic methods, into deriving RELs and RML-
CAs, which introduces further uncertainty (Figure 
6-5). OEL development often involves considerable 
uncertainty and generous professional judgment. 
Therefore, NIOSH recommends against treating 
RELs and RML-CAs as “bright lines” between safe 
and unsafe exposure for all workers. Instead, these 
OELs are better described as levels on the dose-risk 
continuum prompting evaluation and control (i.e., 
risk management). 

NIOSH recommends that in adopting a risk man-
agement strategy, decision-makers consider its 
recommendations on exposure levels, including 
their basis and the magnitude of occupational risk 
and attendant uncertainties, as well as competing 
risks from substitution or hazard controls. Funda-
mental to this strategy, employers should consider 
continued improvement in controls until exposure 
levels below the REL or RML-CA are confidently 
attained. However, actual exposure situations can 
vary widely; therefore, information used by risk 
managers in assessing the reasonableness and/or 
practicality of implementing hazard control strate-
gies can differ by situation. Thus, underlying any 

risk management strategy is an assurance that risk 
mitigation efforts are not disproportionate to the 
magnitude of the risk involved. In the example case 
of diacetyl, it is important to understand that the 
REL protects against an excess risk that is relative-
ly low compared to that faced in everyday life. At 
these low risk levels, situations can arise in which 
further reduction can be extremely difficult if not 
impractical to achieve. 

The REL and RML-CA are recommendations based 
on the best available science; neither places enforce-
able or binding limits on exposure. Application is 
solely at the discretion of the end-user. However, 
NIOSH derives RELs and RML-CAs to be protec-
tive for most workers and in most occupational set-
tings; therefore, in the absence of situational risk 
management, the recommended level can serve 
as an appropriate control level. As such, many in-
dustries have voluntarily adopted NIOSH RELs 
and RML-CAs as a part of their risk management 
practices. Moreover, regulatory agencies have con-
sidered available NIOSH recommendations and 
supporting information when setting enforceable 
limits on exposure to some agents (e.g., coal dust 
and silica). NIOSH RELs and RML-CAs are deter-
mined exclusively for worker protection; therefore, 
these recommendations are not directly applicable 
to the protection of consumers or members of the 
public. However, the science behind these recom-
mendations is likely to be useful for deriving simi-
lar public health standards.

In forming its recommendations on exposure, 
NIOSH identifies uses and manufacturing opera-
tions for the given hazard to recognize effective 
control strategies and describe engineering achiev-
ability. NIOSH may also indicate when the nature 
of job activities presents a challenge to meeting the 
REL or RML-CA. NIOSH has considered feasibility 
when setting RELs; however, engineering achiev-
ability is no longer considered in setting RML-CAs 
[NIOSH 2017]. Although routine attainment of 
exposures below the NIOSH-recommended limits 
may not occur in all work settings initially, it does 
represent a reasonable objective that employers can 
work to achieve through modification of work or 
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the introduction or improvement of engineering 
controls. In this way, the REL and RML-CA encour-
age technological improvements to limit exposures. 
For some operations, additional protective measures 
such as administrative controls and personal pro-
tective equipment may be necessary to achieve risk 
mitigation goals. 

Finally, NIOSH RELs and RML-CAs facilitate haz-
ard communication, as NIOSH urges employers 
to disseminate related information to workers and 

customers and encourages manufacturers to convey 
this information to downstream users. NIOSH also 
requests that professional and trade associations 
and labor organizations inform their members 
about workplace hazards. This communication 
should include a description of NIOSH recom-
mendations and the risk associated with exposures 
at controlled levels. In communicating these risks, 
it may be helpful to include context, such as risks 
from other sources encountered in the human ex-
perience.
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7 Conclusions

Integrating all the pieces of a risk assessment re-
quires careful attention to the purpose of the risk 
assessment. It is important to thoroughly investi-
gate the robustness of key assumptions used and 
provide transparency for both the main analysis 
and analyses of alternative modeling strategies and 
defaults. If innovative or unusual modeling or ana-
lytical strategies are used, it is critical that these be 
presented in a clear manner, drawing the reader’s 
attention to departures from past practice. Ideally, 
novel or unusual methods would be published in 
the peer-reviewed scientific literature before they 
are used to develop NIOSH policies expressed in a 
NIOSH numbered publication, although this may 
not always be possible. One set of questions from 
the risk assessment plan at the beginning of this 
document deserves attention: 

 ■ How will risks be expressed and, if in quantitative 
analysis, what are the target risk levels used? 

 ■ What is the support for those decisions, and are 
there reasonable alternatives? 

 ■ How would using any reasonable alternatives 
influence the conclusions of the risk assessment?

Among completed NIOSH quantitative risk assess-
ments, most have examined the risk from occupa-
tional carcinogens. The risk assessment assump-
tions regarding cumulative exposure and chronic 
expression of cancer are well supported and have 
numerous NIOSH precedents. Non-cancer risk as-
sessments, on the other hand, have diverse health 
impacts and exposure profiles. These require 
thoughtful discussion of the assumptions in the 
dose-response analysis. Although harmonization 
of cancer and non-cancer risk assessments is a de-
sirable goal, it is critical to keep in mind the differ-
ences in MoA and natural history of disease when 
using the risk assessment information to derive a 
REL for non-carcinogens.

NIOSH risk assessors must take care that the re-
sulting risk assessments are a rational and clear 
portrayal of the available information. Risk asses-
sors must thoroughly and accurately characterize 
uncertainties in risks caused by any level of expo-
sure to the agent. If the risks at low doses cannot 
be determined with high accuracy, precision, and 
confidence from current information, then the un-
certainty characterization step of the risk assess-
ment process should clearly reveal this fact. Results 
of uncertainty and sensitivity analyses should be 
presented that highlight the value of specific addi-
tional pieces of scientific information in resolving 
or reducing current scientific uncertainties about 
low-dose risks. When data are uncertain, risk as-
sessors tend to make protective assumptions; how-
ever, they should be mindful that an overestima-
tion of risk could lead to unnecessary actions that 
can be detrimental to occupational health. Thus, 
the potential for bias in either direction must be 
clearly identified to inform risk managers. Above 
all, the risk assessment must balance the protection 
of workers with the strength of the data to ensure 
that all the NIOSH recommendations are support-
ed by sound science. 

Risk assessment science is continuously evolving, 
given a wide array of uncharacterized hazards and a 
large community of risk assessment practitioners in 
academia, industry, and government. NIOSH risk 
assessments, although purposed for worker protec-
tion, can have relevance outside of the workplace. 
Similarly, activities intended for characterizing 
risks in other populations can also inform worker 
risks. Given these conditions, overlapping activities 
are anticipated among multiple agencies or risk as-
sessment programs. For example, a recent review 
by the United States Government Accountability 
Office (GAO) examined overlap among federal and 
state chemical toxicity assessment programs [GAO 
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2014]. The GAO findings suggest there was ample 
room for improvement in risk assessment through 
shared resources. Thus, routine exchange between 
NIOSH and the risk assessment community, both 
home and abroad, is paramount to ensuring best 
practices are followed, including improved effi-
ciency and effectiveness by reducing duplication of 
effort. For these reasons, NIOSH maintains active 
collaborations within the risk assessment commu-
nity and coordinates its risk assessment activities 
with stakeholders and the public. 

Methods currently under development provide 
additional, powerful tools to assess risks to work-
ers on the basis of limited data. Validation of these 
approaches is a critical need. Occupational risk as-
sessment should move forward and embrace new 
methodologies, but with caution and deliberate 
evaluation of new techniques and approaches. Ap-
pendix C shows examples of methods currently un-
der development. As these methods are validated 
and demonstrate their utility for occupational risk 
assessment, it is anticipated that NIOSH risk asses-
sors will adopt them.
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Terms Def initions

absolute risk The probability that a disease-free individual will develop a given dis-
ease over a specified time, given age and other risk factors, and in the 
presence of competing risk.

adverse effect Changes in the morphology, physiology, growth, development, repro-
duction, or life span of an organism, system, or population that result 
in an impairment of functional capacity, an impairment of the capac-
ity to compensate for additional stress, or an increase in susceptibility 
to other influences. 

adverse outcome pathway A conceptual construct describing a sequential chain of causally 
linked events at different levels of biological organization leading to 
an adverse effect.

aerodynamic equivalent diameter The diameter of a sphere with a standard density of one gram per cubic 
centimeter (1 g/cm3), having the same terminal velocity when settling 
under gravity as the particle under consideration.

agent A chemical, biological, or physical entity that contacts a target.

allometric scaling Adjustment of data to allow for differences and making comparisons 
between species having dissimilar characteristics (e.g., in size, shape, 
and metabolism). Allometric scaling commonly refers to the relation-
ship between metabolic rate and body size among mammalian species 
(e.g., the metabolic scaling between a laboratory rat and human).

aneuploidy A change in chromosome number from the species’ normal diploid or 
haploid number, other than an exact multiple of the haploid number 
(polyploidy).

associative causation Causal discovery based on relative risk or similar statistical measures 
of association. It is used in most papers that assert causal relationships 
and is often interpreted and applied by using Hill’s guidelines or simi-
lar qualitative weight-of-evidence criteria.

apical effect An observable outcome in a whole organism, such as a clinical sign 
or pathologic state, that is indicative of a disease state resulting from 
exposure to a toxicant.
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Terms Def initions

asymptotic relative efficiency The relative quality of two estimators as the sample size increases to infinity. 
This concept is best described with an example. Suppose an unknown param-
eter, θ, is to be estimated by using data y1, y2, …, yn and that two estimators, 
θi = θi (y1,y2, …,yn ); ί =1, 2, are to be compared. If the quality of each estimator 
is inversely proportional to its mean squared error MSE(θί)=E{(θί - θ)2}, then 
the MSE efficiency of θ1 relative to that of θ2 is MSE(θ2) ⁄ MSE(θ1) which is a 
function of the sample size η and the asymptotic relative efficiency is given 
by {MSE(θ2) ⁄ MSE(θ1)}. The asymptotic relative efficiency from per-
forming conditional logistic regression on sampled risk-sets, with m controls 
matched to each case, relative to the full risk-sets is m/(m+1).

attributable risk The risk that is regarded as being caused by exposure to the agent; also 
referred to as risk difference, excess risk, or added risk.

benchmark dose (BMD) A dose or concentration that produces a predetermined change in the 
response rate of an adverse effect, relative to the background response 
rate of the effect.

benchmark dose lower limit 
(BMDL)

The statistical lower confidence limit on the benchmark dose, which 
is typically used as the point of departure in dose-response analyses. 
The BMDL is usually set at the one-sided 95% lower confidence limit 
on the BMD.

benchmark response (BMR) A predetermined change in the response rate of an adverse effect rela-
tive to the background response rate of the effect.

biomarker Indicator of changes or events in biological systems. Biomarkers of ex-
posure refer to cellular, biochemical, analytical, or molecular measures 
that are obtained from biological media such as tissues, cells, or fluids 
and are indicative of exposure to an agent.

chronic exposure A continuous or intermittent long-term contact between an agent and 
a target. (Other terms such as “long-term exposure” and “protracted 
exposure” are also used.)

clastogenicity The disruption or breakage of chromosomes, leading to sections of the 
chromosome being deleted, added, or rearranged.

confounding The mixing of the effects from the exposure of interest with the effects 
from other factor(s) on the risk of the adverse effect.

cytotoxicity The harmful effects to cell structure or function that ultimately lead to 
cell death.

dichotomous Dividing or branching into two parts. For example, dichotomous data 
can have only two values.
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dose Total amount of an agent administered to, taken up by, or absorbed by 
an organism, system, or (sub)population. Dose is also described as the 
amount of agent that enters a target after crossing an exposure surface. 
The term is often used interchangeably with exposure.

dose-response The relationship between the amount of an agent administered to, 
taken up by, or absorbed by an organism, system, or population and 
the change developed in that organism, system, or population in re-
action to the agent. In NIOSH risk assessment, the dose-response is 
typically described as the conditional probability of the adverse effect 
in exposed workers at different levels of occupational exposure to the 
agent, given assumed levels for other direct causes of the adverse effect. 
Related term: exposure-response.

dose-response assessment The analysis of dose-response association between exposure to the 
agent and adverse effects. Ideally, the products of the dose-response 
assessment are unbiased estimates of the risk per unit dose that are 
used in risk characterization.

dosimetry The determination or measurement of the amount of an agent admin-
istered to, taken up by, or absorbed by an organism, system, or (sub)
population (see dose).

ecological fallacy An erroneous inference that may occur because an association ob-
served between variables on an aggregate level does not necessarily 
represent or reflect the association at an individual level; a causal re-
lationship that exists on a group level or among groups may not exist 
among the group’s individuals.

etiology The science of origins, causes, or causality of diseases or conditions.

excess relative risk A measure of association equivalent to the relative risk -1.

exposure Contact between an agent and a target. Contact takes place at an expo-
sure surface over an exposure period.

exposure assessment The process of estimating or measuring the magnitude, frequency, and 
duration of exposure to an agent, along with the number and charac-
teristics of the population exposed. Ideally, it describes the sources, 
pathways, routes, and uncertainties in the assessment. The use of this 
term is reserved for the description of risk assessments by the National 
Research Council [NRC 1983].
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exposure duration The length of time over which continuous or intermittent contacts 
occur between an agent and a target.

exposure event The occurrence of continuous contact between an agent and a target.

exposure frequency The number of exposure events in an exposure duration.

exposure index A measured or estimated quantity of exposure or dose.

exposure model A conceptual or mathematical representation of the exposure process.

exposure pathway The course an agent takes from the source to the target.

exposure route The way in which an agent enters a target after contact (e.g., by inges-
tion, inhalation, or dermal absorption).

exposure scenarios A combination of facts, assumptions, and inferences that define a dis-
crete situation where potential exposures may occur. These may include 
source, exposed population, period of exposure, microenvironment(s), 
and activities. Scenarios are often created to aid exposure assessors in 
estimating exposure.

exposure-response The relationship between the intensity, frequency, or duration of expo-
sure to a stressor or agent and the intensity, frequency, or duration of 
the subsequent biological response of the organism. Given varied use 
of the terms dose and exposure in many settings, exposure-response 
and dose-response are often used interchangeably. Related terms: 
concentration-response, dose-response.

external validity The degree to which study findings may apply, be generalized, or be 
transported to populations or groups that did not participate in the 
study.

extra risk The measure of the proportional increase in risk of an adverse effect, 
adjusted for the background incidence of the same effect.

genotoxicity A general description of all types of DNA or chromosome damage, 
such as breaks, adducts, mutations, aberrations, and aneuploidy.

hazard A condition or a set of circumstances that present a potential for harm 
(e.g., occupational illness or injury) to an organism, system, or popu-
lation.

hazard function In survival analyses, the rate of failure at an instant in time, t, given 
that the individual survives until t.
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hazard identification Identification of the type and nature of adverse effects that an agent 
has an inherent capacity to cause in an organism, system, or popula-
tion. Hazard identification is the initial stage of the risk assessment. 
The products of hazard identification are definitions of the agent and 
outcome used in dose-response analysis.

hazard ratio In survival analysis, the hazard function (rate) of one individual (e.g., the 
exposed), divided by that of another individual (e.g., the unexposed), 
typically holding all other predictors constant (i.e., a rate ratio).

hematotoxicity Adverse changes to the blood, caused by exposure to an agent.

human equivalent concentration 
(HEC)

The human concentration (for inhalation exposure) or dose (for other 
routes of exposure) of an agent that is believed to induce the same 
magnitude of toxic effect as the experimental animal species concen-
tration or dose.

immediately dangerous to life or 
health (IDLH)

An exposure condition or environment that is likely to cause death 
or immediate or delayed permanent adverse health effects or pre-
vent escape from such an environment. The IDLH values developed 
by NIOSH characterize these high-risk exposure concentrations and 
conditions.

information bias A bias in the effect estimate that occurs from systematic inaccuracies 
in the measurement of either the exposure or the adverse effect.

intake The process by which an agent crosses an outer exposure surface of a 
target without passing an absorption barrier (i.e., through ingestion or 
inhalation).

internal validity The degree to which study findings are free from bias.

interpretation bias A bias that arises from improper inference or speculation based on a 
naïve or deliberate lack of impartiality by the interpreter.

job-exposure matrix (JEM) A cross-classification of jobs/tasks and exposure level spanning a 
specified period. The JEM is used to estimate exposure indices that 
vary by job and time.

key event An empirically observable precursor step that is itself a necessary ele-
ment of the mode of action or is a biologically based marker for such 
an element.

knot The boundary between categories of the regressor in a regression 
model using a spline function.
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limit of detection (LOD) For an analytical procedure, the lowest amount or concentration of 
the analyte that is reliably distinguishable from the absence of analyte 
(i.e., low false-negative rate). For example, for air sampling methods, 
NIOSH defines the LOD as the mass of the analyte that gives a mean 
signal that is three standard deviations above the mean blank signal.

limit of quantification (LOQ) For an analytical procedure, the amount or concentration of the ana-
lyte at which quantitative results can be reported with a high degree 
of confidence. The high degree of confidence is based on a set of ac-
ceptance criteria that are assay-specific. For example, for air sampling 
methods, NIOSH defines the LOQ as the larger of: (a) the mass corre-
sponding to the mean blank signal + 10 standard deviations of the blank 
signal or (b) the mass above which recovery is ≥75%.

lowest observed adverse effect level 
(LOAEL)

The lowest dose or concentration at which there are biologically sig-
nificant increases in frequency or severity of adverse effects between 
the exposed population and its appropriate control group.

manipulative causation Causal discovery based on the intuition that changing causes also 
changes their effects. Manipulative causation is implied by mechanis-
tic causation, where given a network of mechanisms that affect the 
frequency or severity of adverse effects, manipulation of these mecha-
nisms will change the frequency or severity of adverse effects.

measurand A quantity intended to be measured.

measurement accuracy The agreement between a measured quantity value and a true quantity 
value of a measurand.

measurement error Any discrepancy between the true quantity and the measurand. The 
true quantity is considered unique and is unknowable.

measurement precision The agreement between measured quantities obtained by replicate 
measurements on the same or similar objects under specified condi-
tions.

mechanism of action The underlying biochemical interactions, usually at the molecular 
level, that lead to the mode of action at the cellular level and ulti-
mately the expression of the adverse effect. The mechanism of action is 
a more detailed understanding and description of events than is mode 
of action.

medical follow-back A data collection technique in epidemiologic studies where data from 
one source (e.g., self-report or registry linkage) is verified or augmented 
by using medical records.
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mode of action (MOA) A sequence of key events and processes, starting with interaction of 
an agent with a cell, proceeding through operational and anatomical 
changes, and resulting in the adverse effect.

monotonic A relationship, sequence, or trend is said to be monotonically increas-
ing if each value is greater than or equal to the previous one and mono-
tonically decreasing if each value is less than or equal to the previous 
one. Monotonic responses may be linear or nonlinear, but the slope 
does not change sign.

mutagenicity The ability of an agent to induce or generate heritable changes (mu-
tations) of the genotype in a cell because of alterations in or loss of 
genetic material.

no observed adverse effect level 
(NOAEL)

The highest dose level at which there are no biologically significant 
increases in the frequency or severity of adverse effects between the 
exposed population and its appropriate control; some effects may be 
produced at this dose level, but they are not considered adverse or 
precursors of adverse effects observed.

occupational exposure limit (OEL) The allowable concentration or intensity of a hazardous agent in the 
worker’s work environment over a period. Generally expressed as an 
8-hour time-weighted average or as a short-term exposure limit of 15 
or 30 minutes.

occupational risk The potential and severity of adverse effects in workers from their ex-
posure to workplace hazards.

odds ratio A measure of association in comparative studies, particularly case-
control studies. It is the ratio of the odds that an outcome will occur, 
given a particular exposure to the odds of the outcome occurring in 
the absence of that exposure.

parametric model A mathematical model of association that is wholly dependent on as-
sumptions about the distribution of the data that are represented by a 
finite set of explicit parameters. For example, a simple linear regres-
sion with one variable has two parameters (the coefficient and the in-
tercept), which completely explain the data.

pharmacokinetics The study of the absorption, distribution, metabolism, and elimina-
tion of exogenous chemicals in biological systems.
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physiologically based  
pharmacokinetic (PBPK)  
model

A multicompartmental mathematical model based on the known 
physiology of an organism used to quantify the absorption, distribu-
tion, metabolism, and elimination of exogenous chemicals following 
exposure. In this context, the compartments represent actual tissue 
and organ spaces and their volumes are the physical volumes of those 
organs and tissues.

point of departure (PoD) The estimate of dose-response at an exposure in the low range of (or 
just below) the observable data. Various approaches are available for 
its estimation; the simplest defines the PoD as the no observed ad-
verse effect level (NOAEL) or the lowest observed adverse effect level 
(LOAEL) from an animal toxicologic or human epidemiologic study.

pneumoconioses The group of interstitial lung diseases, mostly of occupational origin, 
caused by the inhalation of mineral or metal dusts, such as asbesto-
sis, silicosis, coal workers’ pneumoconiosis (black lung disease), and 
chronic beryllium disease.

publication bias A bias from an editorial preference for publishing particular findings, 
which distorts inferences made from available evidence.

random error Variation of results and inferences from the truth, occurring only 
because of chance. Random measurement error is a component of 
measurement error that in replicate measurements varies in an un-
predictable manner.

rate ratio A measure of association that quantifies the relationship between an 
exposure and a health outcome from an epidemiologic study, calcu-
lated as the ratio of incidence rates or mortality rates of two groups.

recommended exposure limit (REL) An exposure limit recommended by NIOSH, expressed as an 8-hour 
time-weighted average airborne concentration of a chemical during a 
40-hour workweek over a 45-year working lifetime. RELs are usually 
based on a quantitative risk assessment, when available, but may also 
depend on the limit of quantification of the analytical exposure mea-
surement method. RELs are published in NIOSH Criteria Documents 
and Current Intelligence Bulletins and are compiled in the NIOSH 
Pocket Guide to Chemical Hazards.

relative risk The ratio of the risk (disease probability) observed in the exposed (in-
tervention) group to that observed in the unexposed (control) group; 
also used as a general term for measures of association on a relative 
scale, including risk ratio, rate ratio, hazard ratio, odds ratio, standard-
ized incidence ratio, and standardized mortality ratio.
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reliability The extent to which multiple assessments are consistent.

risk The probability and severity of an adverse effect in an organism, sys-
tem, or population caused under specified circumstances by exposure 
to an agent. In NIOSH risk assessment, risk is more narrowly defined 
as the incidence of the adverse effect (e.g., disease onset) occurring 
in subject(s) over a specified period of time, given that the subject(s) 
were disease-free at the beginning of that period. Under this defini-
tion, risk is a measure corresponding to an average individual-specific 
risk (i.e., cumulative incidence).

risk assessment Determination of the relationship between the predicted exposure 
and adverse effects, in four major steps: hazard identification, dose-
response assessment, exposure assessment, and risk characterization. 
The NIOSH risk assessment process is limited to occupational expo-
sures and primarily includes hazard identification, dose-response 
assessment, and risk characterization, while omitting exposure assess-
ment. In NIOSH assessments, exposure data are evaluated as a part of 
hazard identification.

risk-based decision A risk management decision using risk assessment as the basis for 
decision-making.

risk characterization The qualitative and, wherever possible, quantitative determination, 
including attendant uncertainties, of the probability of occurrence 
of known and potential adverse effects of an agent in workers under 
defined exposure conditions. In NIOSH risk assessment, risk charac-
terization is the culmination of planning, problem formulation, and 
analysis phases to form a risk basis for NIOSH recommendations on 
limiting occupational exposure levels.

risk-informed decision A risk management decision using risk assessment as an input to 
decision-making.

risk management The managerial, decision-making, and control process intended to 
avert intolerable risk.

risk management limit for  
carcinogens (RML-CA)

An exposure limit for chemical carcinogens that represents a starting 
place for controlling exposures, preferably based on target risk. For 
example, NIOSH will set the RML-CA at a risk of one excess cancer 
case in 10,000 workers in a 45-year working lifetime, when analytically 
feasible. For more information, see the NIOSH Chemical Carcinogen 
Policy [NIOSH 2017].
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Terms Def initions

risk ratio A measure of association that quantifies the association between an 
exposure and a health outcome from an epidemiologic study, calcu-
lated as the ratio of incidence proportions of two groups.

short-term exposure limit (STEL) Generally, a 15-minute TWA exposure that should not be exceeded 
at any time during a workday. Some NIOSH STELs are based on a 
different short-term exposure duration.

similar exposure groups Workers having the same exposure profile because of similarity and 
frequency of tasks performed.

spline function A mathematical function that is used for regression model interpola-
tion or smoothing. The boundary between categories of the regressor 
are called the knots or joint points of the spline.

standardized incidence ratio (SIR) The ratio of the observed number of disease cases in the study popula-
tion to the number of cases that would be expected, based on disease 
rates in the referent population that are applicable to the character-
istics (such as age, race, gender, and calendar period) in the study 
population.

standardized mortality ratio (SMR) The ratio of the observed number of deaths in a study population to 
the number of deaths that would be expected, based on death rates in 
the referent population that are applicable to the characteristics (such 
as age, race, gender, and calendar period) in the study population.

stressor Any physical, chemical, biological, or psychosocial entity that can 
induce an adverse effect.

systematic error A component of measurement error that in replicate measurements 
remains constant or varies in a predictable manner.

target Any biological entity that receives an exposure or a dose (for example, 
an organ, an individual, or a population).

tolerable risk The region in the risk continuum that can, for the time being, be 
tolerated, assuming that the risk is minimized by appropriate control 
procedures.

toxicity The inherent property of an agent having the potential to cause an ad-
verse effect when an organism, system, or population is exposed to that 
agent. Toxicity is usually defined with reference to the dose, the way 
the agent is administered and distributed in time (single or repeated 
doses), the type and severity of injury, the time needed to produce the 
injury, the nature of the organism(s) affected, and other relevant con-
ditions. In some settings, toxicity refers to the adverse effect.



150 NIOSH CIB 69 • NIOSH Practices in Occupational Risk Assessment

Terms Def initions

uncertainty factor (UF) A “safety” factor ≥1 that is used as a divisor to adjust the safe-dose 
point of departure downward to account for variation and uncertainty 
in estimates from experimental or observational data.

underlying cause of death The disease or injury that initiated the train of events leading directly 
to death or the circumstances of the accident or violence that pro-
duced the fatal injury.

uptake The process by which an agent crosses an absorption barrier.

validity The quality of being logically or factually sound; the extent to which 
the measure describes that which is being measured. It is the degree 
to which inferences drawn are valid. Study validity comprises internal 
and external validity.

weight of evidence on  
toxicity (WoE)

The nature and extent to which the available data support the hypothe-
sis that an agent causes a defined adverse effect (e.g., cancer in humans).
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B.1 Validity
Validity is the quality of being logically or factually 
sound; the extent to which a measure describes that 
which is being measured; and the degree to which 
inferences drawn are valid. Study validity com-
prises internal and external validity [Campbell and 
Stanley 1963]. The former is the degree to which 
study findings are free from bias, whereas the lat-
ter is the degree to which study findings may apply, 
be generalized, or be transported to populations 
or groups that did not participate in the study. The 
two components of validity are not independent 
and can entail tradeoffs [Grimes and Schulz 2002]. 

In general, sound observational and experimental 
studies are aimed to provide internally valid causal 
effect estimates from a study sample, rather than 
estimates of an externally valid causal effect for a 
target population [Edwards et al. 2017]. Internal 
validity is the sine qua non of research supporting 
risk assessment; therefore, information on sourc-
es of potential bias (e.g., selection, information, 
and confounding) is the focus of this appendix. 
External validity has received much less attention, 
although it can also be an important consider-
ation when applying research findings to assess-
ing risks in a broad population of workers [Steck-
ler and McLeroy 2008]. External validity has been 
described as generalizability and transportability 
[Lesko et al. 2017]. In this context, generalizability 
refers to the quality of inference from a potentially 
biased sample of the target population to the full 
target population. Transportability refers to infer-
ence in the target population from observations 
in a partial or completely non-overlapping sample 
population. In either case, measuring external va-
lidity requires data and assumptions beyond those 
needed for internal validity. Thus, relating a caus-
al effect observed in a single study to the target 
population can be difficult and, in some cases, im-
practical. Generalizing and transport methodolo-
gies in observational research are sparse [Hernán 
and Vanderweele 2011; Lesko et al. 2017; Pearl 
and Bareinboim 2014]. Potential exceptions are 
statistical methods for combining diverse stud-
ies, such as meta-analyses and data pooling [Pearl 

and Bareinboim 2014]. A general algorithm for the 
transport of experimental results to populations is 
provided by Bareinboim and Pearl [2013].

The tendency to conflate statistical generalizability 
or representativeness with scientific generalizabil-
ity should be avoided. There are many examples in 
which representativeness can detract from research 
goals and ultimately hinder scientific inference 
[Rothman et al. 2013]. Instead, external validity 
can be considered as the explanation of the reasons 
in which the scientific findings are valid beyond a 
specific study. In practice, evaluation of external 
validity in risk assessment requires more scientific 
judgment compared to internal validity.

B.2 Selection Bias
The term selection bias is used to describe many bi-
ases that are themselves a distortion in the estimate 
of effect that results from the manner in which the 
study subjects are selected from the source popu-
lation [Gail and Benichou 2000]. These include 
biases resulting in differential follow-up, recall, 
self-selection, volunteering or non-response, and 
sampling frames. Selection bias is possible in all 
observational studies and particularly so in case-
control studies, because the outcome is known at 
study inception. For example, MacMahon et al. 
[1981] conducted a hospital-based case-control 
study that reported a strong association between 
coffee drinking and pancreatic cancer. Controls 
were selected from “… all other patients who were 
under the care of the same physician in the same 
hospital at the time of an interview with a patient 
with pancreatic cancer” [MacMahon et al. 1981]. 
This selection process resulted in a large propor-
tion of controls who presented mainly with gas-
trointestinal disorders; therefore, these patients 
may have been advised by physicians not to con-
sume coffee [Feinstein et al. 1981; MacMahon et 
al. 1981; Silverman et al. 1983]. The abnormally 
low odds of coffee consumption among controls 
would cause a spurious positive association be-
tween coffee intake and pancreatic cancer. This 
bias may have been avoided by selecting controls 
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from patients hospitalized for conditions not re-
quiring a change in diet [Silverman et al. 1983]. 
Primary control of selection bias is managed by 
study design. The avoidance of selection bias in 
case-control studies is accomplished by drawing 
cases and controls from the same study base; there-
fore, it is imperative that the study base be well-
defined before sampling. Other methods include 
maximizing participation rates, using randomized 
sampling protocols, and applying sound inclusion/
exclusion criteria. 

There is often overlap between confounding and 
selection bias; therefore, secondary control of se-
lection bias can sometimes be achieved by treating 
identifying factors as confounders in analyses and 
controlling for confounding accordingly. For ex-
ample, if union workers are more likely than office 
workers to participate in a study and be exposed, 
then partial control of the bias may be realized by 
including job information as a confounder. Finally, 
sensitivity analyses using an array of inclusion cri-
teria can help characterize the potential for signifi-
cant selection bias and define a dataset for use in 
risk assessment. 

The risk assessor should be able to recognize po-
tential sources of selection bias in an evaluation 
of the study design. The risk assessor should give 
more weight to studies that have best addressed 
this source of bias through design, control, and 
sensitivity analyses. The risk assessor should pay 
special attention to (non-nested) case-control stud-
ies, which are most vulnerable to selection biases. 

When reviewing the design of studies for the po-
tential for selection bias, risk assessors should con-
sider the following questions:

 • What study design was used and where does 
this design fall in the hierarchy for WoE? Pre-
ferred studies will provide a detailed descrip-
tion of the study design, which includes limi-
tations that are inherent to the design.

 • Has the study population been sufficiently 
described to determine potential differences 
between study and control groups (i.e., do 

inclusion criteria differ between groups)? 
Preferred studies will include a detailed de-
scription of the characteristics of the study 
and control groups.

 • What methods were used to select study par-
ticipants? How could those excluded from 
study have affected study results had they 
been included? Preferred studies will include 
a description of the exclusion and inclusion 
criteria used for study participation and the 
methods used to reduce the potential for bias. 

 • What steps were taken to maximize partici-
pation rates? Low participation is indicative 
of a potential for selection bias. 

 • Is participation non-differential with respect to 
exposure? Case-control studies are particularly 
vulnerable to differential selection to study and 
control groups with respect to exposure, given 
that case status is known at enumeration. 

 • Is there significant loss to follow-up? Loss to 
follow-up is typically less than 10% in well-
designed studies.

B.3 Information Bias
Information bias, sometimes referred to as data col-
lection bias, measurement error, or misclassification 
bias, is a distortion in the effect estimate that occurs 
when the measurement of either the exposure or the 
adverse effect is systematically inaccurate [Gail and 
Benichou 2000]. In this context, information bias 
is a study execution bias that is restricted to data 
on study participants (i.e., the sample population). 
Information biases may stem from errors in the 
measurement instrument (instrument bias), data 
source (data source bias), the observer or investiga-
tor (observer bias), and/or the subject (subject bias). 
Given limitations in available data, observational 
studies are particularly prone to several sources of 
information bias. For example, exposure data can 
be biased when collected with prior knowledge of 
case status (as in a case-control study). If exposure 
is self-reported, then a recall bias (a form of subject 
bias) may result from differential self-reporting of 
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exposure status among cases and the control group 
when cases are aware of a potential association be-
tween exposure and their disease. If exposure data 
are collected by interview, then the interviewer 
must be blinded to case status to reduce the poten-
tial for an observer bias. Likewise, if measurement 
data are collected, then care must be taken to en-
sure that identical procedures were used for both 
cases and controls. In general, when assessing the 
presence of information bias in a study under re-
view, the risk assessor should ask these questions: 

 • Was the study information obtained in the 
same way for all comparison groups?

 • Was the information on exposure and other 
explanatory factors collected by persons 
blinded to case status?  

Errors in the data are usually separated by data 
type, such that the term measurement error is re-
served for errors in continuous data and the term 
misclassification error refers to errors in discrete 
data. Measurement error of explanatory variables 
used in analyses is unavoidable, even in the best-
designed studies. Risk assessors should have a firm 
understanding of the potential effects from these 
errors in studies selected for dose-response assess-
ment; therefore, a detailed discussion is provided 
in the following section. This discussion is primar-
ily in the context of errors in measurement of the 
exposure of interest; however, the concepts pre-
sented are shared by all data sources vulnerable to 
an information bias.

B.3.1 Measurement Error and 
Misclassification

In the context of exposure, measurement (obser-
vation) error refers to any discrepancy between 
the true exposure, X, and the imperfect measured 
value, W; thus, it is analogous to exposure misclas-
sification*. By this strict definition, measurement 

*Although used to describe all measurement error, the term misclas-
sification is sometimes limited to errors in qualitative indices and 
replaced with misspecification when referencing errors in numerical 
indices.

error comprises both systematic and random com-
ponents. Random errors are stochastic fluctuations 
in observed values around the true (but unknown) 
value, without directional preference. Systematic 
error or bias refers to inaccuracies in measured val-
ues that are inherent to the measurement system. 

Systematic error (bias) is a difference between the 
mean of observed values and the true mean value, 
for a given true value, and typically arises from 
inaccuracy in measured or estimated values that 
are inherent to the measurement process. Bias can 
be unintentional or deliberate, such as the use of 
conservative assumptions to increase the margin 
of safety in a protection system. A common source 
of systematic error in exposure estimates are meth-
ods used to report “nondetects,” i.e., measurements 
below a detection threshold [Helsel 2005]. In these 
cases, the true value lies somewhere between the 
null and the detection threshold. In practice, non-
detects are typically recorded as zero (likely un-
derestimation of exposure), the limit of detection 
(LOD, which is a likely overestimation of expo-
sure), or simply omitted (a bias in either direction, 
depending on the use of the data). Here, the LOD is 
the lowest amount or concentration of the analyte 
that is reliably distinguishable from the absence of 
analyte. For example, in developing air sampling 
methods, NIOSH defined the LOD as the mass of 
the analyte that gives a mean signal that is three 
standard deviations above the mean blank signal 
[NIOSH 1995b]. Methods to account for non-
detects can range from simple substitution (e.g., 
substituting with LOD/2 or LOD/20.5) to complex 
parametric and nonparametric statistical modeling 
[Helsel 2005; NCRP 2010]. 

Measurement error can be shared or unshared 
[Hoffmann et al. 2018]. If the error in dose among 
individuals, groups, and time is independent and 
identically distributed (a general assumption in 
most error structure models), the error is un-
shared. In contrast, correlations in error compo-
nents between individuals, groups, or time repre-
sent shared error. Consider the case in which a set 
of data from personal air samples used a calibration 
coefficient that overestimated dose by 20%. This er-
ror is shared among workers in the set of data.
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In general, measurement error reduces statistical 
power for trend tests because of added variance 
and may bias effect measures in dose-response 
analyses. The influence on risk estimates depends 
on the combination of error characteristics (Berk-
son or classical random errors, or shared errors) 
and model specification, and this influence can 
range from negligible effects to a strong bias in ei-
ther direction [Armstrong 1998; Nieuwenhuijsen 
2010]. Furthermore, measurement error is often 
thought of only in terms of the primary predictor; 
however, risk assessors should be mindful that a 
dose-response relationship could also be strongly 
influenced by measurement error in covariates that 
confound or mediate effects of interest. 

Risk assessors should be reasonably assured that 
the data selected for dose-response analyses are 
free of a potential for significant bias. This assur-
ance is partly gained through rigorous adherence 
to estimation methods designed to avoid bias, 
such as observance of the data hierarchy, blinding 
assessors to case status, using and comparing mul-
tiple indices, and validating estimates. Well-con-
ducted epidemiologic studies typically pay careful 
attention to obvious sources of systematic error 
in exposure estimates, but analyses have been 
generally conducted without considering residu-
al measurement error effects [Jurek et al. 2006]. 
This is because assessments of measurement er-
rors often require elaborate tests of reliability 
and validity, which are infrequently performed, 
if even feasible. Furthermore, many investigators 
assume that random measurement error always 
induces bias toward a null association; therefore, 
they incorrectly conclude it cannot cause spuri-
ous positive findings. Consequently, information 
needed to account for measurement error in risk 
analyses may be lacking. When data are available, 
researchers have suggested methods for adjusting 
estimates to account for random error or assess-
ing its potential effects in dose-response analyses 
[Carroll et al. 2006; French et al. 2004; Hoffman 
et al. 2007; Maldonado 2008; Mallick et al. 2002; 
Meliker et al. 2010; Schafer et al. 2001; Spiegelman 
and Valanis 1998; Stayner et al. 2007; Thomas et 

al. 1993a]. These methods can involve (1) inte-
grating validation data into regression calibration 
or likelihood-based methods to produce adjusted 
estimates [Hoffman et al. 2007; Mallick et al. 2002; 
Schafer et al. 2001; Spiegelman and Valanis 1998] 
or (2) using Monte Carlo simulation to predict a 
range of plausible estimates [French et al. 2004; 
Meliker et al. 2010; Stayner et al. 2007]. In the 
former case, risk assessors should be cautious of 
adjustments made on the basis of inadequate in-
formation that could induce a potentially stronger 
bias relative to unadjusted values. 

In summary, there may be few options available 
to risk assessors regarding limiting the potential 
effects of measurement error in dose-response 
analyses. Nevertheless, it is important for risk 
assessors to have a fundamental understanding 
of measurement error and its associated effects 
so that they can better describe and account for 
the limitations in analyses that support quantita-
tive risk assessment. Seminal works on measure-
ment error and dose-response modeling should 
be reviewed [Armstrong 1998; Carroll et al. 2006; 
Fuller 1987; Ron and Hoffman 1999; Thomas et 
al. 1993b]. Some general concepts are discussed 
below. 

B.3.1.1 Differential versus  
Nondifferential Error

Exposure measurement error is either differential 
or nondifferential, contingent on its relation to the 
dependent variable (e.g., disease status). Error that 
is independent of case status (and other predic-
tors) is said to be nondifferential. It is commonly 
thought that nondifferential error results in bias 
toward a null association, which is a proven condi-
tion of binary variables or continuous variables in 
which the magnitude and direction of the measure-
ment error are independent of the true value (i.e., 
the classical error model; see Table B-1). However, 
there are examples of nondifferential error in poly-
tomous and continuous exposure measures that in-
duce bias away from the null [Dosemeci et al. 1990; 
Greenland and Gustafson 2006; Wacholder 1995].
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Table B-1. Direction of bias caused by nondifferential measurement  
error of the primary predictor variable.

Predictor Scale Bias Expected

Binary Biases the effect measure toward a null association

Polytomous Estimates of trend across adjacent categories are biased downward. Estimates 
from comparison of categories can be biased in either direction. 

Numerical Classical error biases regression coefficients toward zero. Berkson error (i.e., 
random error that is statistically independent from the observed variable) leads 
to little or no bias in coefficients in most regression models.

Differential error can result in serious bias in either 
direction. For example, workers diagnosed with 
leukemia may be more apt to report or may have 
more thorough histories of benzene exposure than 
workers who are cancer free. In this instance, leu-
kemia cases will appear to have higher exposures, 
thus biasing the association between benzene ex-
posure and leukemia away from the null. Differen-
tial exposure error is unlikely if exposure data are 
collected prior to the disease outcome or without 
prior knowledge of the hypothesized association. 
Therefore, the primary means to avoid differen-
tial error is to ensure that exposure estimates were 
made while blinded to case status and that case as-
certainment is, to the extent practical, independent 
of exposure status. When using data from previous 
studies, risk assessors should examine the study 
design for any potential weaknesses that may lead 
to differential measurement error. Common sourc-
es of exposure information that are vulnerable to 
differential measurement error are self-reports or 
proxy reports, medical records, and compensation 
records. Cautious interpretation is also warranted 
for studies involving case ascertainment by differ-
ential diagnoses of “occupational diseases” (e.g., 
silicosis, asbestosis, malignant mesothelioma, and 
chronic beryllium disease). In certain situations, 
nondifferential exposure information can be re-
structured to induce differential misclassification 
[Dosemeci et al. 1990; Flegal et al. 1991; Wachold-
er et al. 1991]. For example, combining categories 
of a polytomous exposure variable or constructing 

exposure categories from continuous exposure 
data can result in differential measurement error.

B.3.1.2 Categorical Indices
Measurement error in qualitative data is typically 
described as the probability of exposure misclassi-
fication. For example, the error in a dichotomous 
exposure index can be expressed by its probabil-
ity of correctly classifying an exposed worker (i.e., 
sensitivity) and the probability of correctly classify-
ing an unexposed worker (i.e., specificity). A ma-
trix of misclassification probabilities can be used 
to describe errors in indices with more than two 
levels. Misclassification probabilities are generally 
determined in validity studies comparing exposure 
estimates for a sample of workers in the study to 
estimates derived from another source that is be-
lieved to be as precise or better. Random (nondif-
ferential) measurement error in a dichotomous ex-
posure variable will always attenuate its effect, i.e., 
suggest that the agent under study is less toxic than 
it truly is. Trends across ordered categories of poly-
tomous exposure variables will also be attenuated 
by nondifferential measurement error; however, 
comparisons between categories can be biased in 
either direction [Armstrong 1998]. 

B.3.1.3 Error Models for Numerical Indices: 
Classical versus Berkson Error

Two approaches to modeling random measure-
ment error for numerical data are the classical and 
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Berkson models. Settings where observations are 
subject to random variation from factors such as 
instrument imprecision and recording errors may 
be amenable to a classical model of measurement 
error, e.g., W=X+U, where measurement error, 
U, is a random variable with mean zero variance, 
VARu , and is independent of X. The observed ex-
posure is equal to the true (but unobserved) ex-
posure plus some measurement error; therefore, 
average values obtained from replicate measures 
are unbiased estimates of the true exposure but 
will always have greater variability than the true 
exposure. In contrast, the Berkson error model, ex-
pressed as E(X|W=w) = w, arises when a single esti-
mate, w, is applied to several individuals who have 
differing values of the quantity being estimated that 
average to w. In this model, the true exposure is 
more variable than the observed exposure. For ex-
ample, assigning the average measured concentra-
tion from an ambient air monitor to the group of 
workers can be modeled by Berkson error. Model-
ing of the measurement errors may be approached 
with the use of additive or multiplicative structures 
under each of these approaches. 

The error form is significant regarding dose-response 
analyses. For example, consider the simple case of 
a univariate linear dose-response model: E(Y)= 
α+βXX, where the regression of response variable, 
Y, on the independent variable, X (with variance, 
VAR), has parameters α and β. If X is unavailable 
and exposure measure W with classical additive er-
ror (i.e., W=X+U) is substituted, then the resulting 
regression model E(Y) = α*+ βWW has the slope 
parameter βW = βX VARX  ⁄ (VARX + VARU), where 
the quantity (VARX + VARU) is the variance of the 
measured variable. The ratio of true to measured 
value variances (referred to by Fuller [1987] as the 
reliability ratio λ) must be less than unity; there-
fore, classical error results in attenuation of the 
observed linear dose-response [Fuller 1987]. The 
degree of attenuation is relative to the quantity 
VARU  ⁄  VARX , such that smaller measurement error 
or larger spread of true values reduces bias. For ex-
ample, the effect of classical error in a cumulative 
dose estimate is likely less than in a single measure-
ment of the same magnitude, given that the error of 

the single measurement is larger relative to that of 
multiple measurements comprising the cumulative 
dose. In contrast, attenuation of linear regression 
coefficients does not result from Berkson error. 
Recall that for Berkson error, E(X |W) = W, thus 
E(Y |W) = α+βXW, and therefore the estimator (βX) 
is not attenuated [Carroll et al. 2006].

B.3.1.4 Additive, Multiplicative, and Mixed 
Error Structures

Error structures (for numerical values) are general-
ized by two limiting cases: additive error, in which 
the variance is constant for different magnitudes of 
the measurand; and multiplicative error, in which 
the variance increases with increasing values of 
the measurand. The classical multiplicative error 
model can be expressed by W=XeU, such that there 
is additivity on the logarithmic scale [i.e., ln(W) = 
ln(X) + U]. Measurement error can be modeled by 
using additive, multiplicative, or a combination of 
each, resulting in a mixed error structure. Replicate 
measurements of several occupational agents have 
shown a multiplicative error structure. As in the 
additive measurement error model, the increased 
variance from multiplicative error attenuates the 
observed dose-response; however, the effect is larg-
er at higher exposures, resulting in the appearance 
of downward curvature with increasing values of 
the error-prone measurements of exposure [Car-
roll et al. 2006]. An attenuated response at higher 
exposure levels has been observed in numerous 
occupational studies and in simulations [Carroll et 
al. 2006; Stayner et al. 2003; Steenland et al. 2015]. 
Nevertheless, there is considerably less literature 
on accounting for multiplicative or mixed error 
structures in predictor variables of dose-response 
regression models. The subsequent effects on these 
models vary by structure; therefore, some notion of 
the error structure is important for understanding 
subsequent model limitations. 

B.3.1.5 Errors in Confounders and Effect 
Modifiers

As a general rule, random measurement error in 
a confounder in which the error is not correlated 
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with other measures or the exposure of interest 
tends to increase confounding from that covariate 
[Armstrong 1998]. This means that the effect mea-
sure of interest is likely to lie between the unad-
justed value (crude measure) and a value obtained 
under complete control of confounding (i.e., re-
sidual confounding from incomplete control). The 
directionality of induced bias depends on the di-
rection of the confounding effect. The amount of 
bias depends on the strength of the confounder and 
the reliability ratio. As in confounding, random 
measurement error in an effect modifier tends to 
attenuate its effect modification; therefore, the abil-
ity to observe risk difference among groups is di-
minished [Armstrong 1998].

B.3.1.6 Errors in Adverse Effect Definitions
Information bias is also plausible from misclassifi-
cation or measurement error in the adverse effect. 
For example, consider a cancer incidence study of 
U.S. workers in which cases in the exposed popula-
tion are ascertained from a single state registry. If 
incidence rates in the exposed group are compared 
to standardized national rates, then the resulting 
effect measure (e.g., SIR) is likely biased from un-
derascertainment of cases due to some migration 
out of the state by the workforce. Thus, cancer in-
cidence studies within the U.S. are improved with 
ascertainment involving multiple states. In this 
case, the misclassification is differential and the 
bias is likely toward a null association. As a simi-
lar example, consider a case control study in which 
the study population and adverse effect data are 
drawn from electronic health records (EHRs). As 
in the previous example, cases may be missed if di-
agnosed outside of the EHR catchment area (e.g., a 
single clinic or group of clinics), and the potential 
for error increases with decreasing catchment area 
size. In this scenario, the affluent workers in the 
study have a more flexible health insurance plan; 
therefore, they are more likely to be diagnosed out-
side of the catchment area (and be missed). These 
same workers may have less exposure because of 
their job assignment. Under these conditions, the 
misclassification is differential with respect to ex-

posure. As previously discussed, the resulting bias 
can be in either direction [Wang et al. 2016]. 

Misclassification can also occur from differences 
in diagnostic criteria used for defining the adverse 
effect. These criteria can vary by data source and 
by time. For example, the ICD published by the 
World Health Organization has been the standard 
diagnostic tool used for epidemiology since the late 
1940s. Multiple revisions to the ICD have occurred 
throughout the years, given changes in diagnostic 
criteria. The definitions of certain diseases (e.g., 
hematopoietic cancers) have dramatically changed 
over the course of the ICD; therefore, studies pub-
lished at different times may not have comparable 
disease definitions. As another example, con-
sider an adverse effect defined on the basis of 
data abstracted from medical records. The reliabil-
ity and validity of data in each individual medical 
record are vulnerable to different interpretations of 
different scenarios and often by different observers 
[Worster and Haines 2004]. 

Researchers acquire adverse effect data with sev-
eral different approaches tailored to the response 
definition, data availability, and study feasibility. 
Thus, the adverse effect data may stem from direct 
measurements (e.g., lung function tests), existing 
health outcome databases (e.g., National Death In-
dex, disease registries, compensation databases), 
medical records (paper or EHRs), and patient (or 
proxy) self-reports. These sources are not without 
error, and the potential for bias is dependent on 
the magnitude of these errors. For example, EHRs 
appear to be a promising source of medical infor-
mation suitable for risk assessment. However, data 
residing in these systems are inputted by imperfect 
systems and persons. Sources of misinformation 
associated with medical records include physician 
misdiagnoses, flawed laboratory results, and erro-
neous patient self-reporting [Ash et al. 2004; Bur-
num 1989; Luck et al. 2000; Worster and Haines 
2004]. Thus, data collected prospectively with use 
of study criteria that were defined beforehand are 
likely to be superior to data abstracted from EHRs.
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In summary, the potential for bias from mismea-
surement of the adverse effect is reduced when case 
definitions and ascertainment are the same among 
comparison groups. Nondifferential misclassifica-
tion of the adverse effect with respect to risk factor 
exposure will likely result in an underestimation 
of the effect (i.e., bias toward a null association), 
whereas differential misclassification may result 
in a bias in either direction. When selecting stud-
ies for data synthesis, the risk assessor should con-
firm consistency in adverse effect definition among 
comparison groups in data used for risk assessment. 
Studies with well-defined adverse effects that are 
consistent throughout observation should be given 
more weight. For example, data from a compulsory 
reporting system (e.g., cancer registry) is preferred 
to information gathered by self-report. Studies with 
poorly defined adverse effects should be avoided. 
Risk assessors must also consider limitations that 
are inherent to the sources of adverse effect data. The 
risk assessor must consider the potential bias in esti-
mates that may result from errors in the source data 
and weight the evidence accordingly.

B.4 Confounding
With respect to causal inference, confounding has 
been described as a mixing of the effects from ex-
traneous factors (confounders) with the effect of in-
terest [Checkoway et al. 2004]. This mixing occurs 
when the comparison groups (e.g., exposed and 
unexposed workers) have differing background 
risks of disease. There are many definitions of con-
founders; however, perhaps the most complete is 
that suggested by McNamee (2003), who posited 
that a factor should be considered a confounder if 
three conditions are met:
1. The factor is a cause of the disease, or a surro-

gate measure of a cause, in unexposed people. 
Factors satisfying this condition are called risk 
factors.

2. The factor is correlated, positively or negatively, 
with exposure in the study population. If the 
study population is classified into exposed and 
unexposed groups, this means that the factor 
has a different prevalence in the two groups. 

3. The factor is not affected by the exposure (i.e., 
does not reside on the causal pathway) [McNa-
mee 2003].

Disease risk factors can comprise a wide array, 
including demographic factors (age, sex, race), 
lifestyle factors (smoking habits, diet, and alcohol 
use), or exposures to other agents in the workplace 
or elsewhere. In study planning, all known or sus-
pected risk factors should be identified, especially 
those factors most apt to confound dose-response 
associations. This information is needed to achieve 
appropriate confounding control and characterize 
the potential influence on effect measures from re-
sidual confounding.

Methods to control for confounding are generally 
related to study design or analysis. Design methods 
are meant to ensure that the exposed group is com-
parable to or exchangeable with the referent group 
with respect to the potential confounders [Green-
land et al. 1999]. Exchangeability is the concept 
that response distributions in exchangeable com-
parison groups are identical under the same expo-
sure conditions. These methods include restriction, 
randomization (i.e., clinical trial), and matching on 
potential confounders. In practice, there is limited 
success in finding exchangeable comparison groups 
in observational studies; therefore, these studies 
tend to rely on analytical methods for controlling 
confounding, such as stratified analyses and multi-
ple regression. For example, dose-response analysis 
in a longitudinal study may use Poisson regression 
to control for confounding effects of age (an impor-
tant confounder for most chronic illnesses) on the 
exposure interest by either background stratifying 
on age or including age as a covariate in the model. 
Similarly, a nested case-control study of the same 
cohort may use conditional logistic regression with 
age (attained age of the case) as the time scale. Both 
approaches are used extensively in occupational 
epidemiology.

In general, reasonable control for important demo-
graphic risk factors (e.g., age, sex, and race) and cal-
endar period is achieved in most published epide-
miologic studies. However, measures of association 
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are still vulnerable to confounding effects from in-
complete control of measured risk factors or from 
no control of unmeasured risk factors. Smoking is 
known to cause several types of cancer and non-
malignant disease. If smoking prevalence is also 
related to exposure status, then smoking might be 
a confounder. The resultant bias could be in either 
direction (i.e., positive or negative confounding), 
depending on the smoking characteristics of the 
comparison populations. For example, consider 
that blue-collar workers tend to use tobacco prod-
ucts more than white-collar workers. If blue-collar 
workers are also more likely to be exposed than 
white-collar workers (a reasonable assumption in 
some workplaces), then smoking can be a correlate 
of exposure [Lee et al. 2004; Stellman et al. 1988]. 
Under these conditions, smoking could confound 
the effect of occupational exposure on a smoking-
related disease. The expected effect in this case is 
positive confounding of the exposure effect by 
smoking, which means the measure of association 
will be biased away from the null without control 
for smoking. Unfortunately, information on the 
smoking habits of workers in most longitudinal 
studies is rarely available; therefore, direct adjust-
ment for confounding effects of smoking are sel-
dom seen. Instead, researchers might use indirect 
methods for adjustment [Axelson and Steenland 
1988; Richardson 2010]. In the example above, job 
descriptions could be used as a proxy for smoking. 
Socioeconomic status is a well-known proxy for 
many lifestyle factors, including smoking, which 
may confound a dose-risk relationship [Lantz et al. 
1998; McFadden et al. 2008]. One could also ex-
amine alternative adverse effects that are strongly 
associated with the unknown confounder but not 
with the exposure of interest [Richardson 2010]. 
An observed (but unexpected) dose-risk relation-
ship between the agent of interest and alternative 
adverse effects is indicative of residual confound-
ing. At the very least, researchers should provide 
some information on the potential for significant 
bias because of incomplete control of known or 
suspected confounders.

Confounding can also occur in occupational stud-
ies that do not account for concomitant workplace 

exposures. For example, Sathiakumar et al. [2015] 
examined the relationship between styrene expo-
sure and leukemia in a large pooled study of work-
ers in North American synthetic rubber plants 
[Sathiakumar et al. 2015]. Styrene-exposed work-
ers were also exposed to 1, 3-butadiene, which is a 
known human leukemogen [IARC 2012]. Quanti-
tative estimates of cumulative exposure to 1,3-bu-
tadiene and styrene were calculated. Statistical 
analyses used Cox proportional hazards regression 
models with age as the time scale and adjustment 
for race, year of birth, and plant. Modest positive 
dose-response associations between leukemia and 
cumulative exposures to both agents were observed 
in separate models; however, the independent ef-
fects of styrene exposure could not be determined 
because of its strong correlation with 1,3-butadi-
ene. Thus, the carcinogenic effects of these agents 
in combination appear hopelessly entangled in 
these workers, and the dose-response observed for 
styrene could be due wholly, or in part, to unmea-
sured confounding by 1,3-butadiene. 

Whether a study is a valid contributor to hazard 
identification depends on how well the published 
results address the potential for confounding. In 
turn, resultant datasets must also inform and sup-
port the analytical approaches used in the subse-
quent dose-response assessment. Thus, the risk as-
sessor should evaluate the adequacy for control of 
measured and unmeasured confounders in studies 
under review. When unmeasured risk factors are 
identified, the risk assessor should evaluate the 
steps taken by researchers to reduce the potential 
for significant bias from residual confounding by 
these risk factors. The risk assessor should also 
consider the potential for unknown risk factors 
and assess their potential impact on internal valid-
ity. In all instances, the risk assessor should give 
more weight to studies with measures of associa-
tion that are least likely to be affected by residual 
confounding. 

B.5 Healthy Worker Effects
Another important potential source of bias in oc-
cupational studies is healthy worker effects. These 
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effects primarily occur from two points of partici-
pant selection—into the study at the time of hire 
and out of the workforce at time of termination—
and as such are commonly referred to as the “hire 
effect” and “survivor effect,” respectively [Arrighi 
and Hertz-Picciotto 1993; Arrighi and Hertz-Pic-
ciotto 1994; Fox and Collier 1976]. A third aspect 
to healthy worker effects is the natural decline in 
health status with time since hire [Checkoway et 
al. 2004]. Finally, healthy worker effects do not ap-
ply equally to all outcomes or to all groups within a 
study population (e.g., different races, ages, or de-
mographics). For example, healthy worker effects 
are generally greater among minority populations 
compared to Caucasian males because of different 
class structures in working and referent popula-
tions [McMichael 1976]. Given distinct differences 
in the sources of potential bias and methods avail-
able for control, risk assessors should consider 
these aspects separately as they are discussed in the 
following sections. 

B.5.1 Healthy Worker Hire Effect
The healthy worker hire effect (HWHE) results 
from increased employment eligibility among 
healthier persons, which can be exacerbated by hir-
ing practices that screen against poor health (e.g., 
pre-employment exams). These conditions can re-
sult in a group of persons of interest (i.e., workers) 
who are in better overall health than the compari-
son group, irrespective of exposure status. HWHE 
is typically observed in external comparisons (e.g., 
SMR or SIR studies using the general population 
as referent); however, some employers have used 
medical screening information for job placement 
within the industry, which could bias results from 
internal comparisons. For external comparisons, 
the HWHE results in a deficit in risk compared 
to true effects in some outcomes, particularly in 
chronic diseases most associated with lifestyle fac-
tors (e.g., diabetes mellitus and cardiovascular dis-
eases). An alternative comparison group, such as 
a similar working population that is unexposed to 
the agent of interest, may reduce this bias. When 
job assignment is influenced by medical screening, 

the direction of the potential bias depends on the 
relationship between job assignment and exposure. 
Risk assessors need to be wary of the potential for a 
strong HWHE in data from external comparisons. 

Unfortunately, there are few options afforded to risk 
assessors for accounting for HWHE. Risk estimates 
from external comparisons can be adjusted with 
use of information on potential biases [Burstyn et 
al. 2015; Kirkeleit et al. 2013; Park et al. 1991]; how-
ever, data availability to support adjustments may 
be limited. Moreover, adjustments to published 
SMRs are crude approximations at best and could 
result in bias themselves. When available, data 
from internal comparisons should be preferred for 
dose-response analyses of working populations. 
When internal comparison data are available, the 
risk assessor should evaluate the potential for bias 
from continued medical surveillance. 

B.5.2 Healthy Worker Survivor Effect
The healthy worker survivor effect (HWSE) oc-
curs when healthy workers continue to work and 
unhealthy workers leave employment prematurely 
or are reassigned to less hazardous work because of 
their poor health. A potential exacerbating factor 
is a possible health benefit from employment com-
pared to unemployment, such as the beneficial ef-
fect of physical exertion in reducing cardiovascular 
risk. In any case, exposure is a condition of employ-
ment, which itself may be conditional on exposure, 
health status, or both. The likely effect from these 
relationships is attenuation of the estimated dose-
response. 

Methods for mitigating HWSE vary. Control of 
these effects in longitudinal studies tends to involve 
one or more factors: age at hire, employment dura-
tion, employment status, time since hire, and age at 
risk [Checkoway et al. 2004]. Methods have typi-
cally involved confounding control by restriction, 
by matching (stratifying), or by covariate adjust-
ment. For example, HWSE controls have included 
restricting the analysis to participants alive after a 
minimum length of time since hire; adjusting for 
employment status as a time-dependent variable; 
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Figure B-1. Directed acyclic graph representing healthy worker survivor effects. Let j be index age; A, exposure 
cumulated over follow-up; X, continuous exposure; W, index employment status; U, a common cause of W and 
T; and T, the index survival time. The three components of survival bias, as expressed by Naimi et al. [2013], are 
shown as C1 , C2 , and C3. Adapted from Naimi et al. [2013].

and using time lags (exposure windows). However, 
it is now recognized that the nature of HWSE may 
preclude complete control of the effect by standard 
approaches [Buckley et al. 2015; Naimi et al. 2013]. 
This is perhaps best explained by the causal dia-
gram in Figure B-1, in which Naimi et al. [2013] 
described three components of HWSE. Compo-
nent 1 (C1) is the association between prior exposure 
(X(j-1)) and employment at age j (Wj), component 2 
(C2) is the association between employment status 
and subsequent exposure (X(j)), and component 
3 is the association between employment status 
and survival time (T). If all three components are 
present, then a standard confounding control that 
treats employment status as a time-varying con-
founder in Cox, Poisson, or logistic regression (i.e., 
standard methods) is inappropriate and may result 
in bias (Table B-2). When all three components are 
likely, then the use of more sophisticated nonstan-

dard analytic methods, such as G-estimation, para-
metric G-formula, and inverse-probability-weighted 
marginal structural models, is preferred to appro-
priately control for healthy worker survivor bias 
[Buckley et al. 2015]. This is because the deleteri-
ous health effect from a prior exposure may affect 
employment status (i.e., violates the third aspect of 
a confounder).

Of course, a key consideration is whether it is rea-
sonable for exposure to influence employment sta-
tus. For example, strong survivor effects are much 
less likely to occur in late-onset adverse effects (e.g., 
malignant mesothelioma) compared to debilitating 
effects (or precursor effects) that present during 
employment years (e.g., occupational asthma). 
Thus, risk assessors must evaluate the severity and 
likelihood of survivor effects on the basis of spatial 
and temporal relationships between employment, 
exposure, and outcome. 
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Table B-2. Associations contributing to Healthy Worker Survivor Effect (as shown in Figure B-1)  
and recommended analytic methods. (Adapted from Naimi et al. [2013].)

Component

C1 C2 C3

Confounding 
by employment 

status?

Employment 
status affected by 

prior exposure? Analysis method*

1 1 1 Yes Yes Non-standard
1 1 0 No Yes Standard, employment status unadjusted
1 0 1 No Yes Standard, employment status unadjusted
0 1 1 Yes No Standard, employment status adjusted
1 0 0 No Yes Standard, employment status unadjusted
0 1 0 No No Standard, employment status unadjusted
0 0 1 No No Standard, employment status unadjusted
0 0 0 No No Standard, employment status unadjusted

*Examples of standard analytic methods are logistic, Poisson, and Cox modeling. Non-standard methods are G-formula and G-estimation of a 
structural nested model.

When there is a potential for strong HWSE, stud-
ies have recently employed methods, such as G- 
estimation [Bjor et al. 2015; Chevrier et al. 2012; 
Naimi et al. 2014; Picciotto et al. 2016] and G-
formula [Cole et al. 2013; Neophytou et al. 2016], 
in structural nested models or accelerated-failure-
time models. Although promising, studies using 
these methods are currently sparse; therefore, the 
evidence available for hazard identification will 
likely be restricted to studies in which residual 
HWSE is likely when prior exposure affects em-
ployment status. Nevertheless, these new methods 
may be well suited for dose-response modeling in 
the dose-response assessment.

HWSE may also result from underestimation of 
prevalent cases in cross-sectional studies when the 
adverse effect causes persons to leave employment 
or move to less hazardous jobs. For example, Eisen 
et al. [1997] identified significant selection bias in 
estimates of asthma prevalence in a cross-sectional 
study of workers exposed to metalworking fluids. 
In that study, workers transferred to a job with less 
exposure because of the onset of asthma symptoms. 
This resulted in underestimating disease prevalence 
in those exposed and subsequently overestimating 

prevalence among unexposed persons at the time of 
the health survey (i.e., a negative dose-response). 
However, a reanalysis of the data using exposure 
and disease status at the time of asthma onset in-
stead of time of survey revealed significant excess 
risk. When evaluating occupational cross-sectional 
studies for risk assessment, risk assessors should 
determine whether there is a potential for the ad-
verse effect to influence work status. Studies in 
which influence is likely should be avoided, unless 
HWSE has been adequately addressed in the study 
design and execution.

B.5.3 Length of Follow-up
Although often given less attention, the length 
that a working population is followed in longitu-
dinal studies is an important consideration when 
evaluating the potential for healthy worker effects. 
The strength of HWHE diminishes with increas-
ing time since first employment and is essentially 
no longer present at post-retirement age. Retirees 
also lose the survival advantage of continued em-
ployment. Collectively, this suggests a decrease in 
healthy worker effects with increasing follow-up 
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[McMichael 1976]. Risk assessors should be wary 
of studies of chronic (or latent) adverse effects that 
have relatively short follow-up periods. For ex-
ample, a recent cohort study of mortality patterns 
among paid Australian firefighters reported a sta-
tistically significant deficit in risk of cancer death 
(SMR = 0.81; 95% CI, 0.72–0.90); however, the 
average length of follow-up was less than 16 years 
[Glass et al. 2016]. In contrast, a comparable study 
of U.S. career firefighters reported excess cancer 
mortality (SMR = 1.14; 95% CI, 1.10–1.18) in a 
cohort with average follow-up of 29 years [Daniels 
et al. 2014]. The relatively short follow-up period 
in the Australian study is unlikely to counter the 
selection effects due to pre-employment health cri-
teria for firefighters. In addition to person-years at 
risk, the percent deceased is a useful indicator of 
the length and quality of follow-up in cohort stud-
ies, especially in examinations of adverse effects 
that generally occur late in life (e.g., cancer). In 
the previous example, fewer than 5% of the cohort 
of full-time Australian firefighters were deceased, 
compared to over 40% of the U.S. firefighter cohort. 

In the previous examples, we discussed the po-
tential for selection bias toward a null association 
with decreased follow-up. Studies of chronic dis-
eases characterized by a short latent period and 
short-lived risk after exposure may provide for ex-
cess risks that decrease with increasing length of 
follow-up. For example, leukemia risks that were 
attenuated with increased follow-up have been ob-
served in follow-on studies of working populations 
exposed to benzene and ionizing radiation [Boice 
et al. 2011; Daniels et al. 2013; Rinsky et al. 2002; 
Silver et al. 2002]. Thus, the risk assessor must also 
consider effect modification by temporal factors 
that are associated with the length of follow-up. 

B.6 Other Potentially Important 
Sources of Bias 

B.6.1 Model-form  
Misspecification Error

It is generally understood that any mathematic 
model of the dose-response is not the “true model” 

that generated the observed data; at best, it only 
approximates truth [Posada and Buckley 2004]. 
Thus, model-form misspecification results when 
the mathematical structure of the assumed causal 
model substantively differs from the true biologic 
dose-response. The error can be sizeable when the 
assumptions of the model are not appropriate for 
the data. Errors in variable selection and/or defi-
nition (i.e., variable coding) can lead to spurious 
dose-response associations. This error is particu-
larly problematic in hazard identification because 
investigators rarely discuss statistical methods used 
to counter model-form error. At a minimum, not 
accounting for this error results in overvaluing es-
timate precision.

Various methods are available to reduce model-
form bias and aid in model selection, such as pe-
nalized criteria (e.g., AIC, BIC, and Mallow’s Cp), 
cross validation methods, and model averaging 
(aggregation) techniques [Arlot and Celisse 2010; 
Buckland et al. 1997; Burnham and Anderson 
2002; Burnham and Anderson 2004; Cox Jr and 
Ricci 2005; Posada and Buckley 2004; Symonds 
and Moussalli 2011]. In particular, the use of multi-
model ensemble methods (e.g., Bayesian model 
averaging and simulated inference) that combine 
results from multiple plausible models typically 
provides for greater accuracy than that obtained 
from any single model [Buckland et al. 1997; Raf-
tery et al. 1997]. For this reason, in dose-response 
analyses NIOSH generally prefers ensemble meth-
ods to statistical model selection criteria when 
data allow. An exception is a case with compelling 
mechanistic evidence of a specific dose-response 
function (see section 5.4).

B.6.2  Publication, Interpretation, 
and Analysis Biases

A publication bias refers to an editorial prefer-
ence for publishing findings, which distorts infer-
ences made from available evidence. For example, 
a positive results bias may occur when authors and 
editors are more likely to publish positive findings 
rather than null findings. Publication bias can also 
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occur when there is reluctance to publish disparate 
or controversial results, or when an emerging is-
sue drives publication such that preliminary data 
are more likely to be published. Publication bias is 
plausible in all studies; however, observational and 
experimental animal studies are more susceptible 
than randomized clinical trials [Easterbrook et al. 
1991]. In all cases, published data can misinform 
on the consistency of evidence used for hazard 
identification. Risk assessors should be cognizant 
of the potential for publication bias and give ap-
propriate attention to all findings, including those 
from negative studies. Attempts should be made to 
uncover relevant unpublished works.

Interpretation bias arises from improper inference 
or speculation based on a naïve or deliberate lack of 
impartiality by the interpreter. In this case, the in-
terpreters are the study researchers, who interpret 
their findings at publication, or risk assessors, who 
translate findings for risk assessment. Research ob-
jectivity is always challenged by the ever-present 
interaction between data and judgement; therefore, 
interpretation is never completely independent of 
opinion, notion, or conviction [Kaptchuk 2003]. 
The potential for significant interpretation bias is 
likely smaller in the peer-reviewed literature than 
in trade journals and commercially funded techni-
cal reports. Information on potential conflicts of 
interest or disclosures can be useful in assessing 
the potential for interpretation bias. A willingness 
to examine alternative interpretations by investiga-
tors and risk assessors alike will lessen the potential 
for bias. Rigorous peer and public reviews also aid 
in avoiding interpretation bias.

Analyses bias results for errors in analyzing the 
data, such as inappropriate analytical strategies 
(e.g., overmatching, model misspecification, and 
post hoc analyses). In the course of any study, re-
searchers make several decisions on data collection 
and analysis, including exploration of analytic al-
ternatives. In some instances, these decisions can-
not or are not made beforehand; therefore, they 
are likely informed by study information. This 
construct is referred to as “researcher degrees of 
freedom” [Simmons et al. 2011], which can lead 
to higher false-positive rates and inflated effect 

sizes (inflation bias) [Ioannidis 2008; Wicherts et 
al. 2016]. For example, exhaustive exploitation of 
study data to achieve significant findings is a source 
of inflation bias called p-hacking or data dredging 
[Head et al. 2015; Raj et al. 2017]. As in publica-
tion bias, p-hacking results in a conditioning of 
the literature by presenting only true or false posi-
tives. Uncovering the bias can be difficult, in part 
because many researchers do not recognize it as a 
real problem. The bias can be reduced by specifying 
statistical analyses a priori in an analysis plan. In 
general, post hoc analyses should be avoided. Study 
designs that are best described as exploratory are 
most vulnerable to significant bias from p-hacking 
[Teixeira 2018]. Ideally, studies should be restricted 
to testing specific hypotheses.

B.6.3 Effect Modification and 
Interaction

The terms effect modification and interaction have 
been used interchangeably in the literature; the for-
mer is seemingly preferred by epidemiologists and 
the latter by statisticians. It has been proposed that, 
in the strictest sense, these terms describe differ-
ent phenomena [Vanderweele 2009]. Effect modi-
fication is described as a condition in which the 
exposure-related effect varies by levels of an extra-
neous factor [Checkoway et al. 2004]. Typically, the 
extraneous factor is a descriptor of subpopulations 
(e.g., gender, race); therefore, effect modification 
may elucidate susceptibility differences in the pop-
ulation. For example, suppose a study reported an 
association between exposure to agent X and lung 
cancer in women but not in men. In this case, gen-
der is the effect modifier of agent X for causing lung 
cancer. There is one intervention (exposure), and 
the susceptible population is women. In contrast, 
an interaction specifically refers to the effect of two 
exposures together to be different (either more or 
less) than the combination of the two effects con-
sidered separately. Thus, an interaction describes 
the causal effects of the two exposures combined. 
For example, the joint effects of radon exposure 
and smoking status on lung cancer differ such that 
the excess relative risk per unit of radon exposure 
among nonsmokers is higher than that of smokers 
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[Lubin et al. 1995a]. In this case, there are two pos-
sible interventions (smoking and radon exposure). 
Interaction effects can range from profoundly an-
tagonistic to strongly synergistic. Unfortunately, 
most studies available for risk assessment have not 
examined effect modification by factors other than 
race or gender, and information is usually insuffi-
cient to draw conclusions on potential interactions 
[Knol and VanderWeele 2012]. 

B.6.4 Random Error 
Random error is the variation of results and infer-
ences from the truth, occurring only because of 
chance. Effect measures are influenced by random 
variation in many components of an epidemiologic 
study. For example, a major contributor to random 
error in human studies is the process used to se-
lect study participants. This process is referred to 
as sampling, and the random error contribution 
is known as sampling variation or sampling error 
[Rothman et al. 2008]. Random variation around 
true values related to estimates used in statistical 
models is another source of random error. 

The common measure of random error in an es-
timation process is its variance, and the inverse of 
variance is a measure of statistical precision of the 
estimate. Precision can be improved by increasing 
the sample size, thus reducing the variance. This 

variance can also be reduced for a given sample size 
through design improvements; this is referred to as 
increasing study efficiency [Rothman et al. 2008]. 
Typically, the random error that is associated with 
the point estimate reported in a study is reflected 
by its associated confidence interval or p-value. 
In hazard identification, more weight is generally 
given to effect estimates with better precision (e.g., 
narrower confidence intervals). Nevertheless, esti-
mate precision does not reflect a lack of bias from 
systematic errors. Moreover, random measurement 
error can also lead to biased estimates of the dose-
response [Carroll et al. 2006]. For example, as pre-
viously discussed, when explanatory variables (e.g.,   
dose) are measured with error, the regression coef-
ficient in dose-response models is typically biased 
toward the null. 

Unfortunately, deleterious effects of random error 
are rarely accounted for in epidemiologic studies, 
although recently some studies of health effects as-
sociated with ionizing radiation have made head-
way. In particular, regression calibration and Mon-
te Carlo simulation have been used sparingly to 
account for uncertainty in dose-response analyses 
in studies relying on complex dosimetry systems 
subject to shared and unshared measurement error 
[Fearn et al. 2008; Pierce et al. 2008; Simon et al. 
2015; Stram et al. 2015; Zhang et al. 2017].
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C.1 Occupational Exposure 
Banding

Occupational Exposure Limits (OELs) play a criti-
cal role in protecting workers and emergency re-
sponse personnel from exposure to dangerous 
concentrations of hazardous materials [Schulte et 
al. 2010]. In the absence of an OEL, determining 
the appropriate controls needed to protect work-
ers from chemical exposures can be challenging. 
According to the EPA, the Toxic Substances Con-
trol Act (TSCA) Chemical Substance Inventory 
currently contains over 85,000 chemicals that are 
commercially available [EPA 2015], yet only about 
1,000 of these chemicals have been assigned an 
authoritative (government, consensus, or peer re-
viewed) OEL. Furthermore, the rate at which new 
chemicals are being introduced into commerce 
significantly outpaces OEL development, creating 
a need for guidance on thousands of chemicals that 
lack reliable exposure limits. Occupational expo-
sure banding, also known as hazard banding or 
health hazard banding, is a systematic process that 
uses both qualitative and quantitative hazard infor-
mation on selected health effect endpoints to iden-
tify potential inhalation-based exposure ranges 
or categories. The NIOSH occupational exposure 
banding process seeks to create a consistent, docu-
mented process to characterize chemical hazards 
so that timely, well-informed risk management 
decisions can be made for chemicals lacking OELs 
[NIOSH 2019].

The concept of using hazard-based categories to 
communicate potential health concerns, alert work-
ers to the need for risk management, and inform ex-
posure control requirements is not new. Numerous 
hazard classification and category-based systems 
have seen extensive use in the occupational setting. 
Such systems are deeply embedded in occupational 
hygiene practice, particularly in the pharmaceuti-
cal industry, and are also elements of well-devel-
oped, modern hazard communication programs 
(e.g., United Nations 2013 Globally Harmonized 
System of Classification and Labelling of Chemi-
cals [2013]). The NIOSH occupational exposure 

banding process is distinguished from other hazard 
classification and category-based systems in several 
ways. These unique attributes of the NIOSH pro-
cess include (1) a three-tiered system that allows 
users of varying expertise to utilize the process, (2) 
determination of potential health impacts based on 
nine toxicological endpoints separately, (3) hazard-
based categories linked to quantitative exposure 
ranges, and (4) assessment of the process via ex-
tensive evaluation exercises to determine accuracy 
and repeatability.

To apply the NIOSH occupational exposure band-
ing process, it is important to understand the three 
tiers of the process. Each tier has different require-
ments for data sufficiency, which allows a variety 
of stakeholders to use the process in many differ-
ent situations. The most appropriate tier for band-
ing depends on the availability and quality of the 
data, how the data will be used, and the training 
and expertise of the user. Whereas Tier 1 requires 
relatively little information and modest special-
ized training, each successive tier necessitates more 
chemical-specific data and more user expertise to 
assign an Occupational Exposure Band (OEB) suc-
cessfully. A primary goal of Tier 1 is to give the user 
a quick summary of the most important health ef-
fects associated with exposure to the chemical of 
interest and quickly identify extremely toxic chem-
icals that should be considered for substitution or 
elimination. Tier 2 requires the user to examine sev-
eral publicly available databases and extract relevant 
toxicological and weight-of-evidence data to be used 
in the NIOSH banding algorithm. Tier 3 employs 
expert judgment to critically evaluate experimental 
data and discern toxicological outcomes. 

Another important component of the NIOSH oc-
cupational exposure banding process is the inclu-
sion of five exposure bands. Occupational expo-
sure banding uses limited chemical toxicity data 
to group chemicals into one of five bands, ranging 
from A through E. These bands, or OEBs, define 
the range of exposures expected to be protective of 
worker health. Band E is the most protective band 
for the most dangerous chemicals, whereas band A 
is the least protective for the least dangerous. One 
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major benefit of occupational exposure banding is 
that the amount of time and data required to cat-
egorize a chemical into an OEB is significantly less 
than that required to develop an OEL.

The burden of worker and responder exposure to 
potentially hazardous chemicals that lack authorita-
tive OELs is considerable, and the need for risk man-
agement for these chemicals is clear. Occupational 
exposure banding is one way to provide this type of 
guidance. An OEB provides more than a range of ex-
posures that is expected to be protective of worker 
health. Rather, an OEB can be utilized to identify 
potential health effects and target organs, inform 
implementation of control interventions and pre-
paredness plans, inform medical surveillance deci-
sions, and provide critical information quickly.

For more information about the NIOSH occu-
pational exposure banding process and the com-
panion electronic banding tool (e-Tool)), refer to 
the NIOSH occupational exposure banding safety 
and health web topic page at: https://www.cdc.gov/
niosh/topics/oeb/default.html 

C.2 Emerging Alternatives To 
Assessing Apical Endpoints

An apical endpoint is an observable outcome in a 
whole organism, such as a clinical sign or patho-
logic state, that is indicative of a disease state that 
can result from exposure to a toxicant [NRC 2007]. 
For risk assessment, it is typically the final stage 
of disease progression. Adverse effects are gener-
ally related to traditional apical endpoints such as 
death, reproductive failure, or developmental dys-
function [Villeneuve and Garcia-Reyero 2011]. In 
some instances, data on the apical effect are not 
available; therefore, the risk assessment may rely 
on a non-apical surrogate that lies on the adverse 
effect pathway (Figure C-1) between the molecular 
initiating event and the adverse effect (e.g., function-
al genomics and biomarkers). These sub-organism 
effects are sometimes referred to as precursor effects. 

It has been suggested that the future of risk assess-
ment is likely to shift away from toxicity testing of 

apical endpoints and move toward research evalu-
ating biologically significant perturbations in tox-
icity pathways at earlier stages of the disease state. 
This research is anticipated to use a combination 
of computational biology and high-throughput in 
vitro tests of human cells and tissues [NRC 2007].

C.3 Biomarkers 
A biomarker is defined as a characteristic that is 
objectively measured and evaluated as an indicator 
of normal physiologic processes, pathologic pro-
cesses, pharmacologic responses to a therapeutic 
intervention, or susceptibility [Atkinson et al. 2001; 
Schulte 1993]. In the context of an adverse effect, 
the biomarker refers to a biological analyte that 
predicts the individual’s disease state. Biomarkers 
include conventional measures, such as blood pres-
sure, blood cholesterol, and enzyme levels; how-
ever, recent advancements have focused on cellular, 
genetic, and molecular markers that are sought as 
screening tools for early diagnosis of a severe dis-
ease (e.g., lung cancer and cardiovascular disease). 
The utility of defining sets of responses based on 
multiple genomic, transcriptomic, proteomic, and 
metabolomic markers and processes and/or second 
messenger and other biochemical pathways is an 
evolving area of work [Cote et al. 2016]. 

Risk assessors prefer to measure early indicators 
of serious health effects rather than wait for frank 
expression of disease. For example, lung cancer is 
a rare (<60 cases per 100,000 person-years) and 
serious (<20% survival after 5 years from diagno-
sis) adverse effect observed predominantly at ages 
65 years or older and at later stages of disease pro-
gression [Howlader et al. 2016]. Epidemiologic 
studies of occupational lung cancer require large 
populations who are observed over a long period 
to ensure adequate statistical power for effect sizes 
typically observed. A biomarker intended for early 
indication of lung cancer could act to relax some of 
these design requirements. Research suggests that 
exhaled breath contains organic compounds from 
metabolic processes that can vary between healthy 
subjects and subjects with lung cancer, making it a 
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Figure C-1. Diagram of the adverse outcome pathway. A chemical (or its metabolites) interacts with a molecular 
target to initiate leading a sequence of higher-order effects to produce an adverse effect relevant to risk assess-
ment. Adapted from Ankley et al. [2010].

potentially viable biomarker for early onset of dis-
ease [Dent et al. 2013]. If the relationships between 
dose, the exhaled breath condensate analytes of in-
terest, and lung cancer can be adequately charac-
terized, then exhaled breath condensate may also 
be a useful response metric in future dose-response 
analyses of lung carcinogens. 

Quantitative risk assessment of biomarkers is an 
area of active research and development and has 
been successfully used for risk assessment only in 
very limited situations [Cote et al. 2016; Poirier 
2016]. As such information evolves, the risk as-
sessor must be prepared to consider whether such 
exposure-biomarker associations are useful rela-
tionships to model in occupational risk assessment.

C.4 Use of Genetics and 
Epigenetics in Risk 
Assessment

A growing body of literature demonstrates that ge-
netic and epigenetic factors condition biological 

responses to occupational and environmental haz-
ards or serve as targets of them. Generally, genetic 
and epigenetic data might be used as endpoints in 
hazard identification, indicators of exposure, ef-
fect modifiers in exposure estimation and dose-
response modeling, and descriptors of mode of 
action (MoA) in characterization of toxicity path-
ways. Vast amounts of genetic and epigenetic data 
may be generated by high-throughput technolo-
gies. Ideally, these data can be useful for assessing 
variability and reducing uncertainty in extrapola-
tions and to help identify previously unidentified 
biological perturbations that may be of interest in 
risk assessment [Schulte et al. 2015].

One of the most critical areas to understand in the 
incorporation of genetic and epigenetic information 
in risk assessment is in the area of gene-environ-
ment interactions. The term gene-environment in-
teraction can involve a range of interpretations of 
joint effects, including the risk of a single genotype 
across a range of environmental exposures, or the 
risk of exposure across a range of genotypes. Many 
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of the potential approaches to evaluating the impact 
of gene-environment interactions are reviewed in 
Schulte et al. [2015]. 

Future risk assessments may involve acquired 
changes in the somatic genome or changes in the 
epigenetics, which comprise the factors influencing 
expression of the genome. Techniques for address-
ing these require deep knowledge of mechanisms of 
action of toxic agents and well-defined experimental 
designs to address specific risk assessment questions. 
The elucidation of perturbations in genetic and epi-
genetic information on human health is likely to be 
a rich area for future risk assessment. A framework 
for organizing the research around these types of 
risk assessment questions can be found in Schulte et 
al. [2015]. One area where some progress has been 
made in developing genetics for quantitative risk as-
sessment is in the use of high-throughput analyses, 
as described in the next section.

C.5 Molecular Toxicology and 
High-Throughput Analysis

Because of the lack of full toxicologic data on most 
chemicals, NIOSH is investigating the utility of 
high-throughput screening and in vitro short-term 
tests for occupational risk assessment. In the past 
decade, there has been an exponential increase in 
the publication of new toxicity data focusing on 
genomic analysis using high-throughput screening 
and in vitro short-term exposure. The paradigm for 
assessing chemical risks to human health is rapidly 
changing because of the availability of this toxico-
genomic information and because of increased un-
derstanding of the gene-environment interactions. 

In 2007, the U.S. Environmental Protection Agency 
(EPA) requested that the National Research Coun-
cil (NRC) conduct a complete review of toxicity 
testing methods and strategies. NRC presented its 
long-range vision and strategy to advance toxicity 
testing [NRC 2007]. By recognizing the impor-
tance of NRC’s vision, several federal agencies (the 
EPA, National Institutes of Environmental Health 
Sciences/National Toxicology Program, National 

Institutes of Health, and Food and Drug Adminis-
tration) formed a collaborative program known as 
Toxicity Testing in the 21st Century (Tox 21). This 
program uses high-throughput screening meth-
ods and computational toxicology approaches to 
screen, rank, and prioritize chemicals for further 
testing and assessment. The Tox 21 program has 
screened more than 10,000 chemicals by using 
approximately 70 in vitro cell-based assays with 
15-point dose-response at the NIH Chemical Ge-
nomics Center, with innovative robotic technology 
[Kavlock et al. 2009]. In addition to Tox 21, the 
EPA’s Toxicity Forecaster, simply known as Tox-
Cast, has generated data for over 1,800 subsets of 
chemicals from Tox21 inventory by expanding into 
more biological endpoints. ToxCast screens chemi-
cals for dose-related changes in at least six doses in 
over 700 high-throughput assays (both cell-based 
and cell-free) and 300 signaling pathways that 
cover a wide range of cell responses [Richard et al. 
2016]. The EPA describes in “Next Generation Risk 
Assessment: Recent Advances in Molecular, Com-
putational, and Systems Biology” how new molec-
ular, computational, and systems biology data and 
approaches could better inform risk assessment 
[EPA 2014].

Overall, the screening data generated by these pro-
grams are used to predict the toxicity of chemicals 
and to prioritize the chemicals that need further 
comprehensive toxicity evaluation. In addition, 
the results from high-throughput analysis could be 
used in adverse outcome pathway (AOP) analysis, 
although the specifics are still being worked out 
[Tollefsen et al. 2014]. 

Thomas et al. [2011; 2013] demonstrated a high 
degree of correlation between the BMD values for 
transcriptional changes and the corresponding api-
cal endpoint changes in male Sprague-Dawley and 
F344 rats and in female B6C3F1 mice exposed to 
various chemicals. The authors went on to sug-
gest that the transcriptional points of depar-
ture (PoD) values could be used as potential sur-
rogates for both cancer and non-cancer points of 
departure. Kuppusamy et al. [2015] and Alyea et 
al. [2012] demonstrated concordance between the 
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changes in epigenetics and apical endpoints. In ad-
dition, Schulte et al. [2015] discussed the utiliza-
tion of genetic and epigenetic data in occupational 
health risk assessment.
Applications of the molecular toxicology approach 
could include screening out problematic chemicals, 
identifying critical in vivo testing, prioritizing data-
poor chemicals, and replacing traditional testing 
with more efficient alternatives. Although the cur-
rent effort to use molecular toxicology data looks 
promising, additional data and methods of analy-
sis are needed. For these efforts to continue, strong 
collaboration between agencies is needed as well. 

C.6 Quantitative Structure- 
Activity Relationships 

The literature on Quantitative Structure-Activity 
Relationship (QSAR) models is vast (for a review, 
see Roy et al. [2015]), and the models have been 
widely applied in pharmaceutical research and 
risk assessment. In order to predict a response in 
untested chemicals, QSAR models link chemical, 
physical, and structural properties to a biologi-
cal outcome by means of a mathematical model. 
Currently, no human health risk assessment has 
been based solely on a QSAR analysis; however, 
as toxicity testing moves away from animal test-
ing [NRC 2007], such approaches may become 
more common. Ideally, QSAR approaches can link 
fundamental chemical properties to adverse out-
come pathways and, eventually, whole-organism 
response (e.g., cancer, death) [Ankley et al. 2010]. 
Although QSAR modeling in risk assessment is 
an emerging discipline, general guidelines for its 
use are outlined below. However, because the sci-
ence is still in its infancy, an individual approach 
should be taken in tailoring the guidelines to a 
given situation.

The first issue in using QSAR modeling in a risk 
assessment framework is the adverse outcome pre-
dicted and its relevance to human health. To date, 
most QSAR models focus on prediction of single 
outcomes such as the median lethal dose (i.e., LD50) 
from chemical structural properties. Such outcomes  

are often a gross measure of toxicity and say lit-
tle about low levels of exposure. Others, which 
compute the lowest observed adverse effect level 
(LOAEL), or an equivalent endpoint [Mumtaz et al. 
1995], may be directly applicable to the risk assess-
ment but require strong assumptions that should 
be carefully reviewed. QSAR modeling is under 
development to predict the entire dose-response 
curve, which would provide additional informa-
tion on toxicity. In sum, care should be taken when 
choosing the endpoint for a risk assessment. If the 
endpoint is a gross measure of toxicity, then it may 
be useful to classify a chemical on the basis of its 
relative toxicity but unreasonable to provide an ex-
posure level in the nature of an occupational ex-
posure limit (OEL). Predicting the entire dose-re-
sponse curve may have additional applications for 
quantitative risk assessment. Any QSAR-based risk 
assessment should start with exploring the limita-
tions of the model and the predicted endpoint a 
priori, and subsequent assessment should carefully 
consider these limitations. 

Once the endpoint/model is chosen, it is important 
to assess the validity of the QSAR model. This is 
usually done in a statistical analysis of the predic-
tion in terms of a “leave one out” (or “leave many 
out”) hold-out analysis. Here, the model is fit to a 
reduced dataset and the held-out data are predicted. 
Such analyses provide a useful tool to measure the 
accuracy of the model within the context of the en-
tire dataset tested. Note that chemicals beyond the 
scope of the dataset will be less likely to behave as 
predicted. The model should have a high degree of 
accuracy in prediction for the chemicals of interest, 
where accuracy is defined relative to the analysis at 
hand. Further, the model should be validated and 
a sensitivity analysis (including various plausible 
assumptions and defaults for the model structure) 
should be performed. Finally, because the esti-
mates are based upon limited or no data, the 
preliminary nature of the assessment should be 
stressed. If new data are made available that suggest 
the chemical is more or less toxic, the risk assess-
ment should be updated with the new data within a 
reasonable timeframe.
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C.6 Nanomaterials Risk 
Assessment

C.6.1 Overview
Given the large and growing number of engineered 
nanomaterials (ENMs) with limited data, as for 
other emerging and existing substances produced 
or used in the workplace, alternative test strategies 
(i.e., toxicological approaches other than primary 
animal testing) such as high-throughput screening 
and in vitro exposures may help to fill the gaps by 
providing data that could be used in validated haz-
ard and risk assessment models [Drew et al. 2017; 
Kuempel et al. 2012]. 

C.6.2 Dose Normalization In Vitro 
and In Vivo 

As risk assessments begin to rely largely on in vitro 
data and in silico modeling, accurate description of 
dose both in vitro and in vivo will be key to evalu-
ating these dose-response relationships and vali-
dating alternative test strategies for use in risk as-
sessment [Gangwal et al. 2011; Oberdörster 2012]. 
Many in vitro studies have used doses that are much 
higher than occupationally equivalent lung doses 
[Gangwal et al. 2011]. Such studies could be useful 
for hazard identification and screening evaluations 
but may overpredict the in vivo response. In vitro 
studies are also limited in the cell types represented 
and interactions among cells. 

A challenge in quantifying the dose-response rela-
tionships in vitro is estimating the effective dose, 
i.e., the dose that reaches the target cells. The parti-
cle surface area doses to cells can differ significantly 
at a given mass concentration (µg/ml), because of 
the differences in the specific surface area (m2/g) 
of particles of different sizes and differences in the 
sedimentation and diffusion properties of particles 
in liquid-based systems [Hinderliter et al. 2010]. 
The In Vitro Sedimentation, Diffusion, and Dosim-
etry (ISDD) model was developed to account for 
differences in settling velocity in the liquid media 
based on particle size, density, and specific surface  

area [Hinderliter et al. 2010]. Adjusting the in vitro 
dose to estimate the total surface area of nanopar-
ticles that reach cells in the petri dish was shown 
to better correlate with acute in vivo endpoints 
[Hinderliter et al. 2010; Teeguarden et al. 2007]. 

C.6.3 Correlation of In Vitro and 
 In Vivo Responses 

Several studies of ENMs have shown good cor-
relation between the in vitro and acute in vivo 
inflammation-related responses to poorly soluble 
particles [Donaldson et al. 2008; Rushton et al. 
2010; Zhang et al. 2012]. The dose metric in these 
studies differed, including comparison of either the 
total particle surface area to the total cell surface 
area in vitro or in vivo (cm2/cm2) [Donaldson et al. 
2008], the response per unit particle surface area 
[Rushton et al. 2010], or the area under the dose-
response curve [Zhang et al. 2012]. The steepest 
portion of the dose-response slope showed the best 
correlation of in vitro with in vivo responses [Han 
et al. 2012; Rushton et al. 2010]. Responses includ-
ed cell-free generation of reactive oxygen species 
(ROS), rat lung epithelial cell release of lactate de-
hydrogenase (LDH) or induction of protein oxida-
tion endpoints, and rat pulmonary inflammation 
measured as polymorphonuclear (PMN) leukocyte 
response in bronchoalveolar lavage fluid (BALF) 
after intratracheal instillation (IT) exposure to dif-
ferent ENMs. 

Pulmonary fibrosis in vivo (in rodents) and fibro-
sis-related markers in vitro (in rodent or human 
lung cells) have been shown to be correlated with 
exposure to some ENMs. Specifically, activation of 
the NLRP3 inflammasome and pro-fibrogenic end-
points in vitro or fibrosis in vivo have been associ-
ated with exposure to carbon nanotubes [Hamilton 
et al. 2009; Li et al. 2013; Sager et al. 2014; Wang et 
al. 2012; Wang et al. 2011]. With further validation, 
an in vitro inflammasome activation assay may be 
useful for assessing the potential for chronic ad-
verse effects of carbon nanotubes and other ENMs. 
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C.7 Alternative Methods for 
Nanomaterials 

C.7.1 Comparative Potency 
Estimation

One promising use of alternative test strategies data 
is comparative potency analyses between nanoma-
terials and benchmark materials for use in the de-
velopment of OEBs [Kuempel et al. 2012]. Bench-
mark materials can serve as points of reference 
for comparison to ENMs. Benchmark materials 
are well-characterized substances within biologi-
cal MoA categories for which the health hazards 
are well known and quantitative risk estimates 
have been (or could be) developed [Kuempel et al. 
2012; Nel et al. 2013]. Possible benchmark materi-
als to evaluate inhalation hazards may include fine 
crystalline silica, asbestos, and ultrafine titanium 
dioxide and/or carbon black [Oberdörster et al. 
2005a]. These comparative toxicity analyses would 
be conducted in vitro for a set of ENMs, along with 
benchmark particles (including positive and nega-
tive controls or references), to which the new ma-
terials could be compared. The in vitro to in vivo 
dose-response relationships would be validated 
for the benchmark materials in specific assays. A 
parallelogram approach [Schoeny and Margosches 
1989; Sobels 1977; Sutter 1995] has been used for 
comparative toxicity and risk estimation and has 
also been proposed for use in setting provisional 
OELs of pharmaceutical intermediates, including 
using in vitro data [Maier 2011]. The use of in 
vitro dose-response data to estimate a PoD directly 
has been proposed; it would involve using meth-
ods similar to those used for in vivo data, includ-
ing adjustment of the PoD by uncertainty factors 
(initially, until more evidence is available) [Crump 
et al. 2010]. Such comparative approaches could be 
used in deriving initial OELs or OEBs for individu-
al ENMs or groups of ENMs [Kuempel et al. 2012].

Given the limited data for developing OELs for 
ENMs, methods have been developed to prioritize 
or group ENMs based on the available subchronic or 
chronic dose-response data for benchmark materials 

and the utilization of shorter-term in vivo data for 
many ENMs [Arts et al. 2015; Drew et al. 2017; Hris-
tozov et al. 2016]. Several QSAR models have been 
developed, which describe the important factors 
influencing the toxicity and allow for hazard group-
ing and ranking [Burello and Worth 2011; Gernand 
and Casman 2014; Hristozov et al. 2016; Oh et al. 
2016]; however, these models have not been used in 
human health risk assessment. Still lacking in these 
frameworks is an integrated methodology to utilize 
quantitative dose-response data to group EMNs by 
hazard potency, using biological responses and dose 
metrics that allow for the estimation of human-
equivalent concentration and development of cate-
gorical OELs [Schulte et al. 2018]. More comprehen-
sive data across a range of ENMs and experimental 
designs are needed to develop predictive models us-
ing alternative data to the rodent bioassays typically 
used in risk assessment.

C.7.2 Hazard Classification/
Clustering 

NIOSH and others are exploring methods to utilize 
physicochemical properties—such as particle size, 
shape, solubility, crystal structure, and chemical 
composition—as predictors of a material’s hazard 
potency, such as tested in high-throughput cellu-
lar studies and validated in limited rodent studies. 
Potency is the inverse of dose (i.e., higher potency 
substances are those with a lower dose associated 
with an adverse effect). In these ongoing analyses, 
NIOSH is investigating the dose-response relation-
ships and substance-specific physicochemical data, 
and it is using statistical learning methods such 
as Random Forests to identify groups of similarly 
behaving materials with respect to hazard potency 
[Drew et al. 2017]. The adverse outcomes of interest 
include pulmonary inflammation, fibrosis, cancer, 
and systemic effects associated with inhaled na-
noscale particles. In current analyses of acute pul-
monary inflammation, a set of 16 microscale and 
nanoscale particles in a training dataset have been 
grouped into four potency clusters, including three 
groups for nanoscale particles, which are 4–175 
times more potent than a fourth group containing 
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a microscale reference particle. These analyses il-
lustrate proof of concept for grouping particles by 
pulmonary hazard potency [Drew et al. 2017]. 

Next steps are to evaluate an in vitro dataset of some 
of the same materials as in the in vivo dataset to in-
vestigate the possible utility of in vitro studies of cel-
lular responses to particle exposure that are involved 
in the in vivo mechanism of activation of pulmonary 
inflammation associated with particle exposure, in-
cluding cytokine, gene transcription, and cell toxicity 
endpoints. Ultimately, it is envisioned that extended 
and validated analyses will be used as a framework 
to develop initial OEL categories or OEBs as haz-
ard inputs into nanomaterial control banding tools 
[Drew et al. 2017; Kuempel et al. 2012]. 

C.7.3 Validation
A key challenge to utilizing alternative test strate-
gies data is the development and application of 
validation criteria. Validation would include evalu-
ation of variability across laboratories and selected 
assays of reference particles. Such evaluations for 
ENMs have shown considerable interlaboratory 
variability in dose-response relationships for the 
same ENMs across laboratories [Bonner et al. 2013], 
especially in the in vitro assays [Xia et al. 2013]. 

To facilitate the validation and implementation 
of alternative test strategies data, standard sets of 
particle descriptors, dose metrics, and response 
parameters are needed to compare biological MoA 
and dose–response relationships across different 
studies [Kuempel et al. 2012]. In vitro data could be 
used in a tiered toxicology testing such that selected 
materials (e.g., highest and lowest toxicity within a 
category) in the in vitro assays would go on for in 
vivo testing.

C.8 Non-Chemical and 
Cumulative Risk Assessment

With the exclusion of ionizing radiation, quantita-
tive risk assessment of non-chemical stressors has 
received little attention in the risk assessment com-
munity. Moreover, risk assessment methods have 

largely focused on a single stressor, although risks 
often involve complex exposures to multiple stress-
ors from multiple routes and pathways. Recently, 
there has been interest in assessing risks from 
non-chemical stressors separately and in combi-
nation with chemical exposures. For example, the 
National Research Council has recommended that 
risk assessors consider exposures to both chemical 
and non-chemical stressors as sources of cumula-
tive risk [NRC 2009]. Such stressors can include 
physical, operational, and psychosocial domains. 
Examples include work stress, heat stress, noise ex-
posures, and vibrational exposures. 

Research into risk assessment methods for non-
chemical stressors and cumulative risks is ongoing 
[Lentz et al. 2015; Lewis et al. 2011]. For example, 
NIOSH has developed methods similar to chemical 
risk assessment to assess some non-chemical haz-
ards, such as ionizing radiation and noise [NIOSH 
1987; NIOSH 1998]. Expanding these methods to 
include other non-chemical hazards, the joint ef-
fects of multiple stressors, and the contribution of 
non-occupational stressors to occupational risk are 
areas of interest in NIOSH risk assessment.

Concerning cumulative risk, the literature has 
focused on the potential for interactions among 
combined chemicals producing synergistic effects 
[Carpenter et al. 2002; Fox et al. 2017; Hertzberg 
and Teuschler 2002; Sexton 2012; Sexton and Hat-
tis 2007]. The EPA has developed a series of reports 
describing its framework for assessing chemical 
mixtures and conducting cumulative risk assess-
ment [EPA 1986; EPA 2000; EPA 2003; EPA 2007]. 
These reports provide detailed guidance on cu-
mulative risk that can be adapted to occupational 
settings. Other frameworks are available [Meek 
et al. 2011; Moretto et al. 2017]. More recently, 
an informative report on risk assessments involv-
ing combined exposures to multiple chemicals 
has been published by the OECD [OECD 2018a]. 
The report provides an overview of the technical 
aspects, limitations, and uncertainties associated 
with various approaches and methodologies avail-
able to assess health risks from combined expo-
sures to multiple chemicals.
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