7900

ARSENIC and compounds, as As (except AsH₃ and As₂O₃)

As MW: 74.92 CAS: 7440-38-2 RTECS: CG525000

METHOD: 7900, Issue 2 EVALUATION: PARTIAL Issue 1: 15 February 1984 Issue 2: 15 August 1994

OSHA: 0.01 mg/m³ PROPERTIES: soft, reactive metalloid; MP 848 °C;

NIOSH: C 0.002 mg/m 3 /15 min; carcinogen valence \pm 3, 5 in salts

SYNONYMS: vary depending upon the compound

ACGIH: 0.01 mg/m³; carcinogen

SAMPLING				MEASUREMENT	
SAMPLER:	FILTER (0.8-μm cellulose ester membrane)		TECHNIQUE:	ATOMIC ABSORPTION, FLAME ARSINE GENERATION	
FLOW RATE: 1 to 3 L/min			ANALYTE:	arsenic	
VOL-MIN: -MAX:	30 L @ 0.002 mg/m ³ 1000 L		ASHING:	conc. HNO $_3$, 3 mL; conc. H $_2$ SO $_4$, 1 mL; conc. HClO $_4$, 1 mL; 140 °C	
SHIPMENT:			FINAL SOLUTION:	4% H ₂ SO ₄ , 25 mL	
SAMPLE STABILITY:	stable if refrigerat	ed	FLAME:	hydrogen-argon	
BLANKS:	2 to 10 field blanks per set		WAVELENGTH:	193.7 nm	
			BACKGROUND CORRECTION:	D ₂ or H ₂ continuum	
ACCURACY			CALIBRATION:	As in 4% H ₂ SO ₄	
RANGE STUDIED:		not studied	RANGE:	0.05 to 2.0 µg per sample [1]	
BIAS:		see APPLICABILITY	ESTIMATED LOD	: 0.02 μg per sample [1]	
OVERALL PRECISION (\$\hat{s}_{rT}\$): no ACCURACY:		t evaluated not determined	PRECISION (Ŝ _r):	0.11 [1]	

APPLICABILITY: The working range is 0.00025 to 0.01 mg/m ³ for a 200-L air sample and 0.002 to 0.07 mg/m ³ for a 30-L air sample. **This method collects particulate arsenic only; if arsenic trioxide vapor is present, use the sampler in Method 7901.** This is an elemental analysis, not compound specific. Volatile organic arsenic compounds, As $_2$ O $_3$ vapor, and arsine are not collected efficiently by this sampling method.

INTERFERENCES: Background absorption is overcome by the use of D $_2$ or H $_2$ continuum.

OTHER METHODS: This revises P&CAM 139 [1]); a similar method appears in the criteria document [2]. Method 7901 uses a sampler designed to collect As $_2$ O $_3$ vapor and an alternate measurement technique (graphite furnace-AAS). Method 7300 (ICP-AES) also gives an alternate measurement technique.

REAGENTS:

- 1. Nitric acid, conc.
- 2. Hydrochloric acid, conc.
- 3. Sulfuric acid, conc.
- 4. Perchloric acid, conc.*
- Calibration stock solution, 1000 mg/mL.*
 Commercially available or dissolve 1.320 g primary standard As ₂O₃ in 25 mL 20% (w/v) KOH. Neutralize with 20% (v/v) HNO ₃ to a phenolphthalein endpoint. Add 10 mL conc. HNO₃ and dilute to 1 L with distilled or deionized water.
- 6. Ashing acid, 3 volumes HNO $_{\rm 3},$ 1 volume $\rm H_2SO_4,$ and 1 volume HClO $_{\rm 4}.$
- 7. Hydrogen.
- 8. Argon.
- 9. Distilled or deionized water.
- 10. Sodium borohydride, pellets.
- 11. Air, compressed.
 - * See SPECIAL PRECAUTIONS.

EQUIPMENT:

- 1. Sampler: cellulose ester filter, 0.8-µm pore size, 37-mm diameter; in cassette filter holder.
- 2. Personal sampling pump, 1 to 3 L/min, with flexible connecting tubing.
- Atomic absorption spectrophotometer with appropriate hydrogen burner head or quartz tube furnace, and arsenic hollow cathode lamp or EDL and arsine generation system.
- 4. Regulators, two-stage, for air, hydrogen and argon.
- Beakers, Phillips, 125-mL, or Griffin, 50-mL, with watchglass covers.*
- 6. Volumetric flasks, 25- and 100-mL.*
- 7. Pipets, volumetric, as needed.*
- 8. Hotplate, surface temperature 140 °C.
 - Clean all glassware with conc. nitric acid before use and rinse thoroughly with distilled or deionized water.

SPECIAL PRECAUTIONS: Arsenic is a recognized carcinogen. Handle appropriately [2]. Perform all perchloric acid digestions in a perchloric acid fume hood.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- 2. Sample at an accurately known flow rate between 1 and 3 L/min for a total sample size of 30 to 1000 L. Do not exceed ca. 2 mg total dust loading on the filter.

SAMPLE PREPARATION:

- Open the cassette filter holders and transfer the samples and blanks to clean beakers.
 NOTE: Analyze the backup pad separately if qualitative indication of As ₂O₃ vapor is desired.
 Use Method 7901 if quantitative collection of As ₂O₃ vapor is desired.
- Add 5 mL ashing acid and cover with a watchglass.
- 5. Heat on hotplate (140 °C) until the solution is colorless.
- 6. Add 1 mL conc. HNO 3 and/or 70% HCIO 4 drop by drop as needed to complete the ashing.
- 7. Remove the watchglass.
- 8. Heat on 140 °C hotplate until dense SO $_3$ fumes appear.
- 9. Allow the mixture to cool.
- 10. Transfer the solution quantitatively to a 25-mL volumetric flask.
- 11. Dilute to volume with distilled or deionized water.

CALIBRATION AND QUALITY CONTROL:

12. Prepare working standards. Add known amounts, covering the range 0.2 to 8 μ g As/100 mL (0.05 to 2 μ g As per sample), of 1000 μ g/mL As calibration stock solution to 100-mL volumetric flasks containing 4 mL conc. H $_2$ SO $_4$ and dilute to volume with distilled or deionized water.

- 13. Analyze working standards together with the blanks and samples (steps 18 through 25).
- 14. Prepare calibration graph (absorbance vs. solution concentration, µg/mL).
- 15. Analyze a standard for every 10 samples.
- 16. Check analytical recoveries with at least one spiked media blank per 10 samples.
- 17. Use method of standard additions occasionally to check for interferences.

ANALYTICAL PROCEDURE:

- 18. Set spectrophotometer according to manufacturer's recommendations and to conditions on page 7900-1.
- 19. Set up arsine generator per manufacturer's instructions.
- 20. Pipet 5 mL aliquot of the 25-mL sample into the arsine generation flask.
- 21. Add 25 mL distilled or deionized water, 3 mL conc. HCl, and mix well.
- 22. Connect the flask to the generation system.
- Introduce a single sodium borohydride pellet or sodium borohydride solution to the sample solution.
- 24. Allow the gases to flush into the flame of the atomic absorption instrument.
- 25. Record the absorbance readings.

NOTE: If the absorbance values of the samples are above the linear range of the standards, dilute the solutions, or use a smaller aliquot, reanalyze, and use the appropriate dilution factor in calculations.

CALCULATIONS:

- 26. Using the measured absorbances, calculate the corresponding solution concentrations (μ g/mL) of As in the sample, C _s, and average media blank, C _b, from the calibration graph.
- 27. Using the solution volumes (mL) of the sample, V s, and media blanks, V b, calculate the concentration, C (mg/m ³), of As in the air volume sampled, V (L):

$$C = \frac{C_s V_s - C_b V_b}{V}, mg/m^3.$$

EVALUATION OF METHOD:

This method was evaluated in July, 1976, over the range 0.02 to 3 mg per sample by laboratory testing with spiked filters. Precision and accuracy data are given on page 7900-1 [1].

REFERENCES:

- [1] NIOSH Manual of Analytical Methods, 2nd. ed., V. 1, P&CAM 139, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-157-A (1977).
- [2] Criteria for a Recommended Standard...Occupational Exposure to Inorganic Arsenic, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 75-149 (1975).

METHOD WRITTEN BY:

Mark Millson, NIOSH/DPSE.