$C_{10}H_7OC(=O)NHCH_3$ MW: 201.22 CAS: 63-25-2 RTECS: FC5950000

METHOD: 5006, Issue 2 **EVALUATION: FULL** Issue 1: 15 May 1985 Issue 2: 15 August 1994

OSHA: 5 mg/m³ PROPERTIES: solid; crystal; d 1.230 g/mL @ 20 °C; NIOSH: 5 mg/m³;

BP decomposes; MP 142 °C; VP <0.005 Pa (<4 x 10-5 mm Hg;

ACGIH: 5 mg/m³ <0.4 mg/m³) @ 20 °C

SYNONYMS: Sevin; 1-naphthalenol N-methylcarbamate; 1-Naphthyl-N-methylcarbamate

Group II Pesticide

	SAMPLING	MEASUREMENT	
SAMPLER:	FILTER (glass fiber)	TECHNIQUE:	VISIBLE ABSORPTION SPECTROPHOTOMETRY
FLOW RATE:	1 to 3 L/min	ANALYTE:	p-nitrobenzenediazonium tetrafluoroborate complex
VOL-MIN: -MAX: SHIPMENT:	20 L @ 5 mg/m ³ 400 L ship filters in 25-mL scintillation vials	SAMPLE WORKUP:	20 mL 0.1 M methanolic potassium hydroxide; to 2-mL aliquot, add 17 mL glacial acetic acid; add 1 mL p-nitrobenzenediazonium
SAMPLE STABILITY:	at least 7 days @ 25 °C [1]	WAVELENGTH:	tetrafluorobate
BLANKS:	2 to 10 field blanks per set	CALIBRATION:	475 nm Carbaryl in methylene chloride
		RANGE:	0.1 to 1.0 mg per sample [2]
ACCURACY		ESTIMATED LOD:	0.03 mg per sample [3,4]
RANGE STUDIED:	2 to 13 mg/m³ [1] (90-L samples)	PRECISION (S _r):	0.015 [1]
BIAS:	- 0.73%		
OVERALL PRECISION (Ŝ _{rT}): 0.057 [1]			
ACCURACY:	± 11.3%		

APPLICABILITY: The working range is 0.5 to 20 mg/m³ for a 200-L air sample.

INTERFERENCES: Phenols such as 1-naphthol will give a positive interference [2]. Interferences from other aromatic carbamates and phenoxyacetic acid pesticides may occur but have not been documented.

OTHER METHODS: This revises Method S273 [2].

REAGENTS:

- 1. Carbaryl, reagent grade.*
- 2. Methanol, absolute.*
- 3. Methylene chloride, distilled in glass.*
- 4. 0.1 M KOH in absolute methanol. Dissolve 0.1 mole (5.612 g) in 10 mL methanol in a 1-L volumetric flask; dilute to mark with methanol.
- 5. Glacial acetic acid.*
- p-Nitrobenzenediazoniumtetrafluoroborate. Dissolve 25 mg in 5 mL methanol. Add 20 mL glacial acetic acid. Prepare just before use. Keep in an ice bath (4 °C) during use.
 - Discard if the solution becomes deep yellow.
- Calibration stock solution, 2 mg/mL.* Dissolve an accurately weighed 20-mg portion of Carbaryl in methylene chloride to make 10 mL solution.
 - * See SPECIAL PRECAUTIONS.

EQUIPMENT:

- Sampler: 37-mm filter cassette with 37-mm Type A/E glass fiber filter (Gelman Sciences, or equivalent).
 - NOTE: The filter must be free of organic binders.
- 2. Personal sampling pump, 1 to 3 L/min, with flexible connecting tubing.
- 3. Spectrophotometer capable of measuring at 475 nm with matched glass cuvettes (1-cm path length).
- 4. Vials, scintillation, 25-mL, with PTFE-lined screw caps.
- 5. Tweezers.
- 6. Syringe, Luer-Lok glass, 10-mL, with 13-mm stainless steel filter holder and PTFE filters.
- 7. Shaker, mechanical wrist-action.
- 8. Flasks, volumetric, 10-mL and 1 L.
- 9. Pipets, 1-, 2-, 17- and 20-mL with pipet bulb.
- 10. Syringes or micropipets, 10-, 25- and 50-μL.
- 11. Timer, 5- and 20-min.
- 12. Ice bath.

SPECIAL PRECAUTIONS: Carbaryl is a cholinesterase inhibitor; use precautions to prevent skin contamination [5,6]. Methylene chloride is toxic; use only in a hood. Methylene chloride is a suspect human carcinogen. Methanol is flammable and toxic (flash point = 11 °C); use only in a hood. Glacial acetic acid is corrosive; handle only with gloves and facial splash protection.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- 2. Sample at an accurately known flow rate between 1 and 3 L/min for a sample size of 20 to 400 I
- 3. Within 1 h after sampling, remove the filter carefully to prevent sample loss and place it in a vial. Handle filter only with tweezers.

SAMPLE PREPARATION:

NOTE: Process the samples, blanks, recovery spikes, and working standards in small groups (e.g., two to four) to maintain consistent timing for all analyses. Include a reagent blank in each small group for use in the reference cell of the spectrophotometer.

- 4. Add 20 mL methanolic 0.1 M KOH to the vial containing the filter.
- 5. Place the vial on a shaker for 5 min.
- 6. Transfer 2 mL sample solution to another vial. Start reagent blank at this step.
 - NOTE: For filter samples containing >1 g Carbaryl, dilute the sample solution with methanolic 0.1 M KOH prior to this step.
- 7. Add 17.0 mL glacial acetic acid to the 2 mL of sample solution and cover vial with a PTFE-lined screw cap. Mix by swirling.
- 8. Add 1 mL <u>p</u>-nitrobenzenediazonium tetrafluoroborate solution. Mix by swirling. Start a 20-min timer for each vial at this point.
- 9. Use a syringe fitted with a PTFE in-line filter to transfer the solution from the sample vial to the cuvette. Proceed directly to step 15 after exactly 20 min from step 8.

- NOTE 1: The color degrades steadily with time. All samples, blanks, recovery spikes, and working standards must have exactly the same time for color development.
- NOTE 2: The PTFE in-line filter removes glass fibers from the samples. (Standards do not have

to be filtered.)

CALIBRATION AND QUALITY CONTROL:

- 10. Calibrate with at least six working standards over the range 0.05 to 1.0 mg Carbaryl per sample.
 - a. Add known amounts of calibration stock solution to methanolic 0.1 \underline{M} KOH in vials to make 20 mL of solution.
 - b. After 5 min, transfer 2.0 mL of each solution into a clean vial.
 - c. Prepare as in steps 7 through 9.
 - d. Analyze together with samples and blanks (steps 13 through 15).
 - e. Prepare calibration graph (absorbance vs. mg Carbaryl).
- 11. Check recovery with at least three spiked media blanks per sample set.
 - a. Add aliquot of calibration stock solution with a microliter syringe directly to a representative filter. Air dry.
 - b. Prepare and analyze together with working standards (steps 4 through 9 and 13 through 15).
 - c. Calculate recovery [(mg recovered mg blank)/mg added].
- 12. Analyze three quality control blind spikes and three analyst spikes to ensure that the calibration graph is in control.

MEASUREMENT:

- 13. Set spectrophotometer at 475 nm.
- 14. Adjust baseline to zero with distilled water in both cells.
- 15. Read the absorbance of the sample against the absorbance of the reagent blank.
 - NOTE 1: Prepare a fresh reagent blank with each small group of samples. The absorbance of reagent blanks increases with time [5].
 - NOTE 2: If absorbance of the sample is >1.0, dilute the filter extract (step 4) with methanolic 0.1 M KOH, reanalyze, and apply the appropriate dilution factor in calculations.

CALCULATIONS:

- 16. Determine the mass, mg of Carbaryl found on the filter, W, and average media blank, B, from the calibration graph.
- 17. Calculate the concentration, C (mg/m ³), of Carbaryl in the air volume sampled, V (L):

$$C = \frac{(W - B) \cdot 10^3}{V}, mg/m^3.$$

EVALUATION OF METHOD:

Method S273 [2] was issued on February 27, 1976, and validated over the range of 1.96 to 13.4 mg/m at 24 °C and 763 mm Hg [1]. Overall precision, \hat{S}_{rT} , was 0.057 with an average recovery of 102%, representing a non-significant bias. The concentration of Carbaryl was independently verified by a Thermo Systems particle mass monitor. Generated atmospheres were produced by nebulization of a toluene solution of a commercial formulation of Sevin containing 15% Carbaryl by weight. No Carbaryl was detected in bubblers (containing 0.1 \underline{M} KOH in methanol) placed behind the glass fiber filters when 90-L air samples were taken of an atmosphere containing 15 mg/m 3 Carbaryl. Thus, it was concluded that Carbaryl vapor was not a significant factor.

REFERENCES:

- [1] Documentation of NIOSH Validation Tests, S273, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-185 (1977).
- [2] NIOSH Manual of Analytical Methods, 2nd ed., Vol. 3, S273, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-157-C (1977).
- [3] User check, UBTL, Inc., NIOSH Sequence #4213-V (unpublished, August 16, 1984).
- [4] User check, Kettering Laboratory, University of Cincinnati (NIOSH, unpublished, November 5, 1984).
- [5] NIOSH Criteria for a Recommended Standard...Occupational Exposure to Carbaryl, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-107 (1976).
- [6] NIOSH Criteria for a Recommended Standard...Occupational Exposure During the Manufacture and Formulation of Pesticides, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 78-174 (July, 1978).

METHOD REVISED BY:

P. Fey O'Connor, NIOSH/DPSE; S273 originally validated under NIOSH Contract 99-74-45.