CH₃(CH₂)₇SH MW: 146.29 CAS: 111-88-6 RTECS: None

METHOD: 2510, Issue 2 EVALUATION: FULL Issue 1: 15 February 1984

Issue 2: 15 August 1994

OSHA: no PEL PROPERTIES: liquid; d 0.843 g/mL @ 20 °C;

NIOSH: C 0.5 ppm/15 min BP 199.1 °C; MP - 49.2 °C; VP 0.026

ACGIH: no TLV kPa

 $(1 \text{ ppm} = 5.98 \text{ mg/m}^3 @ \text{NTP})$ (1.55 mm Hg; 2040 ppm) @ 37.7 °C

SYNONYMS: n-octanethiol; octyl mercaptan; 1-mercaptooctane; octylthiol.

SAMPLING		MEASUREMENT	
SAMPLER:	SOLID SORBENT TUBE (Tenax-GC, 100 mg/50 mg)	TECHNIQUE:	GAS CHROMATOGRAPHY, SULFUR- SPECIFIC FPD
FLOW RATE:	0.01 to 0.2 L/min	ANALYTE:	1-octanethiol (sulfur)
VOL-MIN: -MAX:	1 L @ 0.5 ppm 15 L	DESORPTION:	2 mL acetone; 45 min ultrasonic agitation
SHIPMENT:	routine	INJECTION VOLUME:	5 μL
SAMPLE STABILITY:	at least 8 days @ 25 °C	TEMPERATURE-	INJECTION: 160 °C DETECTOR: 200 °C -COLUMN: 115 °C
BLANKS:	2 to 10 field blanks per set	CARRIER GAS:	N ₂ or He, 50 mL/min
ACCURACY		COLUMN:	1.8 m x 4-mm ID glass; 3% OV-1 on 100/120 mesh Gas-Chrom Q or equivalent
RANGE STUDIE	0.32 to 6.55 mg/m ³ [1] (8.5-L samples)	CALIBRATION:	1-octanethiol in acetone
BIAS:	- 0.013 [1]	RANGE:	3 to 64 μg per sample
OVERALL PRECISION (Ŝ _{rt}): 0.083 [1]		ESTIMATED LOD: 0.2 µg per sample	
ACCURACY:	± 17.6%	PRECISION (Ŝ,):	0.030 [1]

APPLICABILITY: The working range is 0.05 to 1 ppm (0.3 to 6 mg/m ³) for a 10-L air sample.

INTERFERENCES: Presence of other volatile compounds may interfere with collection of 1-octanethiol or reduce capacity of sorbent tube.

OTHER METHODS: None evaluated by NIOSH.

REAGENTS:

- 1. Acetone*.
- 2. 1-Octanethiol, ≥97% purity.*
- 3. Calibration stock solution, 0.843 μ g/ μ L. Dissolve 10 μ L 1-octanethiol in 10 mL acetone. Prepare fresh daily.
- 4. Nitrogen or helium, purified.
- 5. Hydrogen, prepurified.
- 6. Air, filtered.

* See SPECIAL PRECAUTIONS.

EQUIPMENT:

- Sampler: glass tube, 8.5 cm long, 6-mm OD, 4-mm ID, sealed with PTFE tape and plastic caps containing front (100-mg) and rear (50-mg) sections of 60/80 mesh Tenax-GC, separated and held in place by three silanized glass wool plugs. (Tenax-GC pretreatment: Sohxlet extraction for 6 hrs with acetone/methanol, 6 hrs with methanol, then drying under vacuum.) Typical pressure drop across tube is 2.4 kPa at 0.05 L/min flow. Similar commercially available tubes, e.g., SKC #226-35-03, are acceptable.
- 2. Personal sampling pump, 0.01 to 0.2 L/min, with flexible connecting tubing.
- 3. Ultrasonic bath.
- 4. Gas chromatograph, sulfur-specific FPD, integrator and column (page 2510-1).
- 5. Vials, glass, 2- and 5-mL, crimp seals or caps, PTFE-lined silicone rubber septa.
- 6. Pipets, 1-, 2- and 5-mL, with pipet bulb.
- 7. Syringes, 10- and 100-µL.

SPECIAL PRECAUTIONS: Acetone is highly flammable (flash point = -18 °C).

Thiols are malodorous [2]. Prepare samples and standards in well-ventilated hood.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- 2. Break the ends of the sampler immediately before sampling. Attach sampler to personal sampling pump with flexible tubing.
- 3. Sample at an accurately known flow rate between 0.01 and 0.2 L/min for a total sample size of 1 to 15 L.
- 4. Cap the samplers with plastic (not rubber) caps and pack securely for shipment.

SAMPLE PREPARATION:

- 5. Place the front and back sorbent sections of the sampler tube in separate vials. Discard the glass wool and foam plugs.
- 6. Add 2.0 mL acetone to each vial. Attach crimp cap to each vial.
- 7. Place vials in an ultrasonic bath for 45 min.

CALIBRATION AND QUALITY CONTROL:

- 8. Calibrate daily with at least six working standards over the range 1 to 60 μ g 1-octanethiol per sample.
 - Add known amounts of calibration stock solution to acetone in 10-mL volumetric flasks and dilute to the mark.
 - b. Analyze together with samples and blanks (steps 11 and 12).

- c. Prepare calibration graph (square root of peak height vs. µg 1-octanethiol).
- 9. Determine desorption efficiency (DE) at least once for each batch of Tenax-GC used for sampling in the calibration range (step 8). Prepare three tubes at each of five levels plus three media blanks.
 - a. Remove and discard back sorbent section of a media blank sampler.
 - b. Inject a known amount of calibration stock solution directly onto front sorbent section with a microliter syringe.
 - c. Cap the tube. Allow to stand overnight.
 - d. Desorb (steps 5 through 7) and analyze together with working standards (steps 11 and 12).
 - e. Prepare a graph of DE vs. µg 1-octanethiol recovered.
- 10. Analyze three quality control blind spikes and three analyst spikes to insure that the calibration graph and DE graph are in control.

MEASUREMENT:

- Set gas chromatograph according to manufacturer's recommendations and to conditions given on page 2510-1. Inject sample aliquot manually using solvent flush technique or with autosampler. Under these conditions, the retention time of 1-octanethiol is about 3.0 min. NOTE: If peak area is above the linear range of the working standards, dilute with acetone, reanalyze and apply the appropriate dilution factor in calculations.
- 12. Measure peak height.

CALCULATIONS:

- 13. Determine the mass, μg (corrected for DE) of 1-octanethiol found in the sample front (W $_{f}$) and back (W $_{b}$) sorbent sections, and in the average media blank front (B $_{f}$) and back (B $_{b}$) sorbent sections.
 - NOTE: If $W_b > W_t/10$, report breakthrough and possible sample loss.
- 14. Calculate concentration, C, of 1-octanethiol in the air volume sampled, V (L):

$$C = \frac{(W_f + W_b - B_f - B_b)}{V}, mg/m^3.$$

EVALUATION OF METHOD:

Analytical precision was determined by analyzing spiked sampling media [1]. The average desorption efficiency was 0.94. The breakthrough volume was greater than 15 L for a concentration of 14.6 mg/m at 40 °C and 80% RH. Overall precision, bias and storage stability were determined by sampling and analyzing generated atmospheres. Generated concentrations were independently verified [1].

REFERENCES:

- [1] Spafford, R. B., H. K. Dillon, D. H. Love, and W. K. Fowler. Analytical Methods Evaluation and Validation for Vinylidene Fluoride, Vinyl Bromide, Vinyl Fluoride, Benzenethiol, and n-Octanethiol: Research Report for n-Octanethiol and Benzenethiol, NIOSH Contract No. 210-79-0100, Southern Research Institute, Birmingham, AL, available from NTIS, PB 92-128-677, Springfield, VA 22161 (1982).
- [2] Criteria for a Recommended Standard...Occupational Exposure to n-Alkane Mono Thiols, Cyclohexanethiol, and Benzenethiol, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 78-123 (1978).

METHOD WRITTEN BY:

R. Alan Lunsford, Ph.D., NIOSH/DPSE; data obtained under NIOSH Contract 210-79-0100.