NITROAROMATIC COMPOUNDS

2005

(1) Nitrobenzene: C₆H₅NO₂ MW: (1) 123.11 CAS: (1) 98-95-3 RTECS: (1) DA6475000 (2) o-Nitrotoluene: CH₈C₆H₄NO₂ (2) 137.14 (2) 88-72-2 (2) XT3150000 *m*-Nitrotoluene: 99-08-1 XT2975000 *p*-Nitrotoluene: 99-99-0 XT3325000 (3) 4-Chloronitrobenzene: CH₄CINO₂ (3) 157.56(3) 100-00-5 (3) CZ1050000

METHOD: 2005, Issue 3 EVALUATION: Table 1 Issue 1: 15 August 1990 Issue 3: 15 January 1998

OSHA: Table 1 NIOSH: Table 1 ACGIH: Table 1

PROPERTIES: Table 1

SYNONYMS: (1) Nitrobenzol, oil of mirbane

(2) o- Methylnitrobenzene, 2-Methylnitrobenzene, 2-Nitrotoluene m-Methylnitrobenzene, 3-Methylnitrobenzene, 3-Nitrotoluene p-Methylnitrobenzene, 4-Methylnitrobenzene, 4-Nitrotoluene

(3) p-Chloronitrobenzene, 1-Chloro-4-nitrobenzene, 4-Nitrochlorobenzene, PCNB, PNCB

	SAMPLING	MEASUREMENT				
SAMPLER:	SOLID SORBENT TUBE (Silica gel, 150 mg/75 mg)	TECHNIQUE:	GAS CHROMATOGRAPHY, FID			
FLOW RATE:	(1) and (3): 0.01 to 1 L/min; (2) 0.01 to 0.02 L/min	ANALYTE:	nitrobenzene, nitrotoluene isomers, 4-chloronitrobenzene			
VOL-MIN: -MAX:	(1) (2) (3) 10 L 1 L 1 L 150 L 30 L 150 L	DESORPTION: INJECTION VOLUME:	1 mL methanol in ultrasonic bath for 30 minutes 1 μL			
SHIPMENT:	Routine	TEMPERATURE -II	NJECTION: 250°C			
SAMPLE STABILITY:	30 days @ 5°C	-C	80 °C, 1 min; 8 °C/min to 180 °C			
BLANKS:	2 to 10 field blanks per set	CARRIER GAS: COLUMN:	He, 2.5 to 3.0 mL/min capillary, 30 m x 0.53-mm ID; µm film			
	ACCURACY		crossbonded 5% diphenyl 95% dimethylpolysiloxane, Rtx®-5 Amine or equivalent			
RANGE STUDIED: Table 1		CALIBRATION:	analytes in methanol			
BIAS:	Table 1	RANGE:	Table 1			
OVERALL PRE	ECISION Ĝ _{rT}): Table 1	ESTIMATED LOD:	Table 1			
ACCURACY:	Table 1	PRECISION (\$,): Ta	able 1			

APPLICABILITY: The working ranges for a 30-L air samples are 0.396 to 1.92 ppm (1.98 to 9.60 mg/m³) for nitrobenzene; 0.346 to 1.73 ppm (1.97 to 9.86 mg/m³) for o-nitrotoluene; 0.344 to 1.72 ppm (1.96 to 9.81 mg/m³) for m-nitrotoluene; 0.303 to 1.52 ppm (1.73 to 8.67 mg/m³) for p-nitrotoluene; and 0.308 to 1.54 ppm (1.98 to 9.92 mg/m³) for p-nitrotoluene; 1,2].

INTERFERENCES: Any compounds with retention times similar to the analytes of interest will interfere. During sampling, high humidity may greatly decrease breakthrough volume.

OTHER METHODS: This method is an update of NMAM 2005, Nitrobenzenes, issued 15 August 1994, which combined and replaced methods S217, S218, and S223 [2,3].

REAGENTS:

- 1. Methanol, HPLC chromatographic grade.
- 2. Nitrobenzene*, reagent grade.
- 3. *o-,m-,p-*nitrotoluene isomers,* reagent grade.
- 4. 4-chloronitrobenzene*, reagent grade.
- 5. Calibration stock solution, 500 μg/mL. Prepare each analyte in methanol.
- 6. Helium, purified and filtered.
- 7. Hydrogen, purified and filtered.
- 8. Air, purified and filtered.
- * See SPECIAL PRECAUTIONS

EQUIPMENT:

- Sampler: glass tube, 7 cm long, 6-mm OD, 4-mm ID, flame-sealed ends with plastic caps, containing two sections (front=150 mg; back=75 mg) of 20/40 mesh silica gel separated by a 2-mm urethane foam plug. A silylated glass wool plug precedes the front section and a 3-mm urethane foam plug follows the back section.
- 2. Personal sampling pump, 0.01 to 1 L/min, with flexible connecting tubing.
- 3. Gas chromatograph, FID, integrator and column (page 2005-1).
- 4. Autosampler vials, glass, 2-mL, with PTFE-lined crimp caps.
- 5. Volumetric flasks, 10-mL.
- 6. Pipets, 5-mL and 3-mL, with pipet bulb.
- 7. Syringes, 10-μL, 100-μL, and 1-mL.
- 8. Ultrasonic bath.

SPECIAL PRECAUTIONS: These analytes are severe poisons and irritants. Prevent contact with eyes, skin, or clothing by wearing eye protection, chemically resistant gloves, and a lab coat. Avoid inhalation. Nitrobenzene and *m*-nitrotoluene are absorbed through contact with skin and can cause methemoglobinemia [5,6]. 4-Chloronitrobenzene is a carcinogen. Methanol is highly flammable.

SAMPLING:

- 1. Calibrate each personal sampling pump with a representative sampler in line.
- 2. Break the ends of the sampler immediately before sampling. Attach sampler to personal sampling pump with flexible tubing.
- 3. Sample at an accurately known flow rate between 0.01 and 0.2 L/min for nitrotoluene isomers. Use a flow rate of 1 L/min or less for nitrobenzene and 4-chloronitrobenzene. Note the maximum and minimum sample volumes on page 2005-1.
- 4. Cap both ends of the sampler. Pack securely for shipment.

SAMPLE PREPARATION:

- 5. Place the front (include the glass wool plug) and back sorbent sections of each sample tube in separate vials. Discard the foam plugs.
- 6. Add 1.0 mL of methanol to each vial. Attach crimp cap securely to each vial.
- 7. Allow to desorb 30 min in an ultrasonic bath.

CALIBRATION AND QUALITY CONTROL:

- 8. Calibrate daily with at least six working standards to cover the analytical range of the method. If necessary, additional standards may be added to extend the calibration curve.
 - a. Add known amounts of calibration stock to methanol in 10-mL volumetric flasks and dilute to the mark.
 - b. Analyze together with samples and blanks (steps 11 and 12).
 - c. Prepare calibration graph (peak area vs µg analyte).
- 9. Determine desorption efficiency (DE) at least once for each lot of silica gel used for sampling in the calibration ranges (step 8).

- a. Prepare three tubes at each of five levels plus three media blanks.
- b. Inject a known amount of calibration stock solution directly onto the front sorbent section of each silica gel tube with a microliter syringe.
- Allow the tubes to air equilibrate for several minutes, then cap the ends of eachube and allow to stand overnight.
- d. Desorb (steps 5 through 7) and analyze together with standards and blanks (steps 11 and 12).
- e. Prepare a graph of DE vs µg analyte recovered.
- 10. Analyze three quality control blind spikes and three analyst spikes to ensume at the calibration graph and DE graph are in control.

MEASUREMENT:

- 11. Set gas chromatograph according to manufacturer's recommendations and to conditions given on page 2005-1. Inject a 1-µL sample aliquot manually using the solvent flush technique or with an autosampler. NOTE: If peak area is above the linear range of the working standards, dilute with methanol, reanalyze and apply the appropriate dilution factor in the calculations.
- 12. Measure peak areas.

CALCULATIONS:

- 13. Determine the mass, μg (corrected for DE) of analyte found in the sample front () Vand back (W_b) sorbent sections, and in the average media blank front () and back (B_b) sorbent sections. NOTE: If W_b > W_b/10, report breakthrough and possible sample loss.
- 14. Calculate concentration, C, of analyte in the air volume sampled, V(L):

$$C = \frac{(W_f + W_b - B_f - B_b)}{V}, mg/m^3$$

NOTE: $\mu g/mL = mg/m^3$

EVALUATION OF METHOD:

The update of this method included the use of capillary column chromatography that lowered the LOD/LOQ values, a lower 5-level desorption efficiency study, and a 30-day storage stability study for each analyte [1]. The method evaluation data for these compounds are listed in Table 2. Methods S217, Nitrobenzene, and S218, 4-nitrochlorobenzene, were initially issued on November 21, 1975 [4]. Method S228-nitrotoluene was issued on December 19, 1975 [4]. The analytesn-nitrotoluene and p-nitrotoluene were added on May 15, 1984 [3]. In the original method development work, sample tube capacity, or breakthrough, was determined as 5% of the generated atmosphere concentration as measured in the effluent of the sample tubes. Capacity was measured at >2.8 mg/sample for nitrobenzene; >2.5 mg/sample for nitotoluene isomers; and >2.2 mg/sample for 4-chlorobenzene [2.]

REFERENCES:

- [1] Pendergrass SM [1997]. Backup data report for nitroaromatic compounds method development. Cincinnati, OH: National Institute for Occupational Safety and Health, DPSE/NIOSH (unpublished December).
- [2] NIOSH[1977]. Documentation of the NIOSH Validation Tests, S217, S218, and S223, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 77-185.
- [3] NIOSH [1994]. *m*-Nitrotoluene and *p*-Nitrotoluene: Method 2005. In: Eller PM, Cassinelli ME, eds. NIOSH Manual of Analytical Methods, 4 ed. Cincinnati, OH: U.S. Departmentof Health and Human

- Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 94-113.
- [4] NIOSH [1978]. Nitrobenzene: Method S217;p-Chloronitrobenzene: Method S218; and Nitrotoluene: Method S223. In: Taylor DG, ed. NIOSH Manual of Analytical Methods, 2ed., Cincinnati, OH: U.S. Department of Health, Education, and Welfare, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, Publ. (NIOSH) 77-157-C.
- [5] NIOSH[1977]. Occupational diseases, a guide to their recognition, revised ed., 235-238, 280-281, U.S. Department of Health, Education, and Welfare, DHEW (NIOSH) Publication No. 77-157-C.
- [6] NIOSH[1981]. NIOSH/OSHA Occupational Health Guidelines for Chemical Hazards, Nitrobenzene, Nitrochlorobenzeneand Nitrotoluene, U.S. Department of Health and Human Services, Publ. (NIOSH) 81-123.

METHOD WRITTEN BY: Stephanie M. Pendergrass, NIOSH/DPSE

TABLE 1. GENERAL INFORMATION

Chemical	TWA OSHA NIOSH ACGIH	Physical Properties	Method Evaluation
Nitrobenzene	1 ppm (5.0 mg/m³) (skin) 1 ppm (5.0 mg/m³) (skin) 1 ppm (5.0 mg/m³) (skin)	Colorless oily liquid, almond odor; d=1.196 g/mL @ 20°C; MP 6°C; BP 210- 211°C; VP=37 Pa (0.30 mm Hg) @ 20°C	Full
o-Nitrotoluene	5 ppm (28.5 mg/m³) (skin) 2 ppm (11.7 mg/m³) 2 ppm (11.7 mg/m³)	yellowish liquid; d=1.163 g/mL @ 20C; MP -4°C; BP 222°C; VP=20 Pa (0.15 mm Hg) @ 20°C	Full
<i>m</i> -Nitrotoluene	5 ppm (28.5 mg/m³) 2 ppm (11.7 mg/m³) 2 ppm (11.7 mg/m³)	liquid; d=1.157 g/mL @ 20°C; MP 16°C; BP 232°C; VP=20 Pa (0.15 mm Hg) @ 20°C	Partial
<i>p</i> -Nitrotoluene	5 ppm (28.5 mg/m³) 2 ppm (11.7 mg/m³) 2 ppm (11.7 mg/m³)	yellow crystals; d=1.163 g/mL @ 20C; MP 52°C; BP 238°C; VP=17 Pa (0.12 mm Hg) @ 20°C	Partial
4-Chloronitro- benzene	0.16 ppm (1.03 mg/㎡) Ca* 0.1 ppm (0.644 mg/㎡)	yellow crystals; d=1.298 g/mL @ 20C; MP 83°C; BP 242°C; VP=28 Pa (0.2 mm Hg) @ 30°C	Partial

^{* -} Cancer suspect agent

TABLE 2. METHOD SUMMARY

Chemical	Range Studied ^a (mg/m³)	Ŝ _{rT}	Bias	Accuracy (±%)	Analytical Range (µg/sample)	LOD (µg/sample)	Ō,	Desorption Efficiency (%)	30-Day Storage (% Rec)
Nitrobenzene	1.98 to 9.60	0.0590	0.0186	12.3	2 to 598	0.6	0.012	98.7	100.2
o-Nitrotoluene	1.97 to 9.86	0.0142	-0.120	21.1	3 to 582	8.0	0.028	98.2	101.2
<i>m</i> -Nitrotoluene	not studied	$nd^{\mathtt{b}}$	nd	nd	3 to 579	1.0	0.042	97.5	99.4
<i>p</i> -Nitrotoluene	not studied	nd	nd	nd	9 to 511	2.6	0.061	96.9	99.4
4-Chloro- nitrobenzene	1.98 to 9.92	0.1034	0.0869	27.3°	8 to 595	2.5	0.063	100.3	97.6

^a 30-L air sample ^b Not determined

 $^{^{\}circ}$ Exceeds the NIOSH accuracy criterion of ± 25% at the 95% confidence level