

METHAMPHETAMINE and ILLICIT DRUGS, PRECURSORS, and ADULTERANTS on WIPES by LIQUID-LIQUID EXTRACTION

NIOSH 9106, Issue 1

Backup Data Report, Abridged Version

John M. Reynolds Maria Carolina Siso James B. Perkins

DRAFT August 30, 2005

Contract

CDC-200-2001-0800

Submitted To:

National Institute for Occupational Safety and Health Robert A. Taft Laboratories 4676 Columbia Parkway Cincinnati, Ohio 45226

Submitted By:

DataChem Laboratories, Inc. 960 West LeVoy Drive Salt Lake City, Utah 84123-2547

## TABLE OF CONTENTS

# $\label{lem:methamphetamine} \begin{subarray}{l} \textbf{METHAMPHETAMINE and ILLICIT DRUGS, PRECURSORS, and ADULTERANTS} \\ \textbf{on WIPES by LIQUID-LIQUID EXTRACTION} \end{subarray}$

| I.   | INTRODUCTION                                              | 1         |
|------|-----------------------------------------------------------|-----------|
| II.  | SCOPE AND OBJECTIVES                                      | 1         |
|      | A. Introduction                                           | <b></b> 1 |
|      | B. Analytical Techniques                                  | 2         |
|      | C. Wipe Media                                             | 3         |
|      | D. Target Analytes                                        | 3         |
|      | E. Surrogate and Internal Standards                       | 3         |
|      | F. Crystal Violet Visualization Reagent                   | 4         |
|      | G. Gas Chromatographic and Mass Spectrometric Conditions  | 5         |
| III. | ANALYTICAL METHOD                                         | 5         |
| IV.  | DETERMINATION OF LIMITS OF DETECTION AND QUANTITATION     | 6         |
|      | A. Introduction and Objective                             | 6         |
|      | B. Reagents and Supplies                                  | 8         |
|      | C. Spiking Schedule and Derivatization Procedure          | 9         |
|      | D. Results                                                | 10        |
| V.   | EVALUATION OF LONG-TERM SAMPLE STORAGE STABILITY          | 13        |
|      | A. Objective                                              | 13        |
|      | B. Reagents and Supplies                                  | 13        |
|      | C. Procedure                                              | 15        |
|      | D. Results                                                | 15        |
|      | E. Analysis of Trends in Analyte Stability During Storage | 17        |
|      | F. Conclusions.                                           | 21        |

| VI.   | EVALUATION OF PRECISION AND ACCURACY WITH ISOPROPANOL AS THE GAUZE WETTING SOLVENT | 21 |
|-------|------------------------------------------------------------------------------------|----|
|       | A. Objective                                                                       | 21 |
|       | B. Scope and Limitations                                                           | 22 |
|       | C. Reagents and Supplies                                                           | 22 |
|       | D. Procedure                                                                       | 24 |
|       | E. Analysis and Results                                                            | 25 |
| VII.  | PARTIAL EVALUATION OF PRECISION AND RECOVERY FOR PENTAFLUOROPROPIONIC ANHYDRIDE    | 39 |
|       | A. Objective and Scope                                                             | 39 |
|       | B. Reagents and Supplies.                                                          |    |
|       | C. Procedure                                                                       | 39 |
|       | D. Results.                                                                        | 40 |
|       | E. Typical Pentafluoropropionic Anhydride (PFPA) Calibration Curve                 | 42 |
|       | F. Conclusions.                                                                    | 43 |
| VIII. | EVALUATION OF PRECISION AND ACCURACY WITH METHANOL AS THE GAUZE WETTING SOLVENT    |    |
|       | A. Objective                                                                       | 44 |
|       | B. Scope                                                                           | 44 |
|       | C. Discussion of Possible Effects of Methanol on NIOSH 9106                        | 45 |
|       | D. Analytes, Sampling Media, and Internal Standard                                 | 46 |
|       | E. Procedure                                                                       | 46 |
|       | F. Analysis and Results                                                            | 47 |
|       | G. Discussion of Results                                                           | 50 |
|       | H. Conclusions                                                                     | 51 |
|       | I. Recovery, Precision, and Accuracy Data for Methanol Wetted Cotton Gauze         | 52 |

| IX. | OVERALL CONCLUSIONS | 55 |
|-----|---------------------|----|
| X   | REFERENCES          | 56 |



## ABRIDGED BACKUP DATA REPORT FOR NIOSH 9106: METHAMPHETAMINE AND ILLICIT DRUGS, PRECURSORS, AND ADULTERANTS ON WIPES BY LIQUID-LIQUID EXTRACTION

## I. INTRODUCTION

In December 2002 DataChem Laboratories (DCL) received a request from NIOSH to develop a method for determining methamphetamine on surfaces using gauze wipes. This method was to be used by NIOSH in a collaborative research project with the National Jewish Medical and Research Center (NJMRC) in a study of the contamination within clandestine drug laboratories and the hazards they present to first responders and occupants. [1] Three methods for analysis of drugs on wipes were subsequently developed. The first method used a liquid-liquid extraction cleanup procedure with derivatization by fluorinated acid anhydrides for analysis by GC-MS. [2] The second method used solid-phase extraction (SPE) cleanup with derivatization by a mixed silylation-acylation reagent for analysis by GC-MS. [3] The third method used LC-MS without derivatization and is still in the process of development. This Backup Data Report presents the evaluation results for the first method, the liquid-liquid extraction procedure, and only involves the use of cotton gauze wipes. It is an abridged version of a larger Backup Data Report for NIOSH 9106 that gives results for other sampling media and greater detail on the method development process. [4]

## II. SCOPE AND OBJECTIVES

## A. Introduction

This method was developed in accordance to the principles set forth in the NIOSH publication "Guidelines for Air Sampling and Analytical Method Development and Evaluation"

[5]. The method had to meet the accuracy criterion requirement given therein that with a 95%

confidence a result must be within ±25% of the true value. Since the method was for surface wipe sampling and not air sampling, the procedures set forth in the guidelines had to be modified. No simulated vapor and aerosol sampling recovery study was performed. The precision and accuracies for NIOSH 9106 were therefore calculated from a desorption efficiency study and do not include sampling error.

However, a limited surface recovery study is reported in the Backup Data Report for NIOSH 9109. [6] Several surfaces and wipe methods were tested. Recovery rates vary greatly by surface material wiped, especially between porous rough surfaces compared to smooth non-porous surfaces and by wipe procedure used. The sampling recovery data were not used to compute measurement bias, overall precision and overall accuracy for the method for three reasons. First, surface recoveries vary greatly by surface material and only 6 surfaces were tested. Second, test surfaces were liquid spiked just prior to sampling and the sampling surface recovery test did not replicate recoveries of drug vapors and dusts deposited on surfaces for an extended period of time. Third, surface recovery is dependant upon the wipe procedure used and a comprehensive test of wipe procedures used or specified by various legal jurisdictions was not undertaken.

The studies performed and contained in this report cover the following areas:

- 1. Development of analytical procedures (extraction, derivatization, GC-MS conditions),
- 2. Selection of wipe media for evaluation,
- 3. Estimation of limits of detection (LODs) and quantitation (LOQs) for the method,
- 4. Evaluation of sampling media for long-term storage stability,
- 5. Evaluation of precision and accuracy for the method.

### **B.** Analytical Techniques

Gas Chromatography with Mass Spectrometry (GC-MS) was used in order to provide unambiguous identification of the target analyte. Because of the poor chromatography of parent amphetamines in preliminary experiments, amphetamines were derivatized. Several derivatizing agents were tested for ease of handling, completeness of derivatization, and chromatographic characteristics. Two derivatizing agents were found to be acceptable for the liquid-liquid extraction procedure. These were pentafluoropropionic anhydride (PFPA) and chlorodifluoroacetic anhydride (CDFAA).

## C. Wipe Media

Several media were screened. These included cotton gauze, AlphaWipe<sup>TM</sup>, NU-GAUZE<sup>TM</sup>, MIRASORB<sup>TM</sup>, SOF-WICK<sup>TM</sup>, and TOPPER<sup>TM</sup>. The latter four materials were synthetic engineered fabric gauzes that have been discontinued by their manufacturer. Cotton gauze was found to be as good as or better than any of the synthetics tested and only the results for this material are given in this abridged report.

## D. Target Analytes

The analytes studied were methamphetamine, the primary drug of clandestine manufacture in the U.S. at present, and other drugs of clandestine manufacture: amphetamine, ecstasy (MDMA), an ecstasy analog (MDEA), and phencyclidine (PCP). The method includes ephedrine and pseudoephedrine (precursors for methamphetamine), phenylpropanolamine (a precursor for amphetamine), phentermine (an anorexic used as an adulterant), and caffeine (an adulterant).

### E. Surrogate and Internal Standards

Two kinds of internal standards were used. One kind was added to the final extract just prior to analysis by GC-MS. This internal standard was 4,4'-dibromooctafluorobiphenyl

(DBOFB). It was useful for monitoring GC-MS and autosampler performance in each sample and standard. It is a convenience but is not critical to the analysis.

These internal standards are critical for the success of the method. The preferred deuterated internal standards were methamphetamine-D<sub>14</sub> and amphetamine-D<sub>11</sub>. The more highly deuterated the compound the better. Deuterium labeling had to be in the side chain and not just in the aromatic portion of the compound. Steric hindrance around the amine was an important factor and the internal standard had to be similar to that of the target analyte. Primary amines gave best results when amphetamine-D<sub>11</sub> was used and N-methyl secondary amines gave best results when methamphetamine-D<sub>14</sub> was used. For MDEA, an N-ethyl secondary amine, another sterically hindered amine was required as the internal standard. N-propyl amphetamine, a sterically hindered secondary amine, was found to be an effective internal standard for MDEA.

### F. Crystal Violet Visualization Reagent

At a certain stage in the sample preparation (after the eluates have been collected from the drying columns and just prior to concentration under a stream of nitrogen) crystal violet was added to make the dried residue more visible. The color of the eluates after the addition of crystal violet is violet. A good grade of crystal violet was obtained (95% purity or better) which gave no GC-MS interference.

The crystal violet is also a pH indicator for organic solutions. At acid pH the color is yellow. In the presence of a little residual isopropanol when the eluates are nearly evaporated to dryness, the crystal violet turns yellow. Just at dryness, as the excess hydrochloric acid evaporates, the dried residue turns green, then blue, and finally to purple. These color changes were not observed if methanol was used as the wipe solvent. But the color changes can be made to appear if a little isopropanol is added prior to drying.

The presence of anionic detergents and other contaminants affected the series of color changes, sometimes preventing color changes altogether.

If a viscous residue remained after nitrogen blow-down, a fresh aliquot of the desorbates was re-extracted using methylene chloride instead of hexane as the cleanup solvent. When viscous residues remained after evaporation under nitrogen, the derivatization reagent was not effective.

## G. Gas Chromatographic and Mass Spectrometric Conditions

The conditions were chosen such that the initial temperature was below the boiling point of the solvent (primarily toluene) by 10-20 degrees Celsius so that Gröb splitless injection could be used. A simple temperature ramp of 10 °C/minute was adequate to separate all of the analytes in a reasonable period of time. This applied to either the CDFA or PFP derivatives. Only one type of GC column was tested: DB-5ms, a 5%phenylmethylsilicone column. Other columns might be just as good or perhaps better as far as peak shape goes for some derivatives and especially for the polar parent compounds.

Both scan mode (scanning from 20 to 470 AMU in about 0.2 to 0.3 seconds) or selected ion monitoring (SIM) mode were evaluated. The GC-MS conditions are given in NIOSH 9106.

## III. ANALYTICAL METHOD

The liquid-liquid extraction procedure is described in NIOSH 9106 [2]. The details of the procedure are not repeated here for brevity.

All of the samples analyzed for the collaborative study between the National Jewish Medical and Research Center (NJMRC) and NIOSH [1] were processed by the liquid-liquid extraction procedure, NIOSH 9106. [2] Liquid-liquid extraction has advantages over the solid

phase extraction (SPE) technique (NIOSH 9109 [3]). Advantages include: cleaner chromatograms and much longer operating times for the mass spectrometer before cleaning is necessary. Cleaner chromatograms makes it easier to detect non-target analytes that may be unexpected and of interest. The major disadvantage of the liquid-liquid extraction procedure is the longer time it takes to prepare samples.

The major advantage of the SPE extraction procedure is much quicker sample preparation and it is easier to process a larger number of samples. The major disadvantages are that the mixed silylation-acylation reagents dirty the mass spectrometer source faster and the chromatograms are cluttered with silane by-product GC peaks, making it harder to spot non-target compounds. However, target compounds are easily sorted out from the noise through the use of reconstructed ion current profiles for quantitation since the noise does not share the same ions critical for quantification of the analytes.

## IV. DETERMINATION OF LIMITS OF DETECTION AND QUANTITATION

## A. Introduction and Objective

The objective of this study was to determine the limits of detection (LOD) and quantitation (LOQ) for the target analytes. There are no national health-based or feasibility-based surface contamination standards, criteria or guidelines for clandestine drug laboratory decontamination. However, several states have feasibility-based surface contamination limits. The most common limit is 0.1 µg of methamphetamine for a sample of 100 square centimeters of surface area wiped. Some jurisdictions require 1 square foot to be wiped. In either case, the most common required sensitivity is 0.1 µg per sample for methamphetamine. In addition, state surface

contamination standards for other drugs (ephedrine, pseudoepedrine, and Ecstasy (MDMA)) are also 0.1 µg per 100 square centimeters of surface area wiped or 0.1 µg per sample.[7]

## TABLE 1. STATE MAXIMUM SURFACE CONTAMINATION LIMITS

There are no national health-based or feasibility-based surface contamination standards, criteria or guidelines for clandestine drug laboratory decontamination. However, several states have feasibility-based surface contamination limits.

|                               | Methamphetamine              | Ephedrine                                                                                                                                                  | Pseudoepedrine                                                                                                                                            | Ecstasy                                                                                                                                                    |
|-------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                              |                                                                                                                                                            |                                                                                                                                                           | (MDMA)                                                                                                                                                     |
|                               | A                            |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
|                               |                              |                                                                                                                                                            | W                                                                                                                                                         |                                                                                                                                                            |
|                               | Colorado                     |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
| (Equivalent to                | Minnesota                    |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
| $0.11 \mu/100 \mathrm{cm}^2$  |                              |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
|                               | Alaska                       |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
|                               | Arizona                      | Arizona                                                                                                                                                    | Arizona                                                                                                                                                   | Arizona                                                                                                                                                    |
|                               | Arkansas                     |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
|                               | California                   |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
|                               | Idaho                        |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
|                               | Montana                      |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
|                               | North Carolina               |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
|                               | Tennessee                    |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
| Alles All                     | Utah                         | Utah                                                                                                                                                       | Utah                                                                                                                                                      | Utah                                                                                                                                                       |
| VENEZA CONTRACTOR             | Washington                   |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
| (Equivalent to                | Oregon                       |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
| $0.05 \mu/100 \mathrm{cm}^2)$ |                              |                                                                                                                                                            |                                                                                                                                                           |                                                                                                                                                            |
|                               | 0.11 μ/100 cm <sup>2</sup> ) | Colorado  (Equivalent to 0.11 μ/100 cm²)  Alaska Arizona Arkansas California Idaho Montana North Carolina Tennessee Utah Washington  (Equivalent to Oregon | Colorado (Equivalent to 0.11 μ/100 cm²)  Alaska Arizona Arkansas California Idaho Montana North Carolina Tennessee Utah Washington  (Equivalent to Oregon | Colorado  (Equivalent to 0.11 μ/100 cm²)  Alaska Arizona Arkansas California Idaho Montana North Carolina Tennessee Utah Washington  (Equivalent to Oregon |

<sup>\*</sup> State surface contamination limits are provided as an aid to those seeking additional information. NIOSH has not established health-based or feasibility-based airborne Recommended Exposure Limits (RELs) or surface contamination guidelines for clandestine drug laboratories and therefore inclusion of state surface contamination limits does not constitute endorsement by NIOSH. The National Alliance for Model State Drug Laws (NAMSDL) ( <a href="http://www.natlalliance.org/">http://www.natlalliance.org/</a>) periodically summarizes state feasibility-based decontamination limits and proposed state legislative requirements and guidelines. However, state requirements and guidelines are subject to change and therefore the most recent state guidance should be obtained from directly from the state.

The LOD and LOQ are determined by a modification of NIOSH SOP 018 as described by Burkart [8]. The calibration curve was set up using duplicate spiked and extracted liquid standards for each concentration level, not duplicate injections of each standard. This is in accordance to the method, which also uses duplicate spiked liquid standards at each concentration level.

## B. Reagents and Supplies

These are described in NIOSH 9106. Supplies that have specific lot numbers and/or concentrations unique to this study are given below.

a. Mixed analyte spiking solution (See Table 2.);

TABLE 2. MIXED ANALYTE SPIKING SOLUTION (1)

|    | ANALYTE                     | Source       | Lot Number | Calculated    |
|----|-----------------------------|--------------|------------|---------------|
|    | \ \ \                       |              |            | concentration |
|    | ,                           |              |            | as free base  |
|    |                             |              |            | in μg/mL      |
| 1  | D-Amphetamine HCl           | Alltech      | 413        | 50.00322      |
| 2  | Caffeine                    | Chem Service | 28-49C     | 50.01031      |
| 3  | L-Ephedrine HCl             | Alltech      | 1505       | 50.29991      |
| 4  | MDEA HCI                    | Alltech      | 3506       | 47.63766      |
| 5  | MDMA HCl                    | Alltech      | 6852       | 45.28192      |
| 6  | D-Methamphetamine HCl       | Alltech      | 389        | 50.03214      |
| 7  | Phencyclidine HCl           | Alltech      | 1293-33    | 50.07406      |
| 8  | Phentermine HCl             | Sigma        | 105F-0129  | 50.34771      |
| 9  | (±)-Phenylpropanolamine HCl | Sigma        | 91F-0298   | 50.40394      |
| 10 | Pseudoephedrine HCl         | Sigma        | 32K-1358   | 50.28431      |

<sup>(1)</sup> The mixture was made up in methanol, HPLC grade, B&J lot CB331

b. Internal standard spiking solution (See Table 3.);

TABLE 3. INTERNAL STANDARD SPIKING SOLUTION (1)

|   | ANALYTE                                  | Source     | Lot Number | Calculated    | Abbreviation          |
|---|------------------------------------------|------------|------------|---------------|-----------------------|
|   |                                          |            |            | concentration | in Following          |
|   |                                          |            |            | as free base  | Tables                |
|   |                                          |            |            | in μg/mL      |                       |
| 1 | (±)-Amphetamine-D <sub>11</sub> , HCl    | Cerilliant | 35129-58A  | 50.00         | D <sub>11</sub> -Amp  |
| 2 | N-Propylamphetamine                      | Alltech    | 1604       | 83.099        | D <sub>14</sub> -Meth |
| 3 | (±)-Methamphetamine-D <sub>14,</sub> HCl | Cerilliant | 30902-25G  | 100.00        | N-PAmp                |

- (1) The mixture was made up in methanol. About 2  $\mu$ L of powdered crystal violet was added to about 10mL of the internal standard spiking solution to act as a visual reference as to which samples were spiked
- c. Drying columns were prepared in blank 12-mL polypropylene (PP) columns (10mm i.d. x 75mm long barrel with a 16mm i.d. x 40mm long reservoir on top) fitted with fritted polyethylene discs. These were used instead of in 10-mL Eppendorf pipette tips.

## C. Spiking Schedule and Derivatization Procedure

Liquid standards were prepared in duplicate as follows. Three milliliters of isopropanol were added to empty 50-mL PP centrifuge tubes. The isopropanol (IPA) was spiked with the mixed analyte spiking solution (Table 2) according to the following schedule.

TABLE 4. SPIKING SCHEDULE FOR PRECISION AND ACCURACY STUDY

|                                    | Amount applied per concentration level in microliters |          |          |         |         |                                                               |        |          |
|------------------------------------|-------------------------------------------------------|----------|----------|---------|---------|---------------------------------------------------------------|--------|----------|
| MEDIA                              | IPA solution applied solution                         |          |          |         |         | μL of 1/10 dilution of mixed analyte spiking solution applied |        |          |
| MEDIA                              | mL                                                    | 300x LOQ | 100x LOQ | 30x LOQ | 10x LOQ | 3x LOQ                                                        | 1x LOQ | 0.5x LOQ |
|                                    |                                                       | Level    | Level    | Level   | Level   | Level                                                         | Level  | Level    |
| None<br>(liquid only<br>standards) | 3                                                     | 600      | 200      | 60      | 200     | 60                                                            | 20     | 10       |

After the addition of the mixed analyte spiking solution, 50-µL of internal standard spiking solution was added to each tube. After spiking, 40mL of desorption solutions (0.2N aqueous sulfuric acid) were added to each tube. The resulting sample concentrations after spiking are given in the following table.

TABLE 5. CONCENTRATION OF ANALYTES AT EACH LEVEL

|    |                     | Calculated Concentration in µg/sample (1) |          |         |         |         |         |          |
|----|---------------------|-------------------------------------------|----------|---------|---------|---------|---------|----------|
|    | ANALYTE             | 300x LOQ                                  | 100x LOQ | 30x LOQ | 10x LOQ | 3x LOQ  | 1x LOQ  | 0.5x LOQ |
|    |                     | Level                                     | Level    | Level   | Level   | Level   | Level   | Level    |
| 1  | D-Amphetamine       | 30.00193                                  | 10.00064 | 3.00019 | 1.00006 | 0.30002 | 0.10001 | 0.05000  |
| 2  | Caffeine            | 30.00619                                  | 10.00206 | 3.00062 | 1.00021 | 0.30006 | 0.10002 | 0.05001  |
| 3  | L-Ephedrine         | 30.17995                                  | 10.05998 | 3.01799 | 1.00600 | 0.30180 | 0.10060 | 0.05030  |
| 4  | MDEA                | 28.58259                                  | 9.52753  | 2.85826 | 0.95275 | 0.28583 | 0.09528 | 0.04764  |
| 5  | MDMA                | 27.16915                                  | 9.05638  | 2.71692 | 0.90564 | 0.27169 | 0.09056 | 0.04528  |
| 6  | D-Methamphetamine   | 30.01928                                  | 10.00643 | 3.00193 | 1.00064 | 0.30019 | 0.10006 | 0.05003  |
| 7  | Phencyclidine       | 30.04444                                  | 10.01481 | 3.00444 | 1.00148 | 0.30044 | 0.10015 | 0.05007  |
| 8  | Phentermine         | 30.20862                                  | 10.06954 | 3.02086 | 1.00695 | 0.30209 | 0.10070 | 0.05035  |
| 9  | Phenylpropanolamine | 30.24236                                  | 10.08079 | 3.02424 | 1.00808 | 0.30242 | 0.10081 | 0.05040  |
| 10 | Pseudoephedrine     | 30.17059                                  | 10.05686 | 3.01706 | 1.00569 | 0.30171 | 0.10057 | 0.05028  |

<sup>(1)</sup> The number of significant figures was kept large until the final calculations to avoid cumulative rounding off errors.

The tubes were capped securely and tumbled for 2-3 hours (along with the cotton samples for the precision and accuracy evaluation study). After tumbling, 10 mL of the desorbates were processed according to NIOSH 9106 derivatizing with chlorodifluoroacetic anhydride in 14 mL collection tubes.

#### D. Results

The LOD and LOQ for each analyte, normalized against each internal applicable standard are summarized in the table 6.

# TABLE 6. CALCULATED LIMITS OF DETECTION USING LIQUID STANDARDS IN SCAN MODE (1)

|    |                     | LOD, Concentration in µg/sample (2) |                       |          |  |  |
|----|---------------------|-------------------------------------|-----------------------|----------|--|--|
|    | ANALYTES            | Int. Std:                           | Int. Std              | Int. Std |  |  |
|    |                     | D <sub>11</sub> -amp                | D <sub>14</sub> -Meth | N-PAmp   |  |  |
| 1  | D-Amphetamine       | 0.0708                              | 0.0585                | 🔊        |  |  |
| 2  | Caffeine            | 0.2277 (3)                          | 0.3755 (3)            | -4       |  |  |
| 3  | L-Ephedrine         | 0.0891                              | 0.0760                | 4-12     |  |  |
| 4  | MDEA                |                                     |                       | 0.0411 * |  |  |
| 5  | MDMA                | 0.0695                              | 0.0540                | 4-       |  |  |
| 6  | D-Methamphetamine   | 0.0540                              | 0.0366 *              |          |  |  |
| 7  | Phencyclidine       | 0.1150                              | 0.2647                |          |  |  |
| 8  | Phentermine         | 0.0577                              | 0.0502                |          |  |  |
| 9  | Phenylpropanolamine | 0.1692                              | 0.1624                |          |  |  |
| 10 | Pseudoephedrine     | 0.0845                              | 0.0684                |          |  |  |
|    |                     |                                     |                       |          |  |  |

- \* Lowest standard was 0.05 μg/sample, therefore value was raised to 0.05 μg/sample.
- (1) LOD calculated using the procedure of Burkart [8].
- (2) The number of significant figures was kept large until the final calculations to avoid cumulative rounding off errors.
- (3) In the Precision and Accuracy study, the 0.3 μg/sample level was not detectable on any media. Therefore the level was raised to 1 μg/sample.

TABLE 7. CALCULATED LIMITS OF QUANTITATION USING LIQUID STANDARDS IN SCAN MODE  $^{(1)}$ 

|    | 488 488             | LOQ, Concentration in μg/sample (2) |                       |          |  |  |
|----|---------------------|-------------------------------------|-----------------------|----------|--|--|
|    | ANALYTES            | Int. Std:                           | Int. Std              | Int. Std |  |  |
| _  |                     | D <sub>11</sub> -amp                | D <sub>14</sub> -Meth | N-PAmp   |  |  |
| 1  | D-Amphetamine       | 0.2362                              | 0.1949                |          |  |  |
| 2  | Caffeine            | 0.7609                              | 1.2525                |          |  |  |
| 3  | L-Ephedrine         | 0.2974                              | 0.2535                |          |  |  |
| 4  | MDEA                |                                     |                       | 0.1371   |  |  |
| 5  | MDMA                | 0.2319                              | 0.1802                |          |  |  |
| 6  | D-Methamphetamine   | 0.1802                              | 0.1220                |          |  |  |
| 7  | Phencyclidine       | 0.3823                              | 0.8858                |          |  |  |
| 8  | Phentermine         | 0.1922                              | 0.1672                |          |  |  |
| 9  | Phenylpropanolamine | 0.5614                              | 0.5378                |          |  |  |
| 10 | Pseudoephedrine     | 0.2818                              | 0.2280                |          |  |  |

- \* Lowest standard was 0.05 μg/sample, therefore value was raised to 0.05 μg/sample.
- (1) LOQ calculated using the procedure of Burkart [8].
- (2) The number of significant figures was kept large until the final calculations to avoid cumulative rounding off errors.

After the liquid standards were used for determining the LOD and LOQ in the scan mode of operation of the GC-MS, they were reanalyzed, after standing at room temperature for about 4 days, in the selection ion monitoring (SIM) mode.

TABLE 8. CALCULATED LIMITS OF DETECTION

USING LIQUID STANDARDS IN SELECTED ION MONITORING MODE (1)

|    |                     | LOD, Concentration in μg/sample (2)        |                       |          |  |  |
|----|---------------------|--------------------------------------------|-----------------------|----------|--|--|
|    | ANALYTES            | Int. Std:                                  | Int. Std              | Int. Std |  |  |
|    |                     | D <sub>11</sub> -amp                       | D <sub>14</sub> -Meth | N-PAmp   |  |  |
| 1  | D-Amphetamine       | 0.0480                                     | 0.0588                |          |  |  |
| 2  | Caffeine            | 0.1728                                     | 0.1832                |          |  |  |
| 3  | L-Ephedrine         | 0.1189                                     | 0.0931                |          |  |  |
| 4  | MDEA                |                                            | <del></del>           | 0.0713   |  |  |
| 5  | MDMA                | 0.0565                                     | 0.0667                |          |  |  |
| 6  | D-Methamphetamine   | 0.0401 *                                   | 0.0503                |          |  |  |
| 7  | Phencyclidine       | 0.0650                                     | 0.0749                |          |  |  |
| 8  | Phentermine         | 0.0261 *                                   | 0.0241 *              |          |  |  |
| 9  | Phenylpropanolamine | Not analyzed due to breakdown on standing. |                       |          |  |  |
| 10 | Pseudoephedrine     | 0.0749                                     | 0.0873                |          |  |  |

<sup>\*</sup> Lowest standard was 0.05 μg/sample, therefore value was raised to 0.05 μg/sample.

The results show that there appears to be excellent stability of the derivatives over several days at room temperature, except for phenylpropanolamine. Phenylpropanolamine almost completely disappeared. It is likely that breakdown consisted of hydrolysis of the ester group catalyzed by the proximity of the free proton on the primary amide group. For reliable quantification of this compound the samples need to be kept refrigerated until analysis and should be analyzed at least within the first 24-48 hours after warming to room temperature.

The results also show that the LODs for either scan or SIM mode of operation is adequate to meet the regulatory limits set for methamphetamine on surfaces.

<sup>(1)</sup> LOD calculated using the procedure of Burkart [8].

<sup>(2)</sup> The number of significant figures was kept large until the final calculations to avoid cumulative rounding off errors.

TABLE 9. CALCULATED LIMITS OF QUANTITATION USING LIQUID STANDARDS IN SELECTED ION MONITORING MODE (1)

|    |                     | LOQ, Concentration in µg/sample (2)                             |                       |          |  |  |  |
|----|---------------------|-----------------------------------------------------------------|-----------------------|----------|--|--|--|
|    | ANALYTES            | Int. Std:                                                       | Int. Std              | Int. Std |  |  |  |
|    |                     | D <sub>11</sub> -amp                                            | D <sub>14</sub> -Meth | N-PAmp   |  |  |  |
| 1  | D-Amphetamine       | 0.1599                                                          | 0.1958                |          |  |  |  |
| 2  | Caffeine            | 0.5762                                                          | 0.6103                |          |  |  |  |
| 3  | L-Ephedrine         | 0.3966                                                          | 0.3103                | /4-      |  |  |  |
| 4  | MDEA                |                                                                 |                       | 0.2375   |  |  |  |
| 5  | MDMA                | 0.1883                                                          | 0.2222                |          |  |  |  |
| 6  | D-Methamphetamine   | 0.1338                                                          | 0.1678                |          |  |  |  |
| 7  | Phencyclidine       | 0.2168                                                          | 0.2499                |          |  |  |  |
| 8  | Phentermine         | 0.0869                                                          | 0.0802                |          |  |  |  |
| 9  | Phenylpropanolamine | Not measurable due to breakdown on standing at room temperature |                       |          |  |  |  |
| 10 | Pseudoephedrine     | 0.2497                                                          | 0.2906                |          |  |  |  |

Lowest standard was 0.05 µg/sample, therefore value was raised to 0.05 µg/sample.

- (1) LOQ calculated using the procedure of Burkart [8].
- (2) The number of significant figures was kept large until the final calculations to avoid cumulative rounding off errors.

## V. EVALUATION OF LONG-TERM SAMPLE STORAGE STABILITY

## A. Objective

The criterion for long-term stability is that the recoveries for samples stored under ambient conditions on day 7 should be within 10% of the recoveries determined for day zero. This is to ensure analyte stability on media during un-refrigerated shipment. To accomplish this the target analytes are spiked onto media and divided randomly into groups to be analyzed on different days. At least 6 replicates were stored at room temperature for 7 days. The others were stored at refrigerated temperatures for up to 30 days.

#### **B.** Reagents and Supplies

These are described in a previous section. Supplies that have specific lot numbers and/or concentrations unique to this study are given below.

a. Media (See Table 10). Storage stability was determined for all of the following media but only the results for cotton gauze will be given in this abridged Backup Data Report.

TABLE 10. MEDIA FOR LONG-TERM STABILITY TEST

|   | MEDIA                                       | SIZE   | PLY         | Number     |
|---|---------------------------------------------|--------|-------------|------------|
|   |                                             | 14/3/4 |             | per sample |
| 1 | AlphaWipe™                                  | 4"x 4" | 1-ply, knit | 2          |
| 2 | Cotton gauze, Caring brand                  | 3"x 3" | 12-ply      | 2          |
| 3 | MIRASORB™ Sponges (1)                       | 4"x 4" | 4-ply       | 1          |
| 4 | NU GAUZE™ General Use Sponges (1)           | 4"x 4" | 4-ply       | 1          |
| 5 | SOF-WICK <sup>TM</sup> Dressing Sponges (1) | 4"x 4" | 6-ply       | 1          |

(1) Johnson & Johnson product.

b. Mixed analyte spiking solution (See Table 11.).

TABLE 11. MIXED ANALYTE SPIKING SOLUTION  $^{(1)}$ 

|    | ANALYTE                     | Source       | Lot Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculated    |
|----|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|    |                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | concentration |
|    |                             |              | A STATE OF THE STA | as free base  |
|    |                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in μg/mL      |
| 1  | D-Amphetamine HCl           | Alltech      | 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.00322      |
| 2  | Caffeine                    | Chem Service | 28-49C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.01031      |
| 3  | L-Ephedrine HCl             | Alltech      | 1505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.29991      |
| 4  | MDEA HCl                    | Alltech      | 3506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47.66517      |
| 5  | MDMA HCl                    | Alltech      | 6852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.30759      |
| 6  | D-Methamphetamine HCl       | Alltech      | 389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.03214      |
| 7  | Phencyclidine HCI           | Alltech      | 1293-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.06204      |
| 8  | Phentermine HCl             | Sigma        | 105F-0129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.34771      |
| 9  | (±)-Phenylpropanolamine HCl | Sigma        | 91F-0298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.40394      |
| 10 | Pseudoephedrine HCl         | Sigma        | 32K-1358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.28431      |

(1) The mixture was made up in methanol, HPLC grade, B&J lot CB331.

c. Internal standard spiking solution (See Table 12.);

TABLE 12. INTERNAL STANDARD SPIKING SOLUTION (1)

|   | ANALYTE                                  | Source     | Lot Number | Calculated    |
|---|------------------------------------------|------------|------------|---------------|
|   |                                          |            |            | concentration |
|   |                                          |            |            | as free base  |
|   |                                          |            |            | in μg/mL      |
| 1 | (±)-Amphetamine-D <sub>11</sub> , HCl    | Cerilliant | 35129-58A  | 100.00        |
| 2 | N-Propylamphetamine                      | Alltech    | 1604       | 201.393       |
| 3 | (±)-Methamphetamine-D <sub>14,</sub> HCl | Cerilliant | 30902-25G  | 100.00        |

- (1) The mixture was made up in methanol.
  - d. Walk-in cooler maintained at <6 °C.

### C. Procedure

Media were inserted into 50-mL PP centrifuge tubes. Two each of the cotton were used per sample. Just prior to spiking with the internal standard spiking solution, each wipe sample was pre-wetted with 3 mL of isopropanol. Adding this alcohol was to simulate the pre-wetting of media prior to sampling in the field. Each wipe was then spiked with 60  $\mu$ L of internal standard spiking solution (which is equivalent to the 30x LOQ level of the precision and accuracy study) distributing aliquots of the 60  $\mu$ L in several locations around the wipes. The tubes were then capped and stored in the dark for a designated period of time as outlined in Table 13.

TABLE 13. SCHEDULE FOR SPIKING AND DESORPTION

| Storage Time | Temperature | Number of  |
|--------------|-------------|------------|
| (days)       |             | Replicates |
| Zero         | <6 °C       | 6          |
| 7            | <6 °C       | 6          |
| 7            | <6 °C       | 6          |
| 14           | <6 °C       | 3          |
| 21           | <6 °C       | 6          |
| 30           | <6 °C       | 3          |

The process of desorption, extraction, derivatization, and analysis has been previously described, except 8 mL of methylene chloride was taken instead of the entire 10 mL for evaporation to dryness. The drying tubes were 12-mL instead of 14-mL test tubes.

In quantifying the data, the raw areas for each analyte was normalized against various internal standards to see which ones would give the best results.

#### D. Results

Results for day zero were incongruous with the other samples because they were prepared on a different day. Storage stability was calculated from an assumed 100% recovery for day zero. This is a more stringent test because it assumes that there is no matrix affect on day zero. Fortunately, the absolute recoveries on each subsequent day were high enough to make recovery on day zero a mute point.

For all analytes the storage stability criterion was met with at least one or more combinations of media and internal standard. The storage criterion was met for methamphetamine on all media regardless which internal standard was used. Cotton permitted the criterion to be met for all analytes regardless which internal standard was used, except for amphetamine and phenylpropanolamine, which required the use of D<sub>11</sub>-amphetamine as the internal standard. MDEA, a sterically hindered amine, met the criterion for all media (except on AlphaWipes<sup>TM</sup>) only when N-propylamphetamine was used as the internal standard.

In the tables below precisions for most of the analytes ranged from less than 1% to occasionally as high as 16%. Mostly the CVs were between 2 and 8% and averaged between 4 and 5%. Precisions on day zero for phenylpropanolamine ranged from 2 to 43% depending upon the media and recoveries ranged from 44 to 168%. Even so, omitting phenylpropanolamine, the CVs for day zero averaged between 5 and 6%. In order to simplify the presentation of the data, the CVs will be omitted from the following tables.

Recoveries for all analytes were dependant upon which internal standard the data was normalized to. This was a complicating issue for this and all subsequent studies. It multiplied the number of calculations that had to be made, and necessarily so in some cases, since recoveries for a few analytes were dependant upon use of a particular internal standard.

Recoveries are for data that is normalized to the internal standard that is closest in structure to the target analyte. The internal standards used for the following data were as follows:

- Amphetamine and phenylpropanolamine (both primary amines) are normalized against
   D<sub>11</sub>-amphetamine.
  - 2. MDEA is normalized against N-propylamphetamine (a similarly hindered amine).
- 3. All other analytes, including methamphetamine, are normalized against D<sub>14</sub>-methamphetamine.
- 4. Data is presented also for methamphetamine normalized against D<sub>11</sub>-amphetamine to show comparison of results.

## E. Analysis of Trends in Analyte Stability during Storage

The zero day set must be ignored since in most cases recoveries on day zero are much lower than for the following days. Only in a few cases was it high (ephedrine, phenylpropanolamine, and phencyclidine), and then only on certain media. The set was not prepared with the long-term storage stability study but taken from a theoretically identical set used in the precision and accuracy study. In congruities cannot be explained. But since recoveries were so high on subsequent days, trends can be analyzed in the absence of this set.

For methamphetamine the trend in recoveries tended to decline slightly over 30 days refrigerated for all media and internal standards except cotton and NU-GAUZE<sup>TM</sup>. For NU-GAUZE<sup>TM</sup> it jumped up and then declined to about the 7-day level. For cotton it stayed about the

same or slightly increased. Recoveries at 7 days at room temperature were very good on all media and with every internal standard.

For amphetamine recoveries on all media tended to decline slightly except for cotton gauze which experienced a slight increase at day 30. Stability was very good on all media at 7 days at room temperature on all media.

For MDMA the results were similar to amphetamine, except on cotton, after a general increase in recovery, there was a decline by day 30. Still, the recoveries were all very nearly 100%. At room temperature for 7 days the recoveries were also good, except for NU-GAUZE<sup>TM</sup> which dropped slightly below 90%.

MDEA had a precipitous drop in recovery by day 30 for MIRASORB™ and SOF-WICK™. AlphaWipe™ recoveries were experiencing a steady decline. Cotton and NU GAUZE™ were good.

L-Ephedrine was experiencing a steady decline on SOF-WICK<sup>TM</sup>.

For Pseudoephedrine, SOF-WICK<sup>TM</sup> barely got over 90% recovery on 2 days but dropped below on both day 30 refrigerated and day 7 at room temperature. On NU GAUZE<sup>TM</sup>, recoveries dropped precipitously by day 21 and 30.

Phenylpropanolamine, for which recovery problems are normal, good recoveries were experienced and only dropped slightly below 90% on MIRASORB<sup>TM</sup> and NU GAUZE<sup>TM</sup>.

Recoveries by day 7 at room temperature were also good. This set of data shows that phenylpropanolamine can be analyzed successfully if analyzed promptly.

Phencyclidine did well on all media except on SOF-WICK<sup>TM</sup>. Recoveries on NU GAUZE<sup>TM</sup> just barely dropped below 90% on day 30 refrigerated and day 7 at room temperature.

Phentermine did well on all media but recovery dropped on MIRASORB™ at day 30 refrigerated and day 7 at room temperature.

Caffeine did not fare well on AlphaWipe<sup>TM</sup> from the start. Recoveries were good for both refrigerated and room temperature storage on cotton gauze.

Table 14 lists the maximum time in days for which various analyses are stable on each media.

TABLE 14. SUMMARY OF STABILITY OF EACH ANALYTE ON EACH MEDIA (1)

|    | ,                |                                                |         |              | MEDIA        | V State   |              |
|----|------------------|------------------------------------------------|---------|--------------|--------------|-----------|--------------|
|    | Analyte          | Int Std (2)                                    | Cotton  | MIRASORB™    | NU GAUZE™    | SOF-WICK™ | AlphaWipe™   |
| 1  | Amphetamine      | D <sub>11</sub> -Amp                           | 30 days | 30 days      | 30 days      | 30 days   | 30 days      |
| 2  | Caffeine         | D <sub>11</sub> -Amp                           | 30 days | 30 days      | 30 days      | 30 days   | marginal (4) |
| 3  | L-ephedrine      | D <sub>14</sub> -Meth                          | 30 days | 30 days      | 30 days      | Not OK    | 30 days      |
| 4  | MDEA             | N-PAmp                                         | 30 days | 21 days      | 30 days      | 21 days   | marginal (4) |
| 5  | MDMA             | D <sub>11</sub> -Amp                           | 30 days | 30 days      | marginal (4) | 30 days   | 30 days      |
| 6  | Methamphetamine  | D <sub>11</sub> -Amp,<br>D <sub>14</sub> -Meth | 30 days | 30 days      | 30 days      | 30 days   | 30 days      |
| 7  | Norephedrine (3) | D <sub>11</sub> -Amp                           | 30 days | marginal (4) | marginal (4) | 30 days   | 30 days      |
| 8  | Phencyclidine    | D <sub>14</sub> -Meth                          | 30 days | 30 days      | marginal (4) | Not OK    | 30 days      |
| 9  | Phentermine      | D <sub>11</sub> -Amp                           | 30 days | 30 days      | 30 days      | 30 days   | 30 days      |
| 10 | Pseudoephedrine  | D <sub>14</sub> -Meth                          | 30 days | marginal (4) | 14 days      | Not OK    | 30 days      |

Acceptable recoveries are those that are 90% or better using one of the internal standards listed.

Table 15 gives a summary of stability in percent recovery for day 7 at room temperature and for 30 days under refrigeration at <6 °C for four media.

<sup>(2)</sup> Internal Standards: D11-Amp = D11-amphetamine, D14-Meth = D14-methamphetamine, N-PAmp = N-propylamphetamine

<sup>(3)</sup> Norephedrine = phenylpropanolamine

<sup>(4)</sup> Marginal = 85-90% recoveries by day 30 refrigerated and/or day 7 at room temperature.

TABLE 15. PERCENT STORAGE STABILITY FOR 30 DAYS REFRIGERATED AND 7 DAYS AT ROOM TEMPERATURE  $^{(1)}$ 

|    |                      |                   |                       |                 |        | Per                      | cent Re | ecovery                  | (4)    |         |                     |  |
|----|----------------------|-------------------|-----------------------|-----------------|--------|--------------------------|---------|--------------------------|--------|---------|---------------------|--|
|    | Compound             | Amount spiked per | Internal standard     | 3"x3"<br>Cotton |        | 4"x4" 4-ply<br>MIRASORB™ |         | 4"x4" 4-ply<br>NU GAUZE™ |        |         | 4"x4"<br>AlphaWipe™ |  |
|    |                      | sample (2)        | (3)                   | 30 days         | 7 days | 30 days                  | 7 days  | 30 days                  | 7 days | 30 days | 7 days              |  |
|    |                      | μg/sample         |                       | <6 °C           | 22 °C  | <6 °C                    | 22 °C   | <6 °C                    | 22 °C  | <6 °C   | 22 °C               |  |
| 1  | Amphetamine          | 3.000             | D <sub>11</sub> -Amp  | 100.5           | 94.5   | 91.9                     | 97.8    | 93.0                     | 95.1   | 94.8    | 97.1                |  |
|    |                      |                   | D <sub>14</sub> -Meth | 99.7            | 87.9   | 89.2                     | 93.9    | 88.6                     | 88.5   | 87.4    | 89.4                |  |
| 2  | Caffeine             | 3.001             | D <sub>11</sub> -Amp  | 99.3            | 98.8   | 103.8                    | 106.8   | 96.9                     | 96.1   | 87.4    | 87.8                |  |
|    |                      |                   | D <sub>14</sub> -Meth | 98.5            | 91.9   | 100.8                    | 102.5   | 92.3                     | 89.4   | 80.6    | 80.8                |  |
| 3  | L-Ephedrine          | 3.018             | D <sub>11</sub> -Amp  | 95.6            | 97.2   | 100.5                    | 104.8   | 101.9                    | 101.3  | 101.9   | 100.9               |  |
|    |                      |                   | $D_{14}$ -Meth        | 94.8            | 90.5   | 97.5                     | 100.6   | 97.1                     | 94.3   | 93.9    | 92.8                |  |
| 4  | MDE                  | 2.859             | N-PAmp                | 98.9            | 102.1  | 83.6                     | 109.9   | 93.5                     | 95.6   | 83.6    | 85.4                |  |
| 5  | MDMA                 | 2.718             | D <sub>11</sub> -Amp  | 99.7            | 111.1  | 94.9                     | 107.8   | 95.1                     | 96.1   | 103.2   | 99.9                |  |
|    |                      |                   | D <sub>14</sub> -Meth | 98.9            | 103.2  | 92.2                     | 103.4   | 90.6                     | 89.4   | 95.2    | 91.8                |  |
| 6  | Methamphetamine      | 3.002             | D <sub>11</sub> -Amp  | 98.7            | 100.6  | 93.3                     | 102.0   | 93.6                     | 103.1  | 101.3   | 101.4               |  |
|    |                      |                   | $D_{14}$ -Meth        | 98.0            | 93.5   | 90.5                     | 97.9    | 89.2                     | 95.9   | 93.4    | 93.4                |  |
| 7  | Phencyclidine        | 3.004             | D <sub>11</sub> -Amp  | 103.7           | 105.2  | 103.3                    | 106.7   | 93.8                     | 96.5   | 99.5    | 100.0               |  |
|    |                      |                   | $D_{14}$ -Meth        | 102.9           | 97.7   | 100.2                    | 102.3   | 89.4                     | 89.8   | 91.8    | 92.1                |  |
| 8  | Phentermine          | 3.021             | D <sub>11</sub> -Amp  | 102.0           | 101.5  | 85.2                     | 87.1    | 95.4                     | 96.9   | 94.0    | 94.8                |  |
|    |                      |                   | $D_{14}$ -Meth        | 101.1           | 94.3   | 82.7                     | 83.8    | 90.9                     | 90.2   | 86.7    | 87.3                |  |
| 9  | (±)-Norephedrine (5) | 3.024             | D <sub>11</sub> -Amp  | 94.3            | 92.7   | 88.8                     | 97.5    | 86.7                     | 89.6   | 94.8    | 90.6                |  |
|    |                      |                   | D <sub>14</sub> -Meth | 93.6            | 86.2   | 86.2                     | 93.5    | 82.6                     | 83.4   | 87.5    | 83.5                |  |
| 10 | Pseudoephedrine      | 3.017             | D <sub>11</sub> -Amp  | 100.4           | 97.9   | 101.2                    | 87.2    | 85.3                     | 98.8   | 112.2   | 106.5               |  |
|    |                      |                   | D <sub>14</sub> -Meth | 99.6            | 91.1   | 98.3                     | 83.8    | 81.2                     | 91.9   | 103.5   | 98.0                |  |

- Thirty samples were spiked for each media. Of the thirty samples for each media, six samples were analyzed immediately after preparation. Six were stored at room temperature (about 24 °C) for 7 days and then analyzed. Eighteen samples were stored at <6 °C. Of the 18 samples stored at <6 °C, six each were analyzed at 7 and 21 days and three each were analyzed at 14 and 30 days.
- (2) Wipes were placed into 50-mL PP centrifuge tubes with 3-mL of isopropanol, and then spiked with analyte in 60 μL methanol.
- (3) Recoveries vary slightly depending upon internal standard used.

  Internal Standards: D11-Amp = D11-amphetamine, D14-Meth = D14-methamphetamine, N-PAmp = N-propylamphetamine.

  Analysis was performed using the scan mode.
- (4) For cotton gauze and AlphaWipes™ two wipes were used per sample. For MIRASORB™ and NU GAUZE™, one wipe was used per sample.
- (5)  $(\pm)$ -Norephedrine =  $(\pm)$ -phenylpropanolamine.

#### F. Conclusions

Cotton appears to be the overall best media for all analytes tested. These data refute rumors that methamphetamine is not stable on cotton media. However, cellulose (taken to mean ground up wood fiber such as is used in tissue papers) is not included in this endorsement of cotton fibers.

All media tested are acceptable for the relatively simple phenethylamines, amphetamine, methamphetamine, and phentermine.

Phenylpropanolamine should be analyzed promptly, probably within 24 hours after derivatization. Vials in this study were amber. They should be routinely used.

The preferred internal standards appear to be those that have similar hindrance at the nitrogen group. D<sub>11</sub>-Amphetamine, a primary amine, should be used with analytes that are primary amines. D<sub>14</sub>-Methamphetamine, an N-methyl amine, should be used for analytes that are N-methyl amines. N-Propyl amphetamine or a similarly hindered amine should be used with MDEA. D<sub>14</sub>-Methamphetamine is also useful for other amines.

These results apply to both analytical methods, NIOSH 9106 and NIOSH 9109, since storage stability is a function of the media and not of the method of determination.

## VI. EVALUATION OF PRECISION AND ACCURACY WITH ISOPROPANOL AS THE WETTING SOLVENT

## A. Objective

The Precision and Accuracy study determined whether the method can produce a result that is within  $\pm 25\%$  of the true value with 95% confidence, which is the criterion for an acceptable method.

## **B.** Scope and Limitations

In the "Guidelines for Air Sampling and Analytical Method Development and Evaluation" [5], the Precision and Accuracy evaluation presumes that both a desorption efficiency and a simulated sampling efficiency study will be performed. However, this method is not an air sampling method and no simulated sampling efficiency study can be clearly performed. Precision and accuracy have to be determined from what is essentially a desorption efficiency study on the wipe media. Therefore, the acceptable desorption efficiency will not be as low as 75% but between 90 to 110% which is the limit for the mean bias after correction for desorption efficiency.

A surface recovery study was made using Formica<sup>™</sup>, varnished hardwood paneling, a latex painted wall, an enameled appliance surface, and a vinyl veneered particle board book shelf. The results of this surface recovery study is reported in the Backup Data Report for NIOSH 9109 [6].

The following objectives were sought and met:

- a. Overall precision: ≤10%;
- b. Accuracy: ≥5%;
- c. Mean bias: ≤±10%.

## C. Reagents and Supplies

a. Media (See Table 16.);

TABLE 16. MEDIA FOR LONG-TERM STABILITY TEST

|   | MEDIA            | SIZE   | PLY    | Lot Number |
|---|------------------|--------|--------|------------|
| 1 | Cotton gauze (1) | 3"x 3" | 12-ply | 1167807    |

(1) Caring brand

Other media were also tested but only results for cotton gauze are given in this abridged version for the Backup Data Report.

b. Mixed analyte spiking solution (See Table 17.);

TABLE 17. MIXED ANALYTE SPIKING SOLUTION (1)

|    | ANALYTE                     | Source       | Lot Number | Calculated concentration as free base in µg/mL |
|----|-----------------------------|--------------|------------|------------------------------------------------|
| 1  | D-Amphetamine HCl           | Alltech      | 413        | 50.00322                                       |
| 2  | Caffeine                    | Chem Service | 28-49C     | 50.01031                                       |
| 3  | L-Ephedrine HCl             | Alltech      | 1505       | 50.29991                                       |
| 4  | MDEA HCl                    | Alltech      | 3506       | 47.63766                                       |
| 5  | MDMA HCl                    | Alltech      | 6852       | 45.28192                                       |
| 6  | D-Methamphetamine HCl       | Alltech      | 389        | 50.03214                                       |
| 7  | Phencyclidine HCl           | Alltech      | 1293-33    | 50.07406                                       |
| 8  | Phentermine HCl             | Sigma        | 105F-0129  | 50.34771                                       |
| 9  | (±)-Phenylpropanolamine HCl | Sigma        | 91F-0298   | 50.40394                                       |
| 10 | Pseudoephedrine HCl         | Sigma        | 32K-1358   | 50.28431                                       |

- (1) Mixed analyte spiking solution was made up in methanol, HPLC grade, B&J lot CB331.
  - c. Internal standard spiking solution (See Table 18.);

TABLE 18. INTERNAL STANDARD SPIKING SOLUTION (1)

|   | ANALYTE                                  | Source     | Lot Number | Calculated concentration as free base |
|---|------------------------------------------|------------|------------|---------------------------------------|
| 1 | (±)-Amphetamine-D <sub>11</sub> , HCl    | Cerilliant | 35129-58A  | in μg/mL<br>50.00                     |
| 2 | N-Propylamphetamine                      | Alltech    | 1604       | 83.099                                |
| 3 | (±)-Methamphetamine-D <sub>14</sub> ,HCl | Cerilliant | 30902-25G  | 100.00                                |

- (1) The mixture was made up in methanol. About 2 μL of powdered crystal violet was added to about 10mL of the internal standard spiking solution to act as a visual reference as to which sample was spiked.
- d. Drying columns were prepared in blank 12-mL PP columns (10mm i.d. x 75mm long barrel with a 16mm i.d. x 40mm long reservoir on top).
  - e. 50-mL PP centrifuge tubes.

#### D. Procedure

Cotton gauze was added to the PP centrifuge tubes. To each tube containing wipe media was added a volume of isopropanol (3 mL for cotton gauze), followed by an appropriate volume of mixed analyte spiking solution as given in table 19. Six replicates were prepared at each level for each wipe media. The preparation of the liquid standards is described in the section on the determination of the LOD and LOQ.

TABLE 19. SPIKING SCHEDULE FOR PRECISION AND ACCURACY STUDY

|              |                        |        | An       | nount applied              | per concentr | ation level in                                             | n microliter | ·s     |
|--------------|------------------------|--------|----------|----------------------------|--------------|------------------------------------------------------------|--------------|--------|
| WIPE MEDIA   | Number<br>DIA of wipes | IPA    | μL of an | alyte spiking :<br>applied | solution     | n μL of 1/10 dilution of analy<br>spiking solution applied |              |        |
|              | per tube               | *   ml | 300x LOQ | 100x LOQ                   | 30x LOQ      | 10x LOQ                                                    | 3x LOQ       | 1x LOO |
|              | per tube               |        | Level    | Level                      | Level        | Level                                                      | Level        | Level  |
| Cotton gauze | 2                      | 3      | 600      | 200                        | 60           | 200                                                        | 60           | 20     |

The final theoretical concentration of analytes on the wipe media at each concentration level is given in the table 20.

TABLE 20. CONCENTRATION OF ANALYTES AT EACH LEVEL

|    |                     |          | Calculated Concentration in µg/sample (1) |         |         |         |         |  |  |  |  |
|----|---------------------|----------|-------------------------------------------|---------|---------|---------|---------|--|--|--|--|
|    | ANALYTE             | 300x LOQ | 100x LOQ                                  | 30x LOQ | 10x LOQ | 3x LOQ  | 1x LOQ  |  |  |  |  |
|    |                     | Level    | Level                                     | Level   | Level   | Level   | Level   |  |  |  |  |
| 1  | D-Amphetamine       | 30.00193 | 10.00064                                  | 3.00019 | 1.00006 | 0.30002 | 0.10001 |  |  |  |  |
| 2  | Caffeine            | 30.00619 | 10.00206                                  | 3.00062 | 1.00021 | 0.30006 | 0.10002 |  |  |  |  |
| 3  | L-Ephedrine         | 30.17995 | 10.05998                                  | 3.01799 | 1.00600 | 0.30180 | 0.10060 |  |  |  |  |
| 4  | MDEA                | 28.58259 | 9.52753                                   | 2.85826 | 0.95275 | 0.28583 | 0.09528 |  |  |  |  |
| 5  | MDMA                | 27.16915 | 9.05638                                   | 2.71692 | 0.90564 | 0.27169 | 0.09056 |  |  |  |  |
| 6  | D-Methamphetamine   | 30.01928 | 10.00643                                  | 3.00193 | 1.00064 | 0.30019 | 0.10006 |  |  |  |  |
| 7  | Phencyclidine       | 30.04444 | 10.01481                                  | 3.00444 | 1.00148 | 0.30044 | 0.10015 |  |  |  |  |
| 8  | Phentermine         | 30.20862 | 10.06954                                  | 3.02086 | 1.00695 | 0.30209 | 0.10070 |  |  |  |  |
| 9  | Phenylpropanolamine | 30.24236 | 10.08079                                  | 3.02424 | 1.00808 | 0.30242 | 0.10081 |  |  |  |  |
| 10 | Pseudoephedrine     | 30.17059 | 10.05686                                  | 3.01706 | 1.00569 | 0.30171 | 0.10057 |  |  |  |  |

<sup>(1)</sup> The number of significant figures was kept large until the final calculations to avoid cumulative rounding off errors.

After spiking the samples,  $50\mu L$  of internal standard spiking solution was added to each tube using a Hamilton repeating dispenser. The addition of internal standard was made by distributing several microliters at a time in several locations around the wipes. Following addition of internal standard solution, 40~mL of desorption solution (0.2N aqueous sulfuric acid) was added to each sample. The tubes were capped securely and tumbled for 2.5 to 5 hours. The samples were put into the walk-in cooler until the desorbates were desorbed and the desorbate extracted.

Two days later the samples were desorbed, extracted, derivatized, and analyzed as described in NIOSH 9106 using GC-MS in both the scan and SIM modes.

### E. Analysis and Results

The samples were analyzed by GC-MS using the GC-MS conditions described NIOSH 9106. The recovery data for individual replicates are given in Tables 23 through 27.

Accuracy was calculated using a formula given by Dr. Eugene Kennedy of NIOSH rather than using the nomogram in the NIOSH Guidelines for Method Development and Evaluation manual. [9] The formula is as follows:

If the absolute value of the bias is less than Srt/1.645, the accuracy is

1.96 times the square root of the sum of bias squared and Srt squared;

1.96 x 
$$\sqrt{\text{((bias)}^2 + (Srt)^2)}$$
.

If the absolute value of the bias is equal to or greater than Srt/1.645, the accuracy is the absolute value of the bias plus the value Srt times 1.645;

$$| bias | + (Srt x 1.645).$$

In calculating homogeneity of precision and bias, as many concentration levels were left in as possible. Bartlett's test was used to determine homogeneity of precision. The F' test (Eugene Kennedy, Ph.D. [9]) was used to determine homogeneity of bias. Only those concentration levels that passed BOTH the Bartlett's test and the F' test were used for calculating pooled CVs and average bias. Accuracy was then calculated from these. Where possible, the lowest concentration level was conserved, in order to report lower detection limits, and higher concentration levels having "inlier" CVs were omitted. This gives a more conservative estimate of the pooled CV as well. The concentration levels that were omitted are noted in Part B of Tables 23 through 27.

A second precision and accuracy study was conducted to test the effect of methanol as the gauze wetting solvent in place of isopropanol. This study is reported in section VIII.

Results are given for both scan and SIM modes of operation. Results are also given for two internal standards, amphetamine- $D_{11}$  and methamphetamine- $D_{14}$ . Results for a third internal standard, N-methylphenethylamine, are given in the un-abridged Backup Data Report. [4]

For MDEA, only results using N-propyl amphetamine as the internal standard are given since those results were the only viable ones.

TABLE 21. SUMMARY OF PRECISION AND ACCURACY EVALUATION ON COTTON GAUZE IN SCAN MODE  $^{(1)}$ 

|    |                      | Internal              | Range (3) | Accuracy | Overall        |         | Bias               |
|----|----------------------|-----------------------|-----------|----------|----------------|---------|--------------------|
|    |                      | Standard              | μg/sample |          | Precision      | Average | Range              |
|    | Compound             | (2)                   |           |          | $\hat{S}_{rT}$ |         |                    |
| 1  | (D)-Amphetamine      | D <sub>11</sub> -Amp  | 0.1-30    | 17.1     | 0.0670         | -0.0613 | -0.10480.0170      |
|    |                      | $D_{14}$ -Meth        | 0.1-30    | 13.4     | 0.0610         | +0.0338 | -0.0151 - +0.1056  |
| 2  | Caffeine             | D <sub>11</sub> -Amp  | 1.0-30    | 20.0     | 0.0708         | -0.0832 | -0.14760.0542      |
|    |                      | D <sub>14</sub> -Meth | 1.0-30    | 10.6     | 0.0636         | -0.0014 | - 0.0274 - +0.0381 |
| 3  | (L)-Ephedrine        | D <sub>11</sub> -Amp  | 0.1-30    | 15.4     | 0.0627         | +0.0510 | -0.0148 - +0.1128  |
|    |                      | D <sub>14</sub> -Meth | 0.3-30    | 17.8     | 0.0674         | +0.0666 | +0.0261 - +0.1660  |
| 4  | MDEA                 | N-PAmp                | 0.3-29    | 15.7     | 0.0817         | -0.0224 | -0.0656 - +0.0657  |
| 5  | MDMA                 | D <sub>11</sub> -Amp  | 0.3-27    | 20.2     | 0.0778         | -0.0739 | -0.10110.0489      |
|    |                      | D <sub>14</sub> -Meth | 0.3-27    | 16.6     | 0.0652         | +0.0589 | -0.0947 - +0.0036  |
| 6  | (D)-Methamphetamine  | D <sub>11</sub> -Amp  | 0.1-30    | 14.7     | 0.0631         | -0.0435 | -0.06570.0060      |
|    |                      | D <sub>14</sub> -Meth | 0.1-30    | 12.5     | 0.0546         | -0.0348 | -0.1144 - +0.0188  |
| 7  | Phencyclidine        | D <sub>11</sub> -Amp  | 0.1-30    | 18.2     | 0.0690         | -0.0683 | -0.12570.0136      |
|    |                      | D <sub>14</sub> -Meth | 0.3-3     | 13.4     | 0.0465         | -0.0577 | -0.06620.0493      |
| 8  | Phentermine          | D <sub>11</sub> -Amp  | 0.1-30    | 15.2     | 0.0486         | -0.0720 | -0.1010 - +0.0291  |
|    |                      | D <sub>14</sub> -Meth | 0.1-30    | 10.3     | 0.0509         | +0.0190 | -0.0395 - +0.0671  |
| 9  | (±)-Norephedrine (4) | D <sub>11</sub> -Amp  | 1-30      | 6.0      | 0.0328         | +0.0061 | -0.0070 - +0.0248  |
| 10 | Pseudoephedrine      | D <sub>11</sub> -Amp  | 0.3-30    | 17.2     | 0.0571         | -0.0783 | -0.12730.0560      |
|    |                      | D <sub>14</sub> -Meth | 0.3-30    | 14.9     | 0.0649         | -0.0422 | -0.0888 - +0.0395  |

<sup>(1)</sup> Data extracted from Appendix-I, this report. Values are for chlorodifluoroacetyl derivatives and analysis by GC/MS in scan mode (see NIOSH 9106 for conditions). Each sample consisted of a pair of 12 ply 3" x 3" cotton gauze pads. There were 6 replicate samples per concentration level.

- (2) Internal Standards:  $D_{11}$ -Amp = Amphetamine- $D_{11}$   $D_{14}$ -Met = Methamphetamine- $D_{14}$  N-PAmp = N-Propyl amphetamine
- Range over which the precision, accuracy, and bias were calculated. The range studied for all analytes was 0.1 to 30 μg/sample (1X LOQ to 300X LOQ).
- (4) ( $\pm$ )-Norephedrine = ( $\pm$ )-phenylpropanolamine.

TABLE 22. SUMMARY OF PRECISION AND ACCURACY EVALUATION ON COTTON GAUZE IN SIM MODE (1)

|                        | Internal              | Range (3) Accuracy |      | Overall                  | Bias    |                   |  |
|------------------------|-----------------------|--------------------|------|--------------------------|---------|-------------------|--|
| Compound               | Standard (2)          | μg/sample          |      | Precision $\hat{S}_{rT}$ | Average | Range             |  |
| 1 (D)-Amphetamine      | D <sub>11</sub> -Amp  | 0.1-30             | 14.3 | 0.0412                   | -0.0750 | -0.11530.0351     |  |
|                        | D <sub>14</sub> -Meth | 0.1-30             | 9.1  | 0.0508                   | -0.0074 | -0.0500 - +0.0389 |  |
| 2 Caffeine             | D <sub>11</sub> -Amp  | 0.2-30             | 21.3 | 0.0578                   | -0.1182 | -0.19490.0697     |  |
|                        | D <sub>14</sub> -Meth | 0.2-30             | 14.4 | 0.0534                   | -0.0558 | -0.10610.0170     |  |
| 3 (L)-Ephedrine        | D <sub>11</sub> -Amp  | 0.3-30             | 8.9  | 0.0421                   | -0.0199 | -0.0423 - +0.0157 |  |
|                        | D <sub>14</sub> -Meth | 0.3-30             | 20.5 | 0.0503                   | +0.1226 | +0.0637 - +0.1883 |  |
| 4 MDEA                 | N-PAmp                | 0.3-29             | 10.3 | 0.0264                   | -0.0597 | -0.08790.0095     |  |
| 5 MDMA                 | D <sub>11</sub> -Amp  | 0.1-27             | 16.2 | 0.0503                   | -0.0750 | -0.14230.0292     |  |
|                        | D <sub>14</sub> -Meth | 0.1-0.9            | 15.4 | 0.0503 (4)               | -0.0712 | -0.1247 - +0.0032 |  |
| 6 (D)-Methamphetamine  | D <sub>11</sub> -Amp  | 0.1-10             | 16.5 | 0.0379                   | -0.1030 | -0.14140.0660     |  |
|                        | D <sub>14</sub> -Meth | 0.1-30             | 9.2  | 0.0351                   | -0.0343 | -0.0767 - +0.0006 |  |
| 7 Phencyclidine        | D <sub>11</sub> -Amp  | 0.1-10             | 17.7 | 0.0428                   | -0.1068 | -0.13030.0586     |  |
|                        | D <sub>14</sub> -Meth | 0.1-3              | 11.3 | 0.0450                   | -0.0393 | -0.06830.0205     |  |
| 8 Phentermine          | D <sub>11</sub> -Amp  | 0.1-30             | 12.8 | 0.0394                   | -0.0637 | -0.09820.0433     |  |
|                        | D <sub>14</sub> -Meth | 0.1-30             | 8.7  | 0.0495                   | -0.0051 | -0.0375 - +0.0556 |  |
| 9 (±)-Norephedrine (5) |                       | (5)                | (5)  | (5)                      | (5)     | (5)               |  |
| 10 Pseudoephedrine     | D <sub>11</sub> -Amp  | 0.3-30             | 17.3 | 0.0402                   | -0.1073 | -0.14960.0514     |  |
|                        | D <sub>14</sub> -Meth | 0.3-30             | 11.5 | 0.0519                   | -0.0294 | -0.0559 - +0.0532 |  |

<sup>(1)</sup> Data from Appendix-I, this report. Values are for chlorodifluoroacetyl derivatives and analysis by GC/MS in SIM mode (see NIOSH 9106 for conditions). Each sample consisted of a pair of 12 ply 3" x 3" cotton gauze pads. There were 6 replicate samples per concentration level. Norephedrine (phenylpropanolamine) was not evaluated in the SIM mode.

- (2) Internal Standards:  $D_{11}$ -Amp = Amphetamine- $D_{11}$   $D_{14}$ -Met = Methamphetamine- $D_{14}$  N-PAmp = N-Propyl amphetamine
- Range over which the precision, accuracy, and bias were calculated. The range studied for all analytes was 0.1 to 30 μg/sample (1X LOQ to 300X LOQ).
- (4) The overall precision,  $\hat{S}_{rT}$ , is an estimate due to inlier precisions (<0.02) at several higher concentration levels.
- (5) (±)-Norephedrine = (±)-phenylpropanolamine. No results are presented due to breakdown of derivative on standing unrefrigerated.

## TABLE 23. MICROGRAMS RECOVERED ON COTTON (SCAN MODE, D<sub>11</sub>-AMPHETAMINE)

| PART A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | N                        | 1ICROGRAN          | MS PER SAI          | MPLE RECO         | VERED in                 | SCAN MOI          | )E                |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|--------------------|---------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNITS = µ           |                          |                    |                     |                   |                          |                   | -                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INT STD =           |                          |                    |                     |                   |                          |                   |                   |                   |
| MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | - IIP                    |                    |                     | Meth-             |                          |                   | Phenyl-           |                   |
| (1) The state of t | Amphet-             |                          |                    |                     | amphet-           | Phency-                  | Phenter-          | propanol-         | Pseudo-           |
| TEST LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | amine               | Caffeine                 | Ephedrine          | MDMA                | amine             | clidine                  | mine              | amine             | ephedrine         |
| Amount Applied =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.00019            | 30.0062                  | 30.1799            | 27.1692             | 30.0193           | 30.0444                  | 30.2086           | 30.2424           | 30.1706           |
| 300x LOQ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.017              | 25.476                   | 29.609             | 24.393              | 27.251            | 28.668                   | 28.530            | 28.940            | 25.470            |
| 300x LOQ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.727              | 27.096                   | 33.200             | 24.668              | 27.452            | 31.595                   | 28.591            | 29.250            | 26.496            |
| 300x LOQ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.086              | 27.836                   | 35.348             | 24.683              | 27.656            | 32.307                   | 29.448            | 30.962            | 28.088            |
| 300x LOQ 4<br>300x LOQ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.355<br>29.735    | 27.800<br>30.432         | 33.071<br>39.657   | 24.486<br>29.074    | 28.077<br>30.248  | 34.171<br>41.641         | 30.332<br>29.827  | 30.715<br>30.356  | 28.835<br>28.594  |
| 300x LOQ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.031              | 30.885                   | 40.202             | 27.734              | 28.851            | 42.670                   | 29.252            | 30.923            | 29.636            |
| Average µg/sample =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.492              | 28.254                   | 35.181             | 25.840              | 28.256            | 35.175                   | 29.330            | 30.191            | 27.853            |
| CVi =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03111             | 0.07271                  | 0.11699            | 0.07872             | 0.03995           | 0.16200                  | 0.02390           | 0.02918           | 0.05623           |
| Group Bias =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.01700            | -0.05839                 | 0.16571            | -0.04894            | -0.05874          | 0.17078                  | -0.02909          | -0.00170          | -0.07682          |
| Average % Recovery =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98.30               | 94.16                    | 116.57             | 95.11               | 94.13             | 117.08                   | 97.09             | 99.83             | 92.32             |
| Amount Applied =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0006             | 10.0021                  | 10.06              | 9.0564              | 10.0064           | 10.0148                  | 10.0695           | 10.0808           | 10.0569           |
| 100x LOQ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.867               | 8.942                    | 9.910              | 8.513               | 9.299             | 9.373                    | 10.174            | 10.181            | 9.319             |
| 100x LOQ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.736               | 8.923                    | 9.889              | 7.689               | 8.490             | 9.244                    | 10.126            | 10.235            | 9.080             |
| 100x LOQ 3<br>100x LOQ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.927               | 9.847<br>9.724           | 10.620<br>11.307   | 9.286<br>9.117      | 9.647<br>9.747    | 11.012<br>10.211         | 10.210<br>10.139  | 10.035<br>10.583  | 9.085<br>9.622    |
| 100x LOQ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.181              | 9.656                    | 11.192             | 8.786               | 9.772             | 10.211                   | 10.139            | 10.583            | 9.022             |
| 100x LOQ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.010              | 8.845                    | 10.498             | 8.177               | 9.139             | 9.123                    | 10.114            | 10.330            | 9.562             |
| Average µg/sample =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.973               | 9.323                    | 10.569             | 8.595               | 9.349             | 9.879                    | 10.209            | 10.331            | 9.434             |
| CVi =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01651             | 0.04983                  | 0.05734            | 0.06958             | 0.05262           | 0.07589                  | 0.01403           | 0.02241           | 0.03569           |
| Group Bias =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.00275            | -0.06791                 | 0.05063            | -0.05098            | -0.06571          | -0.01357                 | 0.01389           | 0.02484           | -0.06190          |
| Average % Recovery =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.73               | 93.21                    | 105.06             | 94.90               | 93.43             | 98.64                    | 101.39            | 102.48            | 93.81             |
| Amount Applied =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0002              | 3.0006                   | 3.018              | 2.7169              | 3.0019            | 3.0044                   | 3.0209            | 3.0242            | 3.0171            |
| 30x LOQ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6059              | 2.4366                   | 2.8452             | 2.4998              | 2.4369            | 2,4873                   | 2.6903            | 3.1453            | 2.4569            |
| 30x LOQ 2<br>30x LOO 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7374              | 2.7110                   | 3.1123             | 2.5920              | 2.5926            | 2.6853                   | 2.7737            | 3.5373            | 2.7531            |
| 30x LOQ 3<br>30x LOQ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7234<br>2.6834    | 2.6778<br>2.5660         | 3.0234<br>3.1266   | 2.4052<br>2.3057    | 2.5070<br>2.5176  | 2.6443<br>2.6558         | 2.9517<br>2.5744  | 3.6736<br>3.4058  | 2.7683<br>2.6980  |
| 30x LOQ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6671              | 2.3987                   | 2.7851             | 2.4101              | 2.4187            | 2.7024                   | 2.6113            | 3.3465            | 2.5025            |
| 30x LOQ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6974              | 2.5561                   | 2.9466             | 2.4405              | 2.5546            | 2.5866                   | 2.8207            | 3.1561            | 2.6185            |
| Average µg/sample =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.6858              | 2.5577                   | 2.9732             | 2.4422              | 2.5046            | 2.6270                   | 2.7370            | 3.3774            | 2.6329            |
| CVi =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01742             | 0.04881                  | 0.04706            | 0.03961             | 0.02671           | 0.03015                  | 0.05138           | 0.06181           | 0.04958           |
| Group Bias =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.10480            | -0.14761                 | -0.01484           | -0.10111            | -0.16568          | -0.12565                 | -0.09396          | 0.11679           | -0.12733          |
| Average % Recovery =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89.52               | 85.24                    | 98.52              | 89.89               | 83.43             | 87.44                    | 90.60             | 111.68            | 87.27             |
| Amount Applied =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0001              | 1.0002                   | 1.006              | 0.9056              | 1.0006            | 1.0015                   | 1.007             | 1.0081            | 1.0057            |
| 10x LOQ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8958              | 1.0307                   | 1.0161             | 0.8617              | 0.8169            | 0.9457                   | 0.9289            | 0.9725            | 0.9246            |
| 10x LOQ 2<br>10x LOQ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8218<br>0.9069    | 1.0663<br>0.8513         | 0.9832<br>1.0311   | 0.8038<br>0.8518    | 0.7955<br>0.8647  | 0.9010<br>0.9001         | 0.8790<br>0.9274  | 0.9421<br>1.0106  | 0.8722<br>0.8702  |
| 10x LOQ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9316              | 0.9308                   | 1.1273             | 0.8658              | 0.8510            | 0.9827                   | 0.9645            | none              | 1.0728            |
| 10x LOQ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9201              | none                     | 1.1560             | 0.8398              | 0.8604            | 0.9077                   | 0.9398            | 1.0614            | 0.9961            |
| 10x LOQ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9004              | 0.8508                   | 1.1182             | 0.7722              | 0.8012            | 0.9066                   | 0.9388            | 1.0183            | 0.9602            |
| Average µg/sample =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8961              | 0.9460                   | 1.0720             | 0.8325              | 0.8316            | 0.9240                   | 0.9297            | 1.0010            | 0.9494            |
| CVi =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04320             | 0.10559                  | 0.06587            | 0.04445             | 0.03704           | 0.03617                  | 0.03032           | 0.04557           | 0.08210           |
| Group Bias =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.10396            | -0.05422<br><b>94.58</b> | 0.06559            | -0.08074            | -0.16892          | -0.07740<br><b>92.26</b> | -0.07669          | -0.00704          | -0.05602          |
| Amount Applied =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 74.38                    | 106.56             | 91.93               | 83.11             |                          | 92.33             | 99.30             | 94.40             |
| Amount Applied = 3x LOQ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3                 |                          | 0.3018             | 0.2717<br>0.2835    | 0.3002<br>0.2627  | 0.3004                   | 0.3021<br>0.2701  | 0.3024<br>0.2789  | 0.3017            |
| 3x LOQ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2759              |                          | 0.3332             | 0.2833              | 0.2627            | 0.2902                   | 0.2701            | 0.2789            | 0.2630            |
| 3x LOQ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2707              |                          | 0.3018             | 0.2086              | 0.2421            | 0.2447                   | 0.2566            | 0.3192            | 0.2860            |
| 3x LOQ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2926              |                          | 0.3153             | 0.2778              | 0.2351            | 0.2772                   | 0.2925            | 0.3813            | 0.2959            |
| 3x LOQ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2446              |                          | 0.3569             | 0.2574              | 0.2333            | 0.2537                   | 0.2750            | 0.3885            | 0.2748            |
| 3x LOQ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2572              |                          | 0.2757             | 0.2162              | 0.2406            | 0.2450                   | 0.2509            | 0.3191            | 0.2677            |
| Average μg/sample =<br>CVi =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2686              |                          | 0.3141             | 0.2479              | 0.2425<br>0.04333 | 0.2673                   | 0.2716<br>0.05864 | 0.3328<br>0.12944 | 0.2808<br>0.05173 |
| Group Bias =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06104<br>-0.10467 |                          | 0.08973<br>0.04087 | 0.12521<br>-0.08757 | -0.19202          | -0.11032                 | -0.10097          | 0.12944           | -0.06929          |
| Average % Recovery =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                          | 104.09             | 91.24               | 80.80             | 88.97                    | 89.90             | 110.03            | 93.07             |
| Average % Recovery =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89.53               |                          | 104.09             | 91.24               | 80.80             | 88.97                    | 89.90             | 110.03            | 93.07             |

## TABLE 23. CONTINUED. MICROGRAMS RECOVERED ON COTTON (SCAN MODE, $D_{11}$ -AMPHETAMINE)

| PART A continued     |               | MICROGRAMS PER SAMPLE RECOVERED in SCAN MODE                            |           |         |          |          |          |           |           |  |  |
|----------------------|---------------|-------------------------------------------------------------------------|-----------|---------|----------|----------|----------|-----------|-----------|--|--|
|                      | UNITS = $\mu$ | $INITS = \mu g/sample$ (sample is desorbed in 40 mL 0.2N sulfuric acid) |           |         |          |          |          |           |           |  |  |
| SCAN                 | INT STD =     | $VT STD = D_{11}$ -Amphetamine                                          |           |         |          |          |          |           |           |  |  |
| MODE                 |               |                                                                         |           |         | Meth-    |          |          | Phenyl-   |           |  |  |
|                      | Amphet-       |                                                                         |           |         | amphet-  | Phency-  | Phenter- | propanol- | Pseudo-   |  |  |
| TEST LEVEL           | amine         | Caffeine                                                                | Ephedrine | MDMA    | amine    | clidine  | mine     | amine     | ephedrine |  |  |
| Amount Applied =     | 0.1           |                                                                         | 0.1006    | 0.0906  | 0.1001   | 0.1001   | 0.1007   | 0.1008    | 0.1006    |  |  |
| 1x LOQ 1             | 0.0938        |                                                                         | 0.1122    | 0.1014  | 0.1103   | 0.1027   | 0.0945   | 0.1456    | 0.1150    |  |  |
| 1x LOQ 2             | 0.0841        |                                                                         | 0.1070    | 0.0940  | 0.0897   | 0.0938   | 0.0910   | 0.1695    | 0.1065    |  |  |
| 1x LOQ 3             | 0.0950        |                                                                         | 0.1066    | 0.0819  | 0.0893   | 0.0990   | 0.0849   | 0.1589    | 0.1217    |  |  |
| 1x LOQ 4             | 0.1155        |                                                                         | 0.1171    | 0.1160  | 0.1025   | 0.1133   | 0.0988   | 0.1585    | 0.1313    |  |  |
| 1x LOQ 5             | 0.1026        |                                                                         | 0.1114    | 0.0954  | 0.0986   | 0.0855   | 0.1024   | 0.1619    | 0.1127    |  |  |
| 1x LOQ 6             | 0.0974        |                                                                         | 0.1174    | 0.1089  | 0.1064   | 0.0977   | 0.0967   | 0.1849    | 0.1309    |  |  |
| Average μg/sample =  | 0.0981        |                                                                         | 0.1120    | 0.0996  | 0.0995   | 0.0987   | 0.0947   | 0.1632    | 0.1197    |  |  |
| CVi =                | 0.10671       |                                                                         | 0.04184   | 0.12056 | 0.08697  | 0.09382  | 0.06506  | 0.08047   | 0.08433   |  |  |
| Group Bias =         | -0.01940      |                                                                         | 0.11283   | 0.09978 | -0.00597 | -0.01479 | -0.05937 | 0.61909   | 0.19007   |  |  |
| Average % Recovery = | 98.06         |                                                                         | 111.28    | 109.98  | 99.40    | 98.52    | 94.06    | 161.91    | 119.01    |  |  |

| PART B               |                             |               | PRECISION      | AND ACCU  | RACY RES        | ULTS for SC | CAN MODE  | 1612                    |           |
|----------------------|-----------------------------|---------------|----------------|-----------|-----------------|-------------|-----------|-------------------------|-----------|
| TIME D               | UNITS = ug/                 | sample (sampl |                |           |                 |             |           |                         |           |
| SCAN                 |                             | 11-Amphetami  |                |           | ARTHUR DE       | 1000000     |           |                         |           |
| MODE                 |                             |               |                |           | Meth-           |             |           | Phenyl-                 |           |
|                      | Amphet-                     |               |                |           | amphet-         | Phency-     | Phenter-  | propanol-               | Pseudo-   |
|                      | amine                       | Caffeine      | Ephedrine      | MDMA      | amine           | clidine     | mine      | amine                   | ephedrine |
| OPTION #1            | Option #1                   | Option #1     | Option #1      | Option #1 | Option #1       | Option #1   | Option #1 | Option #1               | Option #1 |
| Test Levels          | 30x LOQ                     | 1x LOQ        | NONE           | 1x LOQ    | 3x LOQ          | 300x LOQ    | 100x LOQ  | 1x LOQ                  | 1x LOQ    |
| omitted              | 100x LOQ                    | and           | 1              | CV>10%    | 10x LOQ         | CV>10%      | inlier CV | 3x LOQ                  | bias>10%  |
| and reason           | inlier CVs                  | 3x LOQ        |                |           | 30x LOQ         | bias>10%    |           | 30x LOQ                 |           |
| for omission         |                             | undetectable  | 1              |           | all biases      |             |           | all biases              |           |
|                      |                             |               | N N            |           | >10%            |             |           | >10%                    |           |
| Degrees of freedom = | 3                           | 3             | 5              | 4         | 2               | 4           | 4         | 2                       | 4         |
| Accuracy =           | 17.145                      | 19.978        | 19.274         | 20.184    | 14.720          | 18.188      | 15.193    | 6.542                   | 17.222    |
| Overall Precision =  | 0.06698                     | 0.07084       | 0.07453        | 0.07779   | 0.06306         | 0.06902     | 0.04858   | 0.03281                 | 0.05711   |
| Chi^2 =              | 7.838                       | 3.555         | 7.570          | 8.192     | 2.900           | 8.370       | 6.152     | 2.151                   | 3.468     |
| pass @ 0.95?         | no                          | YES           | YES            | YES       | YES             | YES         | YES       | YES                     | YES       |
| pass @ 0.975?        | YES                         | YES           | YES            | YES       | YES             | YES         | YES       | YES                     | YES       |
| Mean bias =          | -0.06126                    | -0.08324      | 0.07013        | -0.07387  | -0.04347        | -0.06834    | -0.07202  | 0.00610                 | -0.07827  |
| from                 | -0.10467                    | -0.14761      | -0.01484       | -0.10111  | -0.06571        | -0.12565    | -0.10097  | -0.00704                | -0.12733  |
| to                   | -0.01700                    | -0.05422      | 0.16571        | -0.04894  | -0.00597        | -0.01357    | -0.02909  | 0.02484                 | -0.05602  |
| F' =                 | 2.25057                     | 1.68768       | 2.84459        | 0.45055   | 0.85144         | 2.66852     | 1.29388   | 0.36106                 | 1.04331   |
| pass @ 0.05?         | YES                         | YES           | no             | YES       | YES             | YES         | YES       | YES                     | YES       |
| pass @ 0.025?        | YES                         | YES           | YES            | YES       | YES             | YES         | YES       | YES                     | YES       |
| OPTION #2            | Option #2                   | y All         | Option #2      | 7 14 12   | Option #2       |             |           | Option #2               |           |
| Test Levels          | 1x LOQ,                     |               | 300x LOQ       |           | 1x LOQ          |             |           | 1x LOQ &                |           |
| omitted              | CV>10%                      |               | CV>10%         |           | 3x LOQ,         |             |           | 3x LOQ,                 |           |
| and reason           | 100x LOQ,                   |               | bias>10%       |           | bias>10%        |             |           | biases >10%             |           |
| for omission         | inlier CV                   |               |                |           | 30x LOQ,        |             |           | 100x LOQ,               |           |
|                      | III). ASL 750               | V             |                |           | bias>10%        |             |           | ~inlier CV              |           |
| Degrees of freedom = | 3                           |               | 4              |           | 2               |             |           | 2                       |           |
| Accuracy =           | 15.075                      |               | 15.412         |           | 16.973          |             |           | 11.678                  |           |
| Overall Precision =  | 0.04142                     |               | 0.06268        |           | 0.04373         |             |           | <b>0.04756</b><br>2.376 |           |
| Chi^2 =              | 6.800                       |               | 3.544          |           | 0.655           |             |           | 2.376<br>YES            |           |
| pass @ 0.95?         | YES                         |               | YES            |           | YES             |             |           | YES                     |           |
| pass @ 0.975?        | YES                         | -             | YES<br>0.05101 |           | YES<br>-0.09779 | -           |           | 0.03855                 |           |
| Mean bias =          | <b>-0.08261</b><br>-0.10480 |               | -0.01484       |           | -0.16892        |             |           | -0.00704                |           |
| from                 | -0.10480                    |               | 0.11283        |           | -0.16892        |             |           | 0.11679                 |           |
| to<br>F' =           | 2.93116                     |               | 2.05181        |           | 4.27475         |             |           | 4.63507                 |           |
| P =  pass @ 0.05?    | YES                         |               | YES            |           |                 |             |           | no                      |           |
| pass @ 0.05?         | YES                         |               | YES            |           | no<br>YES       |             |           | YES                     |           |
| pass @ 0.023?        | ILS                         |               | 1 ES           |           | IES             |             |           | LES                     |           |

## **TABLE 24. MICROGRAMS RECOVERED ON COTTON** (SCAN MODE, $D_{14}$ -METHAMPHETAMINE)

| PART A                        |                    |                     | MICR               | OGRAMS I          | PER SAMPL           | E RECOVE          | RED                |                    |                     |
|-------------------------------|--------------------|---------------------|--------------------|-------------------|---------------------|-------------------|--------------------|--------------------|---------------------|
|                               | UNITS = μg/s       |                     | e is desorbed i    |                   |                     |                   |                    |                    |                     |
| SCAN                          | INT STD = D        | 14-Methamphe        | etamine            |                   |                     |                   |                    |                    |                     |
| MODE                          |                    |                     |                    |                   | Meth-               |                   |                    | Phenyl-            |                     |
| 1                             | Amphet-            |                     |                    |                   | amphet-             | Phency-           | Phenter-           | propanol-          | Pseudo-             |
| TEST LEVEL                    | amine              | Caffeine            | Ephedrine          | MDMA              | amine               | clidine           | mine               | amine              | ephedrine           |
| Amount Applied =              | 30.00019           | 30.0062             | 30.1799            | 27.1692           | 30.0193             | 30.0444           | 30.2086            | 30.2424            | 30.1706             |
| 300x LOQ 1                    | 29.425             | 27.080              | 31.111             | 25.745            | 28.781              | 30.474            | 29.870             | 29.952             | 26.956              |
| 300x LOQ 2                    | 31.356             | 29.839              | 36.027             | 27.120            | 30.249              | 35.005            | 31.135             | 31.205             | 29.083              |
| 300x LOQ 3                    | 32.221             | 30.126              | 37.355             | 26.751            | 30.007              | 34.982            | 31.545             | 32.563             | 30.245              |
| 300x LOQ 4                    | 33.680             | 31.234              | 36.873             | 27.563            | 31.600              | 38.598            | 33.538             | 33.208             | 32.081              |
| 300x LOQ 5                    | 28.918             | 29.471              | 36.475             | 28.014            | 29.313              | 36.659            | 29.047             | 29.702             | 27.949              |
| 300x LOQ 6                    | 30.808<br>31.068   | 31.564<br>29.886    | 39.341             | 28.408            | 29.773<br>29.954    | 40.277            | 30.081             | 31.490<br>31.353   | 30.435              |
| Average μg/sample =<br>CVi =  |                    |                     | 36.197             | 27.267<br>0.03500 |                     | 35.999<br>0.09464 | 30.869             | CONTROL OF         | 29.458              |
| Group Bias =                  | 0.05689<br>0.03553 | 0.05341<br>-0.00402 | 0.07582<br>0.19937 | 0.03300           | 0.03210<br>-0.00218 | 0.09464           | 0.05141<br>0.02187 | 0.04427<br>0.03673 | 0.06284<br>-0.02362 |
| Average % Recovery =          | 103.55             | 99.60               | 119.94             | 100.36            | 99.78               | 119.82            | 102.19             | 103.67             | 97.64               |
|                               |                    |                     |                    |                   |                     |                   |                    |                    |                     |
| Amount Applied =              | 10.0006            | 10.0021             | 10.06              | 9.0564            | 10.0064             | 10.0148           | 10.0695            | 10.0808            | 10.0569             |
| 100x LOQ 1<br>100x LOQ 2      | 11.040<br>11.951   | 10.093<br>10.994    | 11.164<br>12.238   | 9.555<br>9.470    | 10.481<br>10.512    | 10.626<br>11.546  | 11.390<br>12.382   | 12.750<br>13.846   | 10.445<br>11.132    |
| 100x LOQ 2<br>100x LOQ 3      | 10.584             | 10.362              | 12.238             | 9.470             | 10.512              | 11.546            | 12.382             | 13.846             | 9.517               |
| 100x LOQ 3                    | 10.584             | 10.362              | 12.025             | 9.699             | 10.122              | 10.934            | 10.676             | 12.825             | 10.242              |
| 100x LOQ 4                    | 10.360             | 10.418              | 11.814             | 9.099             | 10.413              | 10.950            | 11.075             | 12.823             | 10.242              |
| 100x LOQ 6                    | 11.426             | 10.161              | 12.030             | 9.354             | 10.494              | 10.548            | 11.524             | 13.185             | 10.898              |
| Average µg/sample =           | 11.057             | 10.383              | 11.730             | 9.510             | 10.397              | 11.024            | 11.307             | 12.868             | 10.454              |
| CVi =                         | 0.04913            | 0.03107             | 0.04089            | 0.01804           | 0.01405             | 0.03924           | 0.05487            | 0.05175            | 0.05377             |
| Group Bias =                  | 0.10561            | 0.03811             | 0.16596            | 0.05008           | 0.03905             | 0.10073           | 0.12291            | 0.27653            | 0.03949             |
| Average % Recovery =          | 110.56             | 103.81              | 116.60             | 105.01            | 103.90              | 110.07            | 112.29             | 127.65             | 103.95              |
| Amount Applied =              | 3.0002             | 3.0006              | 3.018              | 2.7169            | 3.0019              | 3.0044            | 3.0209             | 3.0242             | 3.0171              |
| 30x LOQ 1                     | 3.0199             | 2.7604              | 2.9383             | 2.6069            | 2.8278              | 2.6338            | 3.1199             | 3.6079             | 2.5390              |
| 30x LOQ 2                     | 3.1775             | 3.0859              | 3.2404             | 2.7140            | 3.0135              | 2.8568            | 3.2220             | 4.0558             | 2.8684              |
| 30x LOQ 3                     | 3.2556             | 3.0423              | 3.1357             | 2.5031            | 2.9092              | 2.8065            | 3.4209             | 4.2019             | 2.8800              |
| 30x LOQ 4                     | 3.1325             | 2.9306              | 3.2747             | 2.4115            | 2.9432              | 2.8400            | 3.0086             | 3.9281             | 2.8230              |
| 30x LOQ 5                     | 3.0974             | 2.7215              | 2.8789             | 2.5139            | 2.8133              | 2.8767            | 3.2094             | 3.8423             | 2.5944              |
| 30x LOQ 6                     | 3.2119             | 2.9707              | 3.1352             | 2.6115            | 3.0469              | 2.8192            | 3.3601             | 3.7136             | 2.7897              |
| Average μg/sample =           | 3.1491             | 2.9186              | 3.1005             | 2.5602            | 2.9257              | 2.8055            | 3.2235             | 3.8916             | 2.7491              |
| CVi =                         | 0.02684            | 0.05083             | 0.05156            | 0.04133           | 0.03250             | 0.03130           | 0.04699            | 0.05620            | 0.05310             |
| Group Bias =                  | 0.04964            | -0.02735            | 0.02735            | -0.05770          | -0.02541            | -0.06622          | 0.06707            | 0.28680            | -0.08882            |
| Average % Recovery =          | 104.96             | 97.27               | 102.73             | 94.23             | 97.46               | 93.38             | 106.71             | 128.68             | 91.12               |
| Amount Applied =              | 1.0001             | 1.0002              | 1.006              | 0.9056            | 1.0006              | 1.0015            | 1.007              | 1.0081             | 1.0057              |
| 10x LOQ 1                     | 0.9512             | 1.0461              | 0.9290             | 0.7986            | 0.8659              | 0.9085            | 0.9882             | 1.0356             | 0.8541              |
| 10x LOQ 2                     | 0.9485             | 1.1482              | 0.9763             | 0.8077            | 0.9187              | 0.9394            | 1.0165             | 1.0850             | 0.8740              |
| 10x LOQ 3                     | 1.0736             | 0.9087              | 1.0494             | 0.8769            | 1.0245              | 0.9611            | 1.0994             | 1.1913             | 0.8932              |
| 10x LOQ 4                     | 1.0957             | 1.0003              | 1.1412             | 0.8859            | 1.0016              | 1.0421<br>0.9261  | 1.1362<br>1.0632   | none<br>1.1976     | 1.0962<br>0.9777    |
| 10x LOQ 5<br>10x LOQ 6        | 1.0393             | none<br>0.8888      | 1.1248<br>1.0999   | 0.8260<br>0.7675  | 0.9718<br>0.9152    | 0.9261            | 1.0632             | 1.1976             | 0.9777              |
| 10x LOQ 6 Average μg/sample = | 1.0286             | 0.9984              | 1.0534             | 0.7673            | 0.9132              | 0.9521            | 1.0630             | 1.1341             | 0.9327              |
| CVi =                         | 0.06003            | 0.10597             | 0.08100            | 0.05588           | 0.06310             | 0.9321            | 0.05078            | 0.06258            | 0.09489             |
| Group Bias =                  | 0.00003            | -0.00179            | 0.03100            | -0.08672          | -0.05099            | -0.04934          | 0.05563            | 0.12503            | -0.06401            |
| Average % Recovery =          | 102.28             | 99.82               | 104.72             | 91.33             | 94.90               | 95.07             | 105.56             | 112.50             | 93.60               |
| Amount Applied =              | 0.3                |                     | 0.3018             | 0.2717            | 0.3002              | 0.3004            | 0.3021             | 0.3024             | 0.3017              |
| 3x LOQ 1                      | 0.2845             |                     | 0.2856             | 0.2690            | 0.2751              | 0.2995            | 0.2843             | 0.2947             | 0.2830              |
| 3x LOQ 2                      | 0.2977             |                     | 0.3214             | 0.2382            | 0.2592              | 0.2975            | 0.3076             | 0.3351             | 0.2576              |
| 3x LOQ 3                      | 0.3062             |                     | 0.3059             | 0.2140            | 0.2733              | 0.2677            | 0.2900             | 0.3600             | 0.2915              |
| 3x LOQ 4                      | 0.3245             |                     | 0.3125             | 0.2764            | 0.2591              | 0.2947            | 0.3247             | 0.4242             | 0.2952              |
| 3x LOQ 5                      | 0.2707             |                     | 0.3528             | 0.2575            | 0.2580              | 0.2723            | 0.3058             | 0.4337             | 0.2758              |
| 3x LOQ 6                      | 0.2893             |                     | 0.2798             | 0.2207            | 0.2705              | 0.2671            | 0.2823             | 0.3587             | 0.2727              |
| Average µg/sample =           | 0.2955             |                     | 0.3097             | 0.2460            | 0.2659              | 0.2831            | 0.2991             | 0.3677             | 0.2793              |
| CVi =                         | 0.06304            |                     | 0.08534            | 0.10461           | 0.02981             | 0.05519           | 0.05507            | 0.14431            | 0.04914             |
| Group Bias =                  | -0.01512           |                     | 0.02607            | -0.09468          | -0.11435            | -0.05762          | -0.00983           | 0.21595            | -0.07426            |
| Average % Recovery =          | 98.49              |                     | 102.61             | 90.53             | 88.57               | 94.24             | 99.02              | 121.60             | 92.57               |

## TABLE 24. CONTINUED. MICROGRAMS RECOVERED ON COTTON (SCAN MODE, D<sub>14</sub>-METHAMPHETAMINE)

| PART A continued     | MICROGRAMS PER SAMPLE RECOVERED                                         |                                           |           |         |         |         |          |           |           |  |  |
|----------------------|-------------------------------------------------------------------------|-------------------------------------------|-----------|---------|---------|---------|----------|-----------|-----------|--|--|
| •                    | UNITS = $\mu$ g/sample (sample is desorbed in 40 mL 0.2N sulfuric acid) |                                           |           |         |         |         |          |           |           |  |  |
| 1                    | INT STD = D                                                             | NT STD = D <sub>14</sub> -Methamphetamine |           |         |         |         |          |           |           |  |  |
| l                    |                                                                         |                                           |           |         | Meth-   |         |          | Phenyl-   |           |  |  |
| 1                    | Amphet-                                                                 |                                           |           |         | amphet- | Phency- | Phenter- | propanol- | Pseudo-   |  |  |
| TEST LEVEL           | amine                                                                   | Caffeine                                  | Ephedrine | MDMA    | amine   | clidine | mine     | amine     | ephedrine |  |  |
| Amount Applied =     | 0.1                                                                     |                                           | 0.1006    | 0.0906  | 0.1001  | 0.1001  | 0.1007   | 0.1008    | 0.1006    |  |  |
| 1x LOQ 1             | 0.0981                                                                  |                                           | 0.1221    | 0.1077  | 0.1172  | 0.1229  | 0.0988   | 0.1553    | 0.1232    |  |  |
| 1x LOQ 2             | 0.0870                                                                  |                                           | 0.1171    | 0.1006  | 0.0936  | 0.1141  | 0.0948   | 0.1826    | 0.1151    |  |  |
| 1x LOQ 3             | 0.1003                                                                  |                                           | 0.1176    | 0.0896  | 0.0941  | 0.1199  | 0.0886   | 0.1716    | 0.1304    |  |  |
| 1x LOQ 4             | 0.1153                                                                  |                                           | 0.1198    | 0.1156  | 0.1003  | 0.1270  | 0.0972   | 0.1628    | 0.1316    |  |  |
| 1x LOQ 5             | 0.1035                                                                  |                                           | 0.1167    | 0.0985  | 0.0986  | 0.1027  | 0.1032   | 0.1689    | 0.1168    |  |  |
| 1x LOQ 6             | 0.0984                                                                  |                                           | 0.1229    | 0.1115  | 0.1079  | 0.1148  | 0.0977   | 0.1951    | 0.1342    |  |  |
| Average µg/sample =  | 0.1004                                                                  |                                           | 0.1194    | 0.1039  | 0.1020  | 0.1169  | 0.0967   | 0.1727    | 0.1252    |  |  |
| CVi =                | 0.09131                                                                 |                                           | 0.02233   | 0.09166 | 0.08917 | 0.07268 | 0.05004  | 0.08254   | 0.06444   |  |  |
| Group Bias =         | 0.00427                                                                 |                                           | 0.18655   | 0.14744 | 0.01885 | 0.16727 | -0.03951 | 0.71333   | 0.24509   |  |  |
| Average % Recovery = | 100.43                                                                  |                                           | 118.65    | 114.74  | 101.88  | 116.73  | 96.05    | 171.33    | 124.51    |  |  |

|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |                    |            |           |                     | D         |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|------------|--------------------|------------|-----------|---------------------|-----------|--|
| PART B                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | ECISION A  | - District Control |            | LTS       | THE PERSON NAMED IN |           |  |
| SCAN                          | UNITS = $\mu$ g/sample (sample is desorbed in 40 mL 0.2N sulfuric acid)<br>INT STD = D <sub>14</sub> -Methamphetamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |            |                    |            |           |                     |           |  |
| MODE                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | 4          | Meth-              | ANDERS     |           | Phenyl-             |           |  |
|                               | Amphet-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |           |            | amphet-            | Phency-    | Phenter-  | propanol-           | Pseudo-   |  |
|                               | amine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Caffeine     | Ephedrine | MDMA       | amine              | clidine    | mine      | amine               | ephedrine |  |
| OPTION #1                     | Option #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Option #1    | Option #1 | Option #1  | Option #1          | Option #1  | Option #1 | Option #1           | Option #1 |  |
| Test Levels                   | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1x LOQ       | 1x LOQ    | 1x LOQ     | 100x LOQ           | 1x LOQ     | 100x LOQ  | 1x LOQ              | 1x LOQ    |  |
| omitted                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and          | 300x LOQ  | 100x LOQ,  | inlier CV          | 100x LOQ   | bias>10%  | bias>>10%           | bias>10%  |  |
| and reason                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3x LOQ       | bias>10%  | inlier CV  |                    | 300x LOQ   |           | 300x LOQ            |           |  |
| for omission                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | undetectable | 1         |            |                    | all biases |           | bias rela-          |           |  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 100       |            |                    | >10%       |           | tively low          |           |  |
| Degrees of freedom =          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3            | 3         | 3          | 4                  | 2          | 4         | 3                   | 4         |  |
| Accuracy =                    | 13.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.474       | 17.751    | 16.611     | 12.464             | 13.428     | 10.656    | 37.613              | 14.906    |  |
| Overall Precision =           | 0.06095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.06363      | 0.06741   | 0.06519    | 0.05460            | 0.04654    | 0.05092   | 0.08855             | 0.06493   |  |
| Chi^2 =                       | 6.558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.644        | 3.277     | 7.143      | 9.738              | 1.469      | 0.124     | 7.323               | 3.068     |  |
| pass @ 0.95?                  | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES          | YES       | YES        | no                 | YES        | YES       | YES                 | YES       |  |
| pass @ 0.975?                 | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES          | YES       | YES        | YES                | YES        | YES       | YES                 | YES       |  |
| Mean bias =                   | 0.03378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00137      | 0.06663   | -0.05888   | -0.03482           | -0.05773   | 0.01904   | 0.23047             | -0.04224  |  |
| from                          | -0.01512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.02735     | 0.02607   | -0.09468   | -0.11435           | -0.06622   | -0.03951  | 0.12503             | -0.08882  |  |
| to                            | 0.10561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03811      | 0.16596   | 0.00360    | 0.01885            | -0.04934   | 0.06707   | 0.28680             | 0.03949   |  |
| F' =                          | 1.96437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.68985      | 3.58959   | 1.96091    | 3.32688            | 0.07520    | 2.60315   | 2.09999             | 2.80846   |  |
| pass @ 0.05?                  | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES          | no        | YES        | no                 | YES        | YES       | YES                 | no        |  |
| pass @ 0.025?                 | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES          | YES       | YES        | YES                | YES        | YES       | YES                 | YES       |  |
| OPTION #2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.          |           | Option #2  |                    |            |           |                     |           |  |
| Test Levels                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V 468        |           | 100x LOQ   |                    |            |           |                     |           |  |
| omitted                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2) A        |           | inlier CV  |                    |            |           |                     |           |  |
| ATTENDED.                     | 7410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |            |                    |            |           |                     |           |  |
| Degrees of freedom =          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | 3          |                    |            |           |                     |           |  |
| Accuracy =                    | 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |           | 17.612     |                    |            |           |                     |           |  |
| Overall Precision =           | DA 42 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V            |           | 0.07127    |                    |            |           |                     |           |  |
| Chi^2 =                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |           | 8.247      |                    |            |           |                     |           |  |
| pass @ 0.95?                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | YES        |                    |            |           |                     |           |  |
| pass @ 0.975?                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | YES        |                    |            |           |                     |           |  |
| Mean bias =                   | A CONTRACTOR OF THE PARTY OF TH |              |           | -0.05888   |                    |            |           |                     |           |  |
| from                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | -0.09468   |                    |            |           |                     |           |  |
| to<br>F' =                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | 0.00360    |                    |            |           |                     |           |  |
| -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | 1.96091    |                    |            |           |                     |           |  |
| pass @ 0.05?<br>pass @ 0.025? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | YES<br>YES |                    |            |           |                     |           |  |
| pass ( <i>a</i> , 0.023?      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | ILS        |                    |            |           |                     |           |  |

| PART A                       |                          | MIC                       | CROGRAMS                 | PER SAMP                 | LE RECOVE                | RED in SIM | MODE     |           |
|------------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|------------|----------|-----------|
|                              | UNITS = μg/              | sample (samp              | le is desorbed           | in 40 mL 0.21            | V sulfuric acid          | )          | HODE     |           |
| SIM                          | INT STD = I              | O <sub>11</sub> -Amphetam | ine                      |                          |                          | ,          |          |           |
| MODE                         |                          |                           |                          |                          | Meth-                    |            |          |           |
|                              | Amphet-                  |                           |                          |                          | amphet-                  | Phency-    | Phenter- | Pseudo-   |
| TEST LEVEL                   | amine                    | Caffeine                  | Ephedrine                | MDMA                     | amine                    | clidine    | mine     | ephedrine |
| Amount Applied =             | 30.00019                 | 30.0062                   | 30.1799                  | 27.1692                  | 30.0193                  | 30.0444    | 30.2086  | 30.1706   |
| 300x LOQ 1                   | 28.081                   | 27.344                    | 29.371                   | 25.259                   | 27.825                   | 29.849     | 28.051   | 26.691    |
| 300x LOQ 2                   | 28.813                   | 28.718                    | 31.563                   | 25.534                   | 28.080                   | 31.628     | 28.748   | 27.186    |
| 300x LOQ 3                   | 29.424                   | 27.236                    | 31.070                   | 24.902                   | 28.128                   | 31.606     | 29.035   | 27.720    |
| 300x LOQ 4                   | 30.143                   | 27.723                    | 29.127                   | 24.001                   | 28.227                   | 31.221     | 30.209   | 28.046    |
| 300x LOQ 5                   | 28.249                   | 27.760                    | 30.811                   | 26.294                   | 28.820                   | 31.112     | 28.498   | 27.204    |
| 300x LOQ 6                   | 28.979                   | 28.715                    | 31.990                   | 25.621                   | 27.995                   | 31.860     | 28.864   | 26.965    |
| Average μg/sample =          | 28.948                   | 27.916                    | 30.655                   | 25.269                   | 28.179                   | 31.213     | 28.901   | 27.302    |
| CVi =                        | 0.02637                  | 0.02340                   | 0.03800                  | 0.03058                  | 0.01214                  | 0.02317    | 0.02513  | 0.01823   |
| Group Bias =                 | -0.03512                 | -0.06966                  | 0.01574                  | -0.06995                 | -0.06130                 | 0.03889    | -0.04329 | -0.09508  |
| Average % Recovery =         | 96.49                    | 93.03                     | 101.57                   | 93.00                    | 93.87                    | 103.89     | 95.67    | 90.49     |
| Amount Applied =             | 10.0006                  | 10.0021                   | 10.06                    | 9.0564                   | 10.0064                  | 10.0148    | 10.0695  | 10.0569   |
| 100x LOQ 1                   | 9.997                    | 9.672                     | 10.644                   | 8.670                    | 9.635                    | 9.692      | 10.455   | 8.967     |
| 100x LOQ 2                   | 9.981                    | 9.730                     | 11.096                   | 8.732                    | 9.633                    | 9.678      | 10.273   | 10.127    |
| 100x LOQ 3                   | 10.286                   | 9.839                     | 11.258                   | 8.572                    | 9.631                    | 9.829      | 10.521   | 10.088    |
| 100x LOQ 4                   | 10.099                   | 9.599                     | 10.963                   | 8.189                    | 9.191                    | 9.564      | 10.232   | 9.440     |
| 100x LOQ 5                   | 10.078                   | 9.508                     | 10.907                   | 8.388                    | 9.380                    | 9.705      | 10.343   | 9.401     |
| 100x LOQ 6                   | 9.904                    | 9.496                     | 11.175                   | 7.630                    | 8.603                    | 9.488      | 10.157   | 9.219     |
| Average µg/sample =          | 10.057                   | 9.641                     | 11.007                   | 8.363                    | 9.346                    | 9.659      | 10.330   | 9.540     |
| CVi =                        | 0.01316                  | 0.01381                   | 0.02003                  | 0.04907                  | 0.04344                  | 0.01232    | 0.01335  | 0.04928   |
| Group Bias =                 | 0.00568                  | -0.03612                  | 0.09418                  | -0.07651                 | -0.06604                 | -0.03551   | 0.02587  | -0.05136  |
| Average % Recovery =         | 100.57                   | 96.39                     | 109.42                   | 92.35                    | 93.40                    | 96.45      | 102.59   | 94.86     |
| Amount Applied =             | 3.0002                   | 3.0006                    | 3.018                    | 2.7169                   | 3.0019                   | 3.0044     | 3.0209   | 3.0171    |
| 30x LOQ 1                    | 2.7263                   | 2.6138                    | 2.9661                   | 2.4231                   | 2.6782                   | 2.6886     | 2.8169   | 2.5000    |
| 30x LOQ 2                    | 2.8794                   | 2.4852                    | 3.0867                   | 2.4545                   | 2.7207                   | 2.7018     | 2.8897   | 2.6523    |
| 30x LOQ 3                    | 2.7851                   | 2.5377                    | 2.9873                   | 2.2834                   | 2.6405                   | 2.6094     | 2.8680   | 2.5944    |
| 30x LOQ 4                    | 2.7601                   | 2.5750                    | 3.0119                   | 2.2593                   | 2.6103                   | 2.6621     | 2.7639   | 2.5839    |
| 30x LOQ 5                    | 2.8692                   | 2.5291                    | 2.8979                   | 2.2719                   | 2.6489                   | 2.5856     | 2.9557   | 2.5074    |
| 30x LOQ 6                    | 2.8115                   | 2.4983                    | 2.9204                   | 2.2902                   | 2.6202                   | 2.6467     | 2.9203   | 2.5563    |
| Average µg/sample =          | 2.8053                   | 2.5399                    | 2.9784                   | 2.3304                   | 2.6531                   | 2.6490     | 2.8691   | 2.5657    |
| CVi =                        | 0.02157                  | 0.01891                   | 0.02274                  | 0.03656                  | 0.01535                  | 0.01698    | 0.02432  | 0.02236   |
| Group Bias =                 | -0.06497                 | -0.15356                  | -0.01313                 | -0.14226                 | -0.11619                 | -0.11829   | -0.05024 | -0.14960  |
| Average % Recovery =         | 93.50                    | 84.64                     | 98.69                    | 85.77                    | 88.38                    | 88.17      | 94.98    | 85.04     |
| Amount Applied =             | 1.0001                   | 1.0002                    | 1.006                    | 0.9056                   | 1.0006                   | 1.0015     | 1.007    | 1.0057    |
| 10x LOQ 1                    | 0.8769                   | 0.8183                    | 0.9003                   | 0.7595                   | 0.8696                   | 0.8622     | 0.9277   | 0.8211    |
| 10x LOQ 2                    | 0.8864                   | 0.8262                    | 0.9054                   | 0.7426                   | 0.8628                   | 0.8600     | 0.9112   | 0.8375    |
| 10x LOQ 3                    | 0.9288                   | 0.8286                    | 0.9538                   | 0.7646                   | 0.9046                   | 0.8924     | 0.9679   | 0.8741    |
| 10x LOQ 4                    | 0.9547                   | 0.8454                    | 1.0508                   | 0.7812                   | 0.9093                   | 0.9225     | 0.9992   | 0.9741    |
| 10x LOQ 5                    | 0.9309                   | 0.8428                    | 0.9980                   | 0.7720                   | 0.8973                   | 0.9015     | 0.9629   | 0.9027    |
| 10x LOQ 6                    | 0.8975                   | 0.7894                    | 0.9726                   | 0.7271                   | 0.8530                   | 0.8501     | 0.9378   | 0.8689    |
| Average µg/sample =<br>CVi = | 0.9125                   | 0.8251                    | 0.9635                   | 0.7578                   | 0.8828                   | 0.8815     | 0.9511   | 0.8797    |
| Group Bias =                 | 0.03309                  | 0.02460                   | 0.05937                  | 0.02620                  | 0.02705                  | 0.03217    | 0.03342  | 0.06185   |
| Average % Recovery =         | -0.08753                 | -0.17505<br>82.40         | -0.04226                 | -0.16321                 | -0.11780                 | -0.11985   | -0.05545 | -0.12524  |
|                              | 91.25                    | 82.49                     | 95.77                    | 83.68                    | 88.22                    | 88.01      | 94.45    | 87.48     |
| Amount Applied =             | 0.3                      | 0.3001                    | 0.3018                   | 0.2717                   | 0.3002                   | 0.3004     | 0.3021   | 0.3017    |
| 3x LOQ 1                     | 0.2796                   | 0.2454                    | 0.2869                   | 0.2333                   | 0.2696                   | 0.2727     | 0.2796   | 0.2696    |
| 3x LOQ 2                     | 0.2654                   | 0.2614                    | 0.2959                   | 0.2339                   | 0.2674                   | 0.2677     | 0.2750   | 0.2659    |
| 3x LOQ 3<br>3x LOQ 4         | 0.2641                   | 0.2462                    | 0.2850                   | 0.2156                   | 0.2520                   | 0.2607     | 0.2742   | 0.2717    |
| 3x LOQ 4<br>3x LOQ 5         | 0.2712                   | 0.2171                    | 0.2947                   | 0.2207                   | 0.2585                   | 0.2546     | 0.2802   | 0.2786    |
| 3x LOQ 5<br>3x LOQ 6         | 0.2597<br>0.2525         | 0.2412<br>0.2382          | 0.3049                   | 0.2236                   | 0.2502                   | 0.2662     | 0.2656   | 0.2544    |
| Average µg/sample =          | 0.2525                   | 0.2382                    | 0.2710<br>0.2897         | 0.2087                   | 0.2487                   | 0.2459     | 0.2599   | 0.2616    |
| CVi =                        | 0.2654                   | 0.2416                    |                          | 0.2226                   | 0.2577                   | 0.2613     | 0.2724   | 0.2670    |
| Group Bias =                 | -0.11533                 | -0.19489                  | 0.04008<br>-0.03998      | 0.04442                  | 0.03497                  | 0.03739    | 0.02960  | 0.03145   |
| Average % Recovery =         | -0.11333<br><b>88.47</b> | 80.51                     | -0.03998<br><b>96.00</b> | -0.18057<br><b>81.94</b> | -0.14144<br><b>95.96</b> | -0.13029   | -0.09822 | -0.11514  |
|                              | 00.7/                    | 00.51                     | 70.00                    | 01.94                    | 85.86                    | 86.97      | 90.18    | 88.49     |

# TABLE 25. CONTINUED. MICROGRAMS RECOVERED ON COTTON (SIM MODE, D<sub>11</sub>-AMPHETAMINE)

| PART A continued    |          | N             | IICROGRAM | S PER SAMPI     | E RECOVER    | ED in SIM M | IODE     |           |
|---------------------|----------|---------------|-----------|-----------------|--------------|-------------|----------|-----------|
| SIM                 |          | sample (sampl |           | 1 40 mL 0.2N su | lfuric acid) |             |          |           |
| MODE                |          |               |           |                 | Meth-        |             |          |           |
|                     | Amphet-  |               |           |                 | amphet-      | Phency-     | Phenter- | Pseudo-   |
| TEST LEVEL          | amine    | Caffeine      | Ephedrine | MDMA            | amine        | clidine     | mine     | ephedrine |
| Amount Applied =    | 0.1      | 0.1           | 0.1006    | 0.0906          | 0.1001       | 0.1001      | 0.1007   | 0.1006    |
| 1x LOQ 1            | 0.0889   | 0.0857        | 0.1153    | 0.0909          | 0.0907       | 0.0978      | 0.0924   | 0.1088    |
| 1x LOQ 2            | 0.0880   | 0.1032        | 0.1160    | 0.0853          | 0.0851       | 0.0913      | 0.0895   | 0.1036    |
| 1x LOQ 3            | 0.0957   | 0.0886        | 0.1151    | 0.0866          | 0.0905       | 0.0930      | 0.0940   | 0.1080    |
| 1x LOQ 4            | 0.1046   | 0.0926        | 0.1176    | 0.0995          | 0.1002       | 0.1055      | 0.1058   | 0.1239    |
| 1x LOQ 5            | 0.0874   | 0.0926        | 0.1100    | 0.0837          | 0.0939       | 0.0882      | 0.0907   | 0.1084    |
| 1x LOQ 6            | 0.0923   | 0.0834        | 0.1111    | 0.0815          | 0.0957       | 0.0899      | 0.0888   | 0.1153    |
| Average µg/sample = | 0.0928   | 0.0910        | 0.1142    | 0.0879          | 0.0927       | 0.0943      | 0.0935   | 0.1113    |
| CVi =               | 0.07070  | 0.07700       | 0.02600   | 0.07382         | 0.05571      | 0.06791     | 0.06739  | 0.06472   |
| Group Bias =        | -0.07189 | -0.09002      | 0.13503   | -0.02923        | -0.07376     | -0.05856    | -0.07113 | 0.10704   |
| Average % Recovery  | 92.81    | 91.00         | 113.50    | 97.08           | 92.62        | 94.14       | 92.89    | 110.70    |

| PART B                     |              |                      | PRECISION | AND ACCURA           | CY RESULTS | S for SIM MO | ODE            |              |
|----------------------------|--------------|----------------------|-----------|----------------------|------------|--------------|----------------|--------------|
|                            | UNITS = μg/s |                      |           | n 40 mL 0.2N su      |            | A            | 322            | 37           |
| SIM                        |              | 11-Amphetami         |           |                      |            |              |                |              |
| MODE                       |              |                      |           |                      | Meth-      |              |                |              |
|                            | Amphet-      |                      |           |                      | amphet-    | Phency-      | Phenter-       | Pseudo-      |
|                            | amine        | Caffeine             | Ephedrine | MDMA                 | amine      | clidine      | mine           | ephedrine    |
| OPTION #1                  | Option #1    | Option #1            | Option #1 | Option #1            | Option #1  | Option #1    | Option #1      | Option #1    |
| Test Levels                | 100x LOQ     | 1x LOQ               | 1x LOQ,   | 3x LOQ               | 300x LOQ   | 100x LOQ     | 100x LOQ       | 1x LOQ       |
| omitted                    | inlier CV    | 10x LOQ,             | bias>10%  | 10x LOQ              | inlier CV  | inlier CV    | inlier CV      | CV>10%       |
| and reason                 |              | bias>10%             | 100x LOQ, | all biases           |            | 300x LOQ     | and relatively |              |
|                            |              |                      |           | >10%                 |            | relatively   | high bias      |              |
| for omission               |              | 30x LOQ,             | inlier CV |                      |            | high bias    |                |              |
| Degrees of freedom =       | 4            | inlier CV            | 3         | 3                    | 4          | 3            | 4              | 4            |
| Accuracy =                 | 14.276       | 21.335               | 9.129     | 16.227               | 16.538     | 17.718       | 12.846         | 17.340       |
| Overall Precision =        | 0.04121      | 0.05785              | 0.04211   | 0.05032              | 0.03789    | 0.04282      | 0.03939        | 0.04019      |
| Chi^2 =                    | 8.892        | 5.399                | 3.997     | 4.324                | 7.631      | 8.327        | 8.060          | 9.415        |
| pass @ 0.95?               | YES          | YES                  | YES       | YES                  | YES        | no           | YES            | 9.413<br>YES |
| pass @ 0.975?              | YES          | YES                  | YES       | YES                  | YES        | YES          | YES            | YES          |
| Mean bias =                | -0.07497     | -0.11819             | -0.01991  | -0.07949             | -0.10305   | -0.10675     | -0.06367       | -0.10729     |
| from                       | -0.11533     | -0.19489             | -0.04226  | -0.14226             | -0.14144   | -0.13029     | -0.09822       | -0.14960     |
| to                         | -0.03512     | -0.06966             | 0.01574   | -0.02923             | -0.06604   | -0.05856     | -0.04329       | -0.05136     |
| F' =                       | 1.57271      | 4.29082              | 1.06286   | 2.76738              | 2.00060    | 1.57385      | 0.88993        | 2.57164      |
| pass @ 0.05?               | YES          | no                   | YES       | YES                  | YES        | YES          | YES            | YES          |
| pass @ 0.025?              | YES          | YES                  | YES       | YES                  | YES        | YES          | YES            | YES          |
| OPTION #2                  |              | Option #2            |           | Option #2            |            |              |                |              |
| Test Levels                | <b>1</b>     | 1x LOQ               |           | Omitting             |            |              |                |              |
| omitted                    |              | 3x LOQ,              |           | 1x LOQ               |            |              |                |              |
| and reason                 |              | bias>10%             |           | 300x LOQ             |            |              |                |              |
| for omission               | A 1998       | 100x LOQ,            |           | give smaller         |            |              |                |              |
|                            | A A          | inlier CV            |           | Chi^2.               |            |              |                |              |
| Degrees of freedom =       |              | 2                    |           | 3                    |            |              |                |              |
| Accuracy =                 |              | 16.967               |           | 20.646               |            |              | -              |              |
| Overall Precision =        |              | 0.02244              |           | 0.04002              |            |              |                |              |
| Chi^2 =                    |              | 0.339                |           | 1.930                |            |              |                |              |
| pass @ 0.95?               |              | YES                  |           | YES                  |            |              |                |              |
| pass @ 0.975?  Mean bias = | -            | -0.13276             |           | -0.14064             |            | -            | -              |              |
| from                       |              | -0.13276<br>-0.17505 |           | -0.14064<br>-0.18057 |            |              |                |              |
| to                         |              | -0.17505             |           | -0.18057             |            |              |                |              |
| F' =                       |              | 4.50475              |           | 3.35165              |            |              |                |              |
| pass @ 0.05?               |              | no                   |           | no                   |            |              |                |              |
| pass @ 0.025?              |              | YES                  |           | YES                  |            |              |                |              |

# TABLE 26. MICROGRAMS RECOVERED ON COTTON (SIM MODE, $D_{14}$ -METHAMPHETAMINE)

| PART A                   |                  | MI               | CROGRAMS         | PER SAMPLE       | RECOVERE         | D in SIM MO      | DF               |                  |
|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| *******                  | UNITS = ug/sa    | ample (sample is |                  |                  |                  | D III SIIVI IVIO | DE               |                  |
| SIM                      |                  | 4-Methamphetar   |                  |                  |                  |                  |                  |                  |
| MODE                     |                  | ^                |                  |                  | Meth-            |                  |                  |                  |
|                          | Amphet-          |                  |                  |                  | amphet-          | Phency-          | Phenter-         | Pseudo-          |
| TEST LEVEL               | amine            | Caffeine         | Ephedrine        | MDMA             | amine            | clidine          | mine             | ephedrine        |
| Amount Applied =         | 30.00019         | 30.0062          | 30.1799          | 27.1692          | 30.0193          | 30.0444          | 30.2086          | 30.1706          |
| 300x LOQ 1               | 29.153           | 28.420           | 30.436           | 26.297           | 29.124           | 31.133           | 29.083           | 27.710           |
| 300x LOQ 2               | 30.545           | 30.445           | 33.074           | 27.195           | 30.092           | 33.785           | 30.408           | 28.796           |
| 300x LOQ 3               | 31.456           | 29.229           | 32.931           | 26.821           | 30.454           | 34.174           | 30.980           | 29.599           |
| 300x LOQ 4               | 32.935           | 30.422           | 31.850           | 26.533           | 31.331           | 34.785           | 32.883           | 30.588           |
| 300x LOQ 5               | 28.677           | 28.199           | 31.055           | 26.693           | 29.415           | 31.485           | 28.902           | 27.635           |
| 300x LOQ 6               | 30.524           | 30.257           | 33.262           | 27.107           | 29.807           | 33.758           | 30.348           | 28.409           |
| Average µg/sample =      | 30.548           | 29.495           | 32.101           | 26.774           | 30.037           | 33.186           | 30.434           | 28.789           |
| CVi =                    | 0.05065          | 0.03473          | 0.03662          | 0.01275          | 0.02631          | 0.04535          | 0.04757          | 0.03971          |
| Group Bias =             | 0.01821          | -0.01703         | 0.06366          | -0.01453         | 0.00059          | 0.10458          | 0.00745          | -0.04578         |
| Average % Recovery =     | 101.82           | 98.30            | 106.37           | 98.55            | 100.06           | 110.46           | 100.75           | 95.42            |
| Amount Applied =         | 10.0006          | 10.0021          | 10.06            | 9.0564           | 10.0064          | 10.0148          | 10.0695          | 10.0569          |
| 100x LOQ 1               | 10.643           | 10.292           | 11.981           | 9.2349           | 10.240           | 10.365           | 11.112           | 9.543            |
| 100x LOQ 2<br>100x LOQ 3 | 10.660<br>11.179 | 10.386<br>10.691 | 12.501<br>12.898 | 9.3304<br>9.3304 | 10.272<br>10.461 | 10.387           | 10.957           | 10.786           |
| 100x LOQ 3               | 11.179           | 10.691           | 12.898           | 9.3304           | 10.461           | 10.750<br>10.997 | 11.415<br>11.629 | 10.935<br>10.722 |
| 100x LOQ 4               | 11.303           | 10.525           | 12.740           | 9.3324           | 10.480           | 10.997           | 11.629           | 10.722           |
| 100x LOQ 6               | 12.066           | 11.564           | 14.310           | 9.3376           | 10.517           | 11.721           | 12.329           | 11.181           |
| Average µg/sample =      | 11.201           | 10.732           | 12.933           | 9.3146           | 10.392           | 10.840           | 11.478           | 10.592           |
| CVi =                    | 0.04800          | 0.04350          | 0.06070          | 0.00455          | 0.01103          | 0.04596          | 0.04196          | 0.05442          |
| Group Bias =             | 0.12003          | 0.07293          | 0.28554          | 0.02851          | 0.03851          | 0.08241          | 0.13987          | 0.05322          |
| Average % Recovery =     | 112.00           | 107.29           | 128.55           | 102.85           | 103.85           | 108.24           | 113.99           | 105.32           |
| Amount Applied =         | 3.0002           | 3.0006           | 3.018            | 2.7169           | 3.0019           | 3.0044           | 3.0209           | 3.0171           |
| 30x LOQ 1                | 2.8725           | 3.1115           | 3.3886           | 2.547            | 2.8025           | 2.8303           | 2.9694           | 2.6333           |
| 30x LOQ 2                | 3.1149           | 2.6857           | 3.6188           | 2.650            | 2.9248           | 2.9220           | 3.1274           | 2.8673           |
| 30x LOQ 3                | 3.1758           | 2.8891           | 3.6913           | 2.599            | 2.9946           | 2.9772           | 3.2710           | 2.9547           |
| 30x LOQ 4                | 3.1309           | 2.9159           | 3.7018           | 2.558            | 2.9445           | 3.0209           | 3.1363           | 2.9274           |
| 30x LOQ 5                | 3.1902           | 2.8085           | 3.4942           | 2.522            | 2.9284           | 2.8758           | 3.2871           | 2.7861           |
| 30x LOQ 6                | 3.2176           | 2.8548           | 3.6230           | 2.616            | 2.9829           | 3.0311           | 3.3425           | 2.9223           |
| Average µg/sample =      | 3.1170           | 2.8776           | 3.5863           | 2.582            | 2.9296           | 2.9429           | 3.1890           | 2.8485           |
| CVi =                    | 0.04030          | 0.04876          | 0.03400          | 0.01854          | 0.02338          | 0.02746          | 0.04316          | 0.04257          |
| Group Bias =             | 0.03893          | -0.04100         | 0.18830          | -0.04970         | -0.02409         | -0.02049         | 0.05564          | -0.05586         |
| Average % Recovery =     | 103.89           | 95.90            | 118.83           | 95.03            | 97.59            | 97.95            | 105.56           | 94.41            |
| Amount Applied =         | 1.0001           | 1.0002           | 1.006            | 0.9056           | 1.0006           | 1.0015           | 1.007            | 1.0057           |
| 10x LOQ 1                | 0.9354           | 0.8591           | 1.0436           | 0.8077           | 0.9220           | 0.9180           | 0.9906           | 0.8754           |
| 10x LOQ 2<br>10x LOQ 3   | 0.9570<br>1.0108 | 0.8900<br>0.8995 | 1.0622<br>1.1280 | 0.7991<br>0.8293 | 0.9263<br>0.9789 | 0.9267<br>0.9693 | 0.9849<br>1.0545 | 0.9036<br>0.9505 |
| 10x LOQ 3                | 1.0508           | 0.8993           | 1.1280           | 0.8293           | 0.9789           | 1.0136           | 1.1010           | 1.0712           |
| 10x LOQ 5                | 1.0170           | 0.9184           | 1.1850           | 0.8406           | 0.9749           | 0.9831           | 1.0532           | 0.9854           |
| 10x LOQ 6                | 0.9912           | 0.8693           | 1.1674           | 0.8001           | 0.9374           | 0.9371           | 1.0370           | 0.9588           |
| Average µg/sample =      | 0.9937           | 0.8941           | 1.1406           | 0.8223           | 0.9559           | 0.9580           | 1.0369           | 0.9575           |
| CVi =                    | 0.04233          | 0.03012          | 0.07014          | 0.02887          | 0.03253          | 0.03868          | 0.04211          | 0.07145          |
| Group Bias =             | -0.00636         | -0.10613         | 0.13377          | -0.09206         | -0.04476         | -0.04345         | 0.02971          | -0.04793         |
| Average % Recovery =     | 99.36            | 89.39            | 113.38           | 90.79            | 95.52            | 95.65            | 102.97           | 95.21            |
| Amount Applied =         | 0.3              | 0.3001           | 0.3018           | 0.2717           | 0.3002           | 0.3004           | 0.3021           | 0.3017           |
| 3x LOQ 1                 | 0.2832           | 0.2488           | 0.3114           | 0.2359           | 0.2717           | 0.2757           | 0.2832           | 0.2732           |
| 3x LOQ 2                 | 0.2810           | 0.2761           | 0.3359           | 0.2467           | 0.2832           | 0.2829           | 0.2916           | 0.2813           |
| 3x LOQ 3                 | 0.2873           | 0.2664           | 0.3319           | 0.2331           | 0.2750           | 0.2831           | 0.2989           | 0.2952           |
| 3x LOQ 4                 | 0.2999           | 0.2380           | 0.3488           | 0.2424           | 0.2870           | 0.2807           | 0.3105           | 0.3073           |
| 3x LOQ 5                 | 0.2824           | 0.2609           | 0.3556           | 0.2419           | 0.2730           | 0.2889           | 0.2894           | 0.2762           |
| 3x LOQ 6                 | 0.2763           | 0.2590           | 0.3168           | 0.2269           | 0.2731           | 0.2683           | 0.2849           | 0.2856           |
| Average µg/sample =      | 0.2850           | 0.2582           | 0.3334           | 0.2378           | 0.2772           | 0.2799           | 0.2931           | 0.2865           |
| CVi =                    | 0.02846          | 0.05173          | 0.05192          | 0.03042          | 0.02291          | 0.02541          | 0.03471          | 0.04468          |
| Group Bias =             | -0.05001         | -0.13951         | 0.10471          | -0.12468         | -0.07670         | -0.06827         | -0.02980         | -0.05051         |
| Average % Recovery =     | 95.00            | 86.05            | 110.47           | 87.53            | 92.33            | 93.17            | 97.02            | 94.95            |

# TABLE 26. CONTINUED. MICROGRAMS RECOVERED ON COTTON (SIM MODE, $D_{14}$ -METHAMPHETAMINE)

| PART A continued     |                                            | MICROGRAMS PER SAMPLE RECOVERED in SIM MODE |                       |                |                  |                    |                  |                      |  |
|----------------------|--------------------------------------------|---------------------------------------------|-----------------------|----------------|------------------|--------------------|------------------|----------------------|--|
|                      | UNITS = μg/sa<br>INT STD = D <sub>14</sub> |                                             | s desorbed in 40 mine | mL 0.2N sulfur | ic acid)         |                    |                  |                      |  |
| MODE                 |                                            |                                             |                       |                | Meth-            |                    |                  |                      |  |
| TEST LEVEL           | Amphet-<br>amine                           | Caffeine                                    | Ephedrine             | MDMA           | amphet-<br>amine | Phency-<br>clidine | Phenter-<br>mine | Pseudo-<br>ephedrine |  |
| Amount Applied =     | 0.1                                        | 0.1                                         | 0.1006                | 0.0906         | 0.1001           | 0.1001             | 0.1007           | 0.1006               |  |
| 1x LOQ 1             | 0.0909                                     | 0.0876                                      | 0.1219                | 0.0929         | 0.0937           | 0.1000             | 0.0944           | 0.1116               |  |
| 1x LOQ 2             | 0.0925                                     | 0.1082                                      | 0.1261                | 0.0892         | 0.0913           | 0.0958             | 0.0942           | 0.1089               |  |
| 1x LOQ 3             | 0.0992                                     | 0.0915                                      | 0.1233                | 0.0895         | 0.0951           | 0.0963             | 0.0974           | 0.1121               |  |
| 1x LOQ 4             | 0.1094                                     | 0.0962                                      | 0.1270                | 0.1036         | 0.1062           | 0.1102             | 0.1106           | 0.1296               |  |
| 1x LOQ 5             | 0.0886                                     | 0.0943                                      | 0.1150                | 0.0849         | 0.0959           | 0.0894             | 0.0917           | 0.1102               |  |
| 1x LOQ 6             | 0.0969                                     | 0.0868                                      | 0.1201                | 0.0850         | 0.1022           | 0.0941             | 0.0932           | 0.1211               |  |
| Average µg/sample =  | 0.0963                                     | 0.0941                                      | 0.1222                | 0.0909         | 0.0974           | 0.0976             | 0.0969           | 0.1156               |  |
| CVi =                | 0.07820                                    | 0.08308                                     | 0.03581               | 0.07641        | 0.05788          | 0.07227            | 0.07181          | 0.07013              |  |
| Group Bias =         | -0.03756                                   | -0.05919                                    | 0.21505               | 0.00316        | -0.02663         | -0.02511           | -0.03753         | 0.14930              |  |
| Average % Recovery = | 96.24                                      | 94.08                                       | 121.50                | 100.32         | 97.34            | 97.49              | 96.25            | 114.93               |  |

| PART B                         |                    |           | DDECISION A  | ND ACCURAC              | V DECIH TO | for CIM MOD  |           |           |
|--------------------------------|--------------------|-----------|--------------|-------------------------|------------|--------------|-----------|-----------|
|                                | IINITS = ug/eg     |           |              | mL 0.2N sulfuri         |            | IOF SIMI MOD | L         |           |
|                                | INT STD = $D_{14}$ |           |              | IIIL 0.214 Sullull      | Cacid)     | 9            |           |           |
| MODE                           | IIII DID           | ,         | 111110       | <b>(1000)</b>           | Meth-      |              |           |           |
|                                | Amphet-            |           |              |                         | amphet-    | Phency-      | Phenter-  | Pseudo-   |
|                                | amine              | Caffeine  | Ephedrine    | MDMA                    | amine      | clidine      | mine      | ephedrine |
| OPTION #1                      | Option #1          | Option #1 | Option #1    | Option #1               | Option #1  | Option #1    | Option #1 | Option #1 |
| Test Levels                    | 100x LOQ           | 3x LOQ,   | 1x LOQ       | 30x LOQ                 | 100x LOO   | 100x LOQ     | 100x LOQ  | 1x LOO    |
| omitted                        | bias>10%           | bias>10%  | 100x LOO     | 100x LOO                | inlier CV  | 300x LOO     | bias>10%  | bias>10%  |
| and reason                     |                    | 100x LOQ  | bias>>10%    | 300x LOQ                |            | biases       |           |           |
| for omission                   |                    | `         | ASSESSED AND | all inlier CVs          | The same   | relatively   |           |           |
|                                |                    |           |              |                         |            | larger       |           |           |
| Degrees of freedom =           | 4                  | 3         | 3            | 2                       | 4          | 3            | 4         | 4         |
| Accuracy =                     | 10.062             | 14.363    | 20.532       | 15.397                  | 9.212      | 11.344       | 9.757     | 11.683    |
| Overall Precision =            | 0.05081            | 0.05337   | 0.05028      | 0.05032                 | 0.03514    | 0.04505      | 0.04952   | 0.05187   |
| Chi^2 =                        | 5.396              | 6.111     | 3.230        | 5.889                   | 6.697      | 7.035        | 3.085     | 2.344     |
| pass @ 0.95?                   | YES                | YES       | YES          | YES                     | YES        | YES          | YES       | YES       |
| pass @ 0.975?                  | YES                | YES       | YES          | YES                     | YES        | YES          | YES       | YES       |
| Mean bias =                    | -0.00736           | -0.05584  | 0.12261      | -0.07119                | -0.03432   | -0.03933     | 0.00509   | -0.02937  |
| from                           | -0.05001           | -0.10613  | 0.06366      | -0.12468                | -0.07670   | -0.06827     | -0.03753  | -0.05586  |
| to                             | 0.03893            | -0.01703  | 0.18830      | 0.00316                 | 0.00059    | -0.02049     | 0.05564   | 0.05322   |
| F' =                           | 1.88871            | 1.69127   | 2.89417      | 4.28815                 | 1.62505    | 0.64100      | 2.15910   | 2.90807   |
| pass @ 0.05?                   | YES                | YES       | YES          | no                      | YES        | YES          | YES       | no        |
| pass @ 0.025?                  | YES                | YES       | YES          | YES                     | YES        | YES          | YES       | YES       |
| OPTION #2                      |                    |           |              | Option #2               |            |              |           |           |
| Test Levels                    |                    |           |              | 1x LOQ                  |            |              |           |           |
| omitted                        |                    | 400       |              | 100x LOQ,               |            |              |           |           |
| and reason                     |                    |           |              | inlier CV               |            |              |           |           |
| for omission                   |                    |           |              | 300x LOQ,               |            |              |           |           |
| D 66 1                         | ATECONOMI          | V         |              | inlier CV               |            |              |           |           |
| Degrees of freedom =           | A 55 CSSSS         |           |              | 12 227                  |            |              |           |           |
| Accuracy =                     | VECTORS IN         |           |              | 13.237                  |            |              | -         |           |
| Overall Precision =<br>Chi^2 = |                    |           |              | <b>0.02648</b><br>1.199 |            |              |           |           |
| $cni^2 = pass @ 0.95?$         |                    |           |              | YES                     |            |              |           |           |
| pass @ 0.93?<br>pass @ 0.975?  | 1                  |           |              | YES                     |            |              |           |           |
| Mean bias =                    |                    |           |              | -0.08881                |            |              |           |           |
| from                           |                    |           |              | -0.12468                |            |              |           |           |
| to                             |                    |           |              | -0.12408                |            |              |           |           |
| F' =                           |                    |           |              | 1.96358                 |            |              |           |           |
| pass @ 0.05?                   |                    |           |              | YES                     |            |              |           |           |
| pass @ 0.025?                  |                    |           |              | YES                     |            |              |           |           |

| PART A                            | MICROGRAM                          | IS PER SAMPLE RECOVERED | 0                      |
|-----------------------------------|------------------------------------|-------------------------|------------------------|
|                                   | UNITS = $\mu$ g/sample (sample = 4 |                         |                        |
|                                   | INT STD = N-Propyl Amphetam        |                         |                        |
|                                   | SCAN                               | 077.5                   |                        |
| TEST LEVEL                        | SCAN mode<br>MDEA                  | SIM mo<br>MDEA          |                        |
| Amount Applied =                  | 28.5826                            | 28.5820                 |                        |
| 300x LOQ 1                        | 24.224                             | 26.559                  |                        |
| 300x LOQ 2                        | 26.263                             | 27.457                  | - 4                    |
| 300x LOQ 3                        | 28.287                             | 26.647                  | C00410 E000            |
| 300x LOQ 4                        | 27.893                             | 26.502                  |                        |
| 300x LOQ 5                        | 26.321                             | 26.960                  | 7027-9025099*          |
| 300x LOQ 6                        | 28.271                             | 27.346                  |                        |
| Average $\mu$ g/sample = $CVi =$  | 26.876                             | 26.912                  | 56755162E 427b.        |
| Group Bias =                      | 0.05927<br>-0.05970                | 0.01533                 | ETPERMENTER FORMATION. |
| Average % Recovery =              | 94.03                              | -0.0584<br>94.15        | 3                      |
| Amount Applied =                  | 9.5275                             |                         | THE STREET OF STREET   |
| 100x LOQ 1                        | 9.802                              | 9.5275<br>9.425         |                        |
| 100x LOQ 2                        | 9.802                              | 9.537                   |                        |
| 100x LOQ 3                        | 10.807                             | 9.616                   |                        |
| 100x LOQ 4                        | 10.396                             | 9.633                   |                        |
| 100x LOQ 5                        | 10.165                             | 9.322                   |                        |
| 100x LOQ 6                        | 10.026                             | 9.091                   |                        |
| Average µg/sample =               | 10.153                             | 9.437                   |                        |
| CVi =                             | 0.03962                            | 0.02190                 |                        |
| Group Bias =                      | 0.06569                            | -0.0094                 | 7                      |
| Average % Recovery =              | 106.57                             | 99.05                   |                        |
| Amount Applied =                  | 2.8583                             | 2.8583                  |                        |
| 30x LOQ 1                         | 2.5849                             | 2.6497                  |                        |
| 30x LOQ 2<br>30x LOQ 3            | 2.7280                             | 2.6829                  |                        |
| 30x LOQ 3                         | 2.6740<br>2.4650                   | 2.6765<br>2.6513        | I .                    |
| 30x LOQ 5                         | 2.8051                             | 2.7446                  |                        |
| 30x LOQ 6                         | 2.7675                             | 2.6637                  |                        |
| Average μg/sample =               | 2.6708                             | 2.6781                  |                        |
| CVi =                             | 0.04748                            | 0.01313                 | 3                      |
| Group Bias =                      | -0.06560                           | -0.0630                 | 3                      |
| Average % Recovery =              | 93.44                              | 93.70                   | 100                    |
| Amount Applied =                  | 0.9528                             | 0.9528                  |                        |
| 10x LOQ                           | 0.8784                             | 0.8435                  |                        |
| 10x LOQ 2                         | 0.9201                             | 0.8554                  |                        |
| 10x LOQ 3                         | 0.8630                             | 0.8725                  |                        |
| 10x LOQ 4                         | 1.0549                             | 0.9235                  |                        |
| 10x LOQ 5                         | 0.8521                             | 0.9163                  |                        |
| 10x LOQ 6 Average μg/sample =     | 0.9348<br>0.9172                   | 0.8491<br>0.8767        |                        |
| CVi =                             | 0.08153                            | 0.03982                 |                        |
| Group Bias =                      | -0.03730                           | -0.0798                 |                        |
| Average % Recovery =              | 96.27                              | 92.02                   |                        |
| Amount Applied =                  | 0.2858                             | 0.2858                  | 1                      |
| 3x LOQ 1                          | 0.2839                             | 0.2551                  |                        |
| 3x LOQ 2                          | 0.3132                             | 0.2702                  | I                      |
| 3x LOQ 3                          | 0.2734                             | 0.2513                  |                        |
| 3x LOQ 4                          | 0.3131                             | 0.2682                  | l l                    |
| 3x LOQ 5                          | 0.2969                             | 0.2660                  |                        |
| 3x LOQ 6                          | 0.2082                             | 0.2534                  |                        |
| Average µg/sample =               | 0.2815                             | 0.2607                  | ı                      |
| CVi =                             | 0.13929                            | 0.03198                 |                        |
| Group Bias = Average % Recovery = | -0.01531<br><b>98.47</b>           | -0.0879                 | 1                      |
| Average 70 Recovery =             | 98.47                              | 91.21                   |                        |

# TABLE 27. CONTINUED. MICROGRAMS RECOVERED ON COTTON (SCAN MODE, N-PROPYL AMPHETAMINE)

| PART A continued     | MICROGRAMS PER                 | SAMPLE RECOVERED |
|----------------------|--------------------------------|------------------|
|                      | UNITS = µg/sample              |                  |
|                      | INT STD = N-Propyl Amphetamine |                  |
| 1                    |                                |                  |
|                      | SCAN mode                      | SIM mode         |
| TEST LEVEL           | MDEA                           | MDEA             |
| Amount Applied =     | 0.0953                         | 0.0953           |
| 1x LOQ 1             | 0.1223                         | 0.1098           |
| 1x LOQ 2             | 0.0781                         | 0.0995           |
| 1x LOQ 3             | 0.0771                         | 0.1060           |
| 1x LOQ 4             | 0.1069                         | 0.1118           |
| 1x LOQ 5             | 0.0996                         | 0.0941           |
| 1x LOQ 6             | 0.1619                         | 0.1004           |
| Average µg/sample =  | 0.1076                         | 0.1036           |
| CVi =                | 0.29462                        | 0.06529          |
| Group Bias =         | 0.12988                        | 0.08738          |
| Average % Recovery = | 112.99                         | 108.74           |

| PART B                                                    | PRECISION AND ACCURACY RESULTS                   |           |  |                                |   |  |  |
|-----------------------------------------------------------|--------------------------------------------------|-----------|--|--------------------------------|---|--|--|
|                                                           | UNITS = µg/sample<br>INT STD = N-Propyl Amphetar | ASS       |  | A                              |   |  |  |
|                                                           | SCAN mode<br>MDEA                                | Variables |  |                                |   |  |  |
| OPTION #1                                                 | Option #1                                        |           |  | Option #1                      |   |  |  |
| Test Levels<br>omitted<br>and reason<br>for omission      | 1x LOQ<br>CV>>10%<br>bias>10%                    |           |  | 1x LOQ<br>CV>>10%<br>bias>10%  |   |  |  |
| Degrees of freedom =                                      | 4                                                | A22037    |  | 4                              |   |  |  |
| Accuracy =                                                | 16.609                                           |           |  | 10.323                         |   |  |  |
| Overall Precision =  Chi^2 =  pass @ 0.95?  pass @ 0.975? | 0.08171<br>10.085<br>no<br>YES                   |           |  | 0.02644<br>7.957<br>YES<br>YES |   |  |  |
| Mean bias =                                               | -0.02244                                         |           |  | -0.05973                       |   |  |  |
| from<br>to                                                | -0.06560<br>0.06569                              |           |  | -0.08791<br>-0.00947           |   |  |  |
| F' = pass @ 0.05?<br>pass @ 0.025?                        | 2.05486<br>YES<br>YES                            |           |  | 2.25971<br>YES<br>YES          |   |  |  |
| OPTION #2                                                 | Option #2                                        |           |  |                                |   |  |  |
| Test Levels<br>omitted<br>and reason<br>for omission      | 1x LOQ<br>CV>>10%<br>bias>10%                    |           |  |                                |   |  |  |
| Degrees of freedom =                                      | 5                                                |           |  |                                |   |  |  |
| Accuracy =                                                | 16.027                                           |           |  |                                |   |  |  |
| Overall Precision =  Chi^2 =  pass @ 0.95?  pass @ 0.975? | 0.08171<br>10.085<br>no<br>YES                   |           |  |                                |   |  |  |
| Mean bias =                                               | 0.00294                                          |           |  |                                | + |  |  |
| from<br>to<br>F' =                                        | -0.06560<br>0.12988<br>1.45409                   |           |  |                                |   |  |  |
| pass @ 0.05?<br>pass @ 0.025?                             | YES<br>YES                                       |           |  |                                |   |  |  |

# VII. PARTIAL EVALUATION OF PRECISION AND RECOVERY USING PENTAFLUOROPROPIONIC ANHYDRIDE

## A. Objective and Scope

Chlorodifluoroacetic anhydride was chosen for complete evaluation because of milder reaction conditions, relative ease of manual interpretation of spectra, and less sensitivity to reaction times and temperatures. Never-the-less, there was concern that chlorodifluoroacetic anhydride may not be well received by analytical laboratories due to the established use and availability of pentafluoropropionic anhydride. Accordingly, an abbreviated evaluation of recoveries and precision using pentafluoropropionic anhydride was performed involving a single concentration level (approximately 30X LOQ), five analytes, and four media. Results were compared with chlorodifluoroacetic anhydride derivatization on aliquots from the same extracts.

## B. Reagents and Supplies

Reagents and supplies were the same as those used in the Precision and Accuracy Study (Section VI). However, only five analytes were spiked (amphetamine, methamphetamine, ephedrine, pseudoephedrine, and phenylpropanolamine) and only four media were selected.

Results are given in this abridged report only for cotton gauze.

#### C. Procedure

Single wipes were inserted into 50-mL PP centrifuge tubes. These were wetted with 3 mL of isopropanol and then spiked with a standard spiking solution containing only the five analytes. Seven replicates were prepared for each. Reference standards were prepared in triplicate by spiking the standard spiking solution into 50-mL PP centrifuge tubes containing only isopropanol. The samples and standards were stored overnight at 0-6 °C. On the following day the samples were spiked with an internal standard solution and then desorbed with 30 mL of 0.2N sulfuric acid (the desorption solution) and processed according to the method. The final

eluate from the drying columns was split into two 4.5 mL aliquots and separately evaporated to dryness. One set was derivatized with chlorodifluoroacetic anhydride at 65 °C for 15 minutes and the other with pentafluoropropionic anhydride at 90 °C for 15 minutes. Both sets were evaporated to dryness after derivatization and taken up in 1 mL of reconstitution solvent containing 4.0 µg/mL of 4,4'-dibromooctafluorobiphenyl. The solutions were transferred to GC vials and analyzed by GC-MS using the GC-MS conditions described in an earlier section.

The target analytes were spiked at the following concentrations:

| Amphe  | etamine       | 6.242 µg/sample  | (approx. 60X LOQ)  |
|--------|---------------|------------------|--------------------|
| Ephedi | rine          | 6.250 μg/sample  | (approx. 60X LOQ)  |
| Metha  | mphetamine    | 6.290 μg/sample  | (approx. 60X LOQ)  |
| Phenyl | propanolamine | 6.250 μg/sample  | (approx. 60X LOQ)  |
| Pseudo | pephedrine    | 14.396 μg/sample | (approx. 160X LOQ) |

However, since the eluates were split, they are equivalent to an original concentration one half as much, as follows:

| Amphetamine         | 3.121 µg/sample | (approx. 30X LOQ) |
|---------------------|-----------------|-------------------|
| Ephedrine           | 3.125 µg/sample | (approx. 30X LOQ) |
| Methamphetamine     | 3.150 µg/sample | (approx. 30X LOQ) |
| Phenylpropanolamine | 3.125 µg/sample | (approx. 30X LOQ) |
| Pseudoephedrine     | 7.198 μg/sample | (approx. 80X LOQ) |

#### D. Results

Table 28 gives recoveries and precisions for the pentafluoropropionyl derivatives and the chlorodifluoroacetyl derivatives of aliquots from the same sample extracts. Quantification was by single point calibration. This should be regarded as valid for practical purposes since all recoveries clustered around 100% and because both sets of data were treated identically.

Precision tends not to be significantly affected regardless of method of calibration, especially when recoveries are tightly clustered.

The internal standard used was 4,4'-dibromooctafluorobiphenyl. This was valid since all initial desorption volumes were identical (3 mL isopropanol plus 30 mL 0.2N sulfuric acid).

Also, no hindered amines were involved such as MDEA.

TABLE 28. RECOVERY AND PRECISION FOR PENTAFLUOROPROPIONYL DERIVATIVES ON COTTON GAUZE

|               |                     | Penta                         | fluoropropion                       | yl derivatives_                      |                                   | <b>VERNING</b>                   |
|---------------|---------------------|-------------------------------|-------------------------------------|--------------------------------------|-----------------------------------|----------------------------------|
|               | μg/sample =         | D-amphet-<br>amine<br>6.24205 | phenylpro-<br>panolamine<br>6.25052 | L-ephedrine<br>bis-deriv.<br>6.25000 | D-metham-<br>phetamine<br>6.28989 | pseudo-<br>ephedrine<br>14.39565 |
| WIPE<br>MEDIA | RT(min.) =<br>m/z = | 6.92<br>190                   | 7.38<br>190                         | 8.19<br>204                          | 8.37<br>204                       | 8.91<br>204                      |
| Cotto         | n gauze-1           | 102.67                        | 101.42                              | 96.91                                | 113.93                            | 97.74                            |
| Cotto         | n gauze-2           | 102.61                        | 103.11                              | 98.15                                | 109.12                            | 98.81                            |
|               | on gauze-3          | 100.63                        | 95.29                               | 103.26                               | 108.26                            | 93.57                            |
|               | n gauze-4           | 111.15                        | 106.95                              | 113.04                               | 112.45                            | 101.21                           |
| Cotto         | n gauze-5           | 97.77                         | 93.85                               | 92.04                                | 102.84                            | 91.92                            |
|               | n gauze-6           | 108.91                        | 106.28                              | 104.26                               | 110.07                            | 97.73                            |
|               | n gauze-7           | 100.90                        | 94.64                               | 90.70                                | 108.14                            | 90.65                            |
| AVE           | ERAGE =             | 103.52                        | 100.22                              | 99.76                                | 109.26                            | 95.95                            |
| STI           | DEV =               | 4.78                          | 5.59                                | 7.76                                 | 3.56                              | 3.92                             |
| %             | RSD =               | 4.62                          | 5.58                                | 7.78                                 | 3.26                              | 4.09                             |
|               |                     | Chlor                         | odifluoroacety                      | derivatives                          |                                   |                                  |
| Cotto         | n gauze-1           | 101.76                        | 91.75                               | 103.33                               | 98.74                             | 93.36                            |
| Cotto         | n gauze-2           | 100.90                        | 94.74                               | 103.15                               | 98.68                             | 93.20                            |
|               | on gauze-3          | 109.11                        | 99.08                               | 106.89                               | 101.38                            | 98.95                            |
| Cotto         | n gauze-4           | 102.70                        | 94.01                               | 105.65                               | 99.18                             | 94.32                            |
| Cotto         | n gauze-5           | 100.74                        | 92.18                               | 103.00                               | 97.78                             | 91.65                            |
| Cotto         | on gauze-6          | 99.57                         | 95.18                               | 104.87                               | 97.48                             | 95.26                            |
| Cotto         | on gauze-7          | 104.09                        | 93.67                               | 104.66                               | 100.12                            | 93.04                            |
| AVI           | ERAGE =             | 102.69                        | 94.37                               | 104.51                               | 99.05                             | 94.25                            |
| STI           | DEV =               | 3.18                          | 2.42                                | 1.45                                 | 1.35                              | 2.35                             |
| %             | RSD =               | 3.10                          | 2.57                                | 1.39                                 | 1.36                              | 2.50                             |

All recoveries were within 90-110% except methamphetamine. All precisions were less than 8%.

The following observations were made. First of all, recoveries and precisions for both derivatizing reagents, for all five analytes, and all four media (only results for cotton are shown) were exceptional. From the data no significant difference between the two reagents can be found.

This would suggest that it is possible that pentafluoropropionic anhydride can be used in lieu of chlorodifluoroacetic anhydride. The level tested, 30X LOQ, is a mid range concentration.

Secondly, precision and recoveries at the 30X LOQ level were much better than in the Precision and Accuracy study in Section VI, in which recoveries at the 30X LOQ level were often relatively lower than those of the higher and lower concentration levels. This better performance is probably because the above study was conducted all on one day while that in section VI had the disadvantage of the analyses for the different concentration levels performed on different days. It is suspected that in the Precision and Accuracy Study in Section VI, if all analyses pertaining to the same media were done on the same day, the final precision and accuracy would probably have been even better than reported.

## E. Typical pentafluoropropionic Anhydride (PFPA) Calibration Curve

A surface recovery study was performed and reported in the Backup Data Report for NIOSH 9109 [6]. More analytes were involved. It is worth showing some of the quadratic curve fit data and LODs possible with PFPA.

The calibration curves for that study covered a range from 0.025 to  $6 \mu g/sample$ . Media standards were used (3" x 3" 12-ply cotton gauze, single wipes), wetting each with 1.5 mL of methanol. Desorption volume was 30 mL of desorption solution (0.2 normal sulfuric acid). The LOD and LOQs for the calibration curves and the  $r^2$  values are given in Table 29.

TABLE 29. QUALITY OF CALIBRATION CURVES USING PFPA

|    |                     | Range        | Quadratic                 | LOD         | LOQ         |
|----|---------------------|--------------|---------------------------|-------------|-------------|
|    | Compound            | (μg/sample)  | Curve Fit, r <sup>2</sup> | (µg/sample) | (μg/sample) |
| 1  | Amphetamine         | 0.0250-6.004 | 0.9999                    | 0.0165      | 0.0549      |
| 2  | Cocaine             | 0.1513-6.051 | 0.9994                    | 0.3787      | 1.120       |
| 3  | Codeine             | 0.0500-6.004 | 0.9917                    | 0.1748      | 0.5334      |
| 4  | Ephedrine           | 0.0265-6.360 | 0.9995                    | 0.0178      | 0.0591      |
| 5  | Hydrocodone         | 0.0505-6.056 | 0.9949                    | 0.1421      | 0.4450      |
| 6  | MDEA                | 0.0238-5.717 | 0.9992                    | 0.0593      | 0.1662      |
| 7  | MDMA                | 0.0226-5.434 | 0.9990                    | 0.0380      | 0.1264      |
| 8  | Methamphetamine     | 0.0252-6.039 | 0.9999                    | 0.0131      | 0.0437      |
| 9  | Phencyclidine       | 0.0254-6.089 | 0.9999                    | 0.0284      | 0.0945      |
| 10 | Phentermine         | 0.0252-6.042 | 0.9990                    | 0.0182      | 0.0606      |
| 11 | Phenylpropanolamine | 0.0270-6.485 | 0.9994                    | 0.0268      | 0.0891      |
| 12 | Pseudoephedrine     | 0.0251-6.034 | 0.9996                    | 0.0224      | 0.0746      |

Two analytes, codeine and hydrocodone, had r<sup>2</sup> values less than the acceptable 0.995. It is suspected that the results for these two, and for cocaine, would have been better using isotopic or chemically similar analogs for their internal standards. For MDEA the internal standard used was N-propylamphetamine. For all the other analytes methamphetamine-D<sub>14</sub> was acceptable.

Other than for cocaine and the two opiates, the LODs are very low.

#### F. Conclusions

It is possible if not probable that pentafluoropropionic anhydride is just as good as chlorodifluoroacetic anhydride for use as a derivatization reagent for most amphetamine like substances. At least the data show that pentafluoropropionic anhydride is not worse as a derivatizing agent, and may be a better derivatizing agent for a variety of amines than chlorodifluoroacetic anhydride. In addition, if improved sensitivity is needed, pentafluoropropionyl derivatives may be of value due to sharper GC peaks.

Both reagents may have unique advantages. Never-the-less, chlorodifluoroacetic anhydride was adequate for those compounds being evaluated in the precision and accuracy

study of Section V Part B. Increasing the temperature for derivatization with chlorodifluoroacetic anhydride might help to remove any distinctions. Accordingly the temperature used with CDFAA in all Precision and Accuracy, LOD, and long-term storage stability studies was raised to 70 °C from the 65 °C used in the preliminary method development studies.

# VIII. EVALUATION OF PRECISION AND ACCURACY WITH METHANOL AS THE GAUZE WETTING SOLVENT

### A. Objective

In a surface sampling recovery study (reported in the Backup Data Report for NIOSH 9109, [6]), it was shown that methanol was a better wetting solvent than isopropanol for surface wipe sampling. If methanol is to be included as an acceptable solvent for this method, it becomes necessary to show that methanol does not affect the precision and accuracy of the method.

Accordingly, precision and accuracy were evaluated by spiking 24 blank cotton gauze wipes wetted with methanol in 50-mL PP centrifuge tubes, six at each of four different concentration levels. The results are reported in this section.

### B. Scope

Only the lowest four concentration levels were evaluated, since this region includes the action level set by several states and it is more critical to determine the sensitivity, recovery, and reproducibility in this region than at higher concentration levels, where the precision and recoveries are usually better anyway. The commonly set action level is at the 1X LOQ level (0.1 µg/sample, where a sample usually covers 100 cm<sup>2</sup>). Only the cotton gauze wipes were evaluated, since it is assumed that the effects of methanol, if any, will be independent of the media. This assumption is not necessarily true since methanol might gradually solvolyze the

polyesters of synthetic wipes more rapidly than isopropanol, if at all. Cotton is the preferred medium in any case. The same analytes and internal standards were used as in the previous evaluations of precision and accuracy. Only the effect of methanol on the liquid-liquid extraction cleanup procedure was evaluated. It was deemed unnecessary to test its affect on the solid phase cleanup procedure of NIOSH 9109 since methanol is used in one of the rinse steps anyway.

#### C. Discussion of Possible Effects of Methanol on NIOSH 9106

For the wipe recovery data it was assumed that whichever method was used (NIOSH 9106 or 9109) it would be inconsequential since sampling techniques were being evaluated and should be independent of the analytical technique. This may be true to a point. In NIOSH 9106, the methanol, for example gets diluted by the acidic desorption solution, and from there a portion of it can get extracted by the methylene chloride extract. If so, it should evaporate more readily than isopropanol, which would also be present in the final methylene chloride extract if isopropanol is used as the wetting solvent. Indeed, not only does methanol evaporate more readily than isopropanol, it evaporates more readily than methylene chloride which has a lower vapor pressure. Apparently it is forming an azeotrope with methylene chloride, whereas isopropanol apparently does not, or at least not to a significant degree. It is hard to conceive how one alcohol compared to another would have any serious affect upon the recoveries, as long as the residues are completely dried before the derivatization reagents are added. The only two things that might happen are a small change in the partition constant for the analytes between the aqueous base and methylene chloride, and the possibility of a change in the volatility of the amphetamine salts during evaporation under nitrogen, such as azeotroping or co-distillation. A study on of the effect on the NIOSH 9106 procedure was therefore warranted.

### D. Analytes, Sampling Media, and Internal Standard

Samples were made using 3"x3" 12-ply non-sterile Accolade™ brand cotton gauze. It was U.S.P type VII, lot number 60305009 (reference number 908293). It was made in China for Banta Health Care Ltd. Neehah, WI 54956 and Rialto CA, 02376. The cotton was very bright white, and appears to have been the bleached variety (the precision and accuracy study in section VI using isopropanol was performed on an unbleached variety of cotton gauze). The change in types of cotton was necessitated because an order for the Caring brand previously used had not arrived yet.

The same mixed analyte spiking solution was used as was used in the precision and accuracy study (section VI) using isopropanol as the wetting solvent. The mixed analyte spiking solution volumes and concentrations used are the same as the four lowest concentration levels in that study. The resulting concentrations are given in Table 30. The internal standard spiking solution contained only methamphetamine-D<sub>14</sub> at 100 µg/mL for this study.

### E. Procedure

Liquid and media standards and blanks were the same as those prepared in the section for the surface wipe recovery study given in the Backup Data Report for NIOSH 9109 [6], and were prepared by spiking over a range of from  $0.025~\mu g$  through  $6~\mu g$  of analytes. The 50-mL PP centrifuge tubes containing the samples, blanks, and standards were capped and stored overnight.

The samples were spiked the next day with 60 µL of internal standard spiking solution and 30 mL of 0.2 normal aqueous sulfuric acid, capped, and tumbled for 2 hours. Subsequent cleanup, derivatization, and analysis were conducted using NIOSH 9106, using chlorodifluoroacetic anhydride. The chlorodifluoroacetic anhydride had a brownish oily residue on the Teflon bottle cap liner and the reagent was slightly discolored.

TABLE 30. CONCENTRATION OF ANALYTES AT EACH LEVEL

|   |                     | Cal | Calculated Concentration in µg/sample (1) |         |         |         |  |  |  |  |
|---|---------------------|-----|-------------------------------------------|---------|---------|---------|--|--|--|--|
|   | ANALYTE             |     | 30x LOQ                                   | 10x LOQ | 3x LOQ  | 1x LOQ  |  |  |  |  |
|   |                     |     | Level                                     | Level   | Level   | Level   |  |  |  |  |
| 1 | D-Amphetamine       |     | 3.00019                                   | 1.00006 | 0.30002 | 0.10001 |  |  |  |  |
| 2 | L-Ephedrine         |     | 3.01799                                   | 1.00600 | 0.30180 | 0.10060 |  |  |  |  |
| 3 | MDEA                |     | 2.85826                                   | 0.95275 | 0.28583 | 0.09528 |  |  |  |  |
| 4 | MDMA                |     | 2.71692                                   | 0.90564 | 0.27169 | 0.09056 |  |  |  |  |
| 5 | D-Methamphetamine   |     | 3.00193                                   | 1.00064 | 0.30019 | 0.10006 |  |  |  |  |
| 6 | Phencyclidine       |     | 3.00444                                   | 1.00148 | 0.30044 | 0.10015 |  |  |  |  |
| 7 | Phentermine         |     | 3.02086                                   | 1.00695 | 0.30209 | 0.10070 |  |  |  |  |
| 8 | Phenylpropanolamine |     | 3.02424                                   | 1.00808 | 0.30242 | 0.10081 |  |  |  |  |
| 9 | Pseudoephedrine     |     | 3.01706                                   | 1.00569 | 0.30171 | 0.10057 |  |  |  |  |

<sup>(1)</sup> The number of significant figures was kept large until the final calculations to avoid cumulative rounding off errors.

## F. Analysis and Results

The samples were analyzed by GC-MS using the SIM mode of analysis as described in NIOSH 9106. There was much more chromatographic noise than usual making it difficult to get good results for some of the analytes, and there was suspicion that the chlorodifluoroacetic anhydride derivatization reagent had become contaminated or had degraded somehow. There may have been some correlation with the brownish oily residue on the cap liner. The recoveries at the lower concentration levels for the ephedrine type compounds were very poor. On the other hand, recoveries for amphetamine, methamphetamine, MDMA, and phencyclidine were very good. It is unclear whether the low recoveries were due to methanol or to the contaminated reagent. But because the ephedrine type compounds have been very sensitive in the past to various types of contamination such as detergents and so on; it is strongly believed that the poor results for these types of compounds should not be used to argue against the use of methanol. At least for the other analytes, amphetamine, methamphetamine, MDMA, and PCP, the data show that methanol does not cause a problem in the NIOSH 9106 procedure.

It was observed that when methanol was used as the wetting solvent, the crystal violet does NOT go through a color change as the methylene chloride extracts are evaporated to

dryness. The color remains a blue to blue-violet through all stages of drying. In subsequent trials the color changes were restored by adding  $100~\mu L$  of isopropanol to the methylene chloride extract prior to evaporation. Apparently crystal violet needs to be in an alcoholic solution in order for the color changes to occur. In pure methanol the color changes do occur, but apparently the residual methanol in the extracts evaporates so fast (through an azeotrope) that no alcohol remains. The evaporation rate of isopropanol is slow enough such that some remains after the methylene chloride is evaporated making it possible for the crystal violet to develop it color changes as the pH changes. However, it is not necessary to add isopropanol or even the crystal violet for the success of the method. It is just a convenience for the operator to follow the drying process and to better judge when to take the samples out of the drying operation.

Accuracy was calculated as previously described in Section VI.

A criterion for the overall bias is that the bias must be less than  $\pm 10\%$  ( $\pm 0.10$ ).

In calculating homogeneity of precision and bias, as many concentration levels were left in as possible. Bartlett's test was used to determine homogeneity of precision. The F' test (Eugene Kennedy, Ph.D. [9]) was used to determine homogeneity of bias. Only those concentration levels that passes BOTH the Bartlett's test and the F' test were used for calculating pooled CVs and average bias. Accuracy was then calculated from these. Where possible, the lowest concentration level was conserved, in order to report lower detection limits, and higher concentration levels having "inlier" CVs were omitted. This gives a more conservative estimate of the pooled CV as well.

The complete recovery data for each of the replicates in this study is given in Table 33 and the precision and accuracy data and concentration levels that were omitted to obtain these values are given in Table 34 at the end of this section.

A summary of the precision and accuracy for methanol as a gauze wetting solvent is given in Table 31.

TABLE 31. PRECISION AND ACCURACY ON COTTON GAUZE USING METHANOL AS THE WETTING SOLVENT (1)

|                      | 0                     | Applicable   |                     |                          |                        | Bias                  |
|----------------------|-----------------------|--------------|---------------------|--------------------------|------------------------|-----------------------|
|                      | Internal              | Range (3)    |                     | Overall                  |                        |                       |
| Compound             | Standard (2)          | μg/sample    | Accuracy            | Precision $\hat{S}_{rT}$ | Average                | Range                 |
| (D)-Amphetamine      | D <sub>14</sub> -Meth | 0.3-30       | 15.9                | 0.0565                   | -0.0664                | +0.0531 to +0.0801    |
| (L)-Ephedrine        | D <sub>14</sub> -Meth | 0.1-30       | 43.5 (5)            | 0.1003 (5)               | -0.2703 <sup>(5)</sup> | -0.36570.1128         |
| MDEA                 | No N-prop             | ylamphetamin | e included a        | s the internal s         | tandard so no          | results are possible. |
| MDMA                 | D <sub>14</sub> -Meth | 0.1-27       | 11.4                | 0.0317                   | -0.0619                | -0.0960 to -0.0109    |
| (D)-Methamphetamine  | D <sub>14</sub> -Meth | 0.1-30       | 8.5                 | 0.0337                   | +0.0297                | +0.0112 to +0.4114    |
| Phencyclidine        | D <sub>14</sub> -Meth | 0.3-30       | 10.8                | 0.0577                   | +0.0130                | -0.0487 to +0.0801    |
| Phentermine          | D <sub>14</sub> -Meth | 0.3-30       | 24.4 (6)            | 0.0483                   | +0.1642 (6)            | +0.1245 to +0.2035    |
| (±)-Norephedrine (4) | D <sub>14</sub> -Meth | 0.1-30       | 45.6 <sup>(5)</sup> | 0.1692 (5)               | -0.1772 <sup>(5)</sup> | -0.2357 to -0.0557    |
| Pseudoephedrine      | D <sub>14</sub> -Meth | 0.1-30       | 41.5 (5)            | 0.1253 (5)               | -0.2083 <sup>(5)</sup> | -0.3715 to -0.0953    |
|                      |                       | W-17         | PERSONAL PROPERTY.  |                          |                        |                       |

# Bold values are those that meet the accuracy criterion.

- Values are for the chlorodifluoroacetyl derivatives and analysis by GC-MS in scan mode. Each sample consisted of a pair of 3" x 3" 12-ply cotton gauze pads. There were 6 replicate samples per concentration level and four concentration levels evaluated from approximately 0.1 to 3 μg/sample.
- (2) Internal Standard:  $D_{14}$ -Meth = Methamphetamine- $D_{14}$
- Range used for calculation of precision, accuracy, and bias. The entire range studied for all analytes was approximately 0.1 to 3 μg/sample (1X LOQ to 30X LOQ).
- (4)  $(\pm)$ -Norephedrine =  $(\pm)$ -phenylpropanolamine.
- (5) Accuracies, overall precision, and mean bias were all high and unacceptable.
- (6) Recovery for the 1X LOQ level was 173%, which was very high. This point not included in calculations. At the other three concentration levels recoveries were slightly high for phentermine. The precisions at these levels were good.

In Table 32 the precision and accuracy for methanol and isopropanol as gauze wetting solvents are compared.

TABLE 32. COMPARISON OF PRECISION AND ACCURACY VALUES WITH METHANOL AND ISOPROPANOL AS THE WETTING SOLVENTS (1)

|                 |             |                       | Applicable |          |                          |             | Bias               |
|-----------------|-------------|-----------------------|------------|----------|--------------------------|-------------|--------------------|
|                 | Wetting     | Internal              | Range (3)  |          | Overall                  |             |                    |
| Compound        | Solvent     | $Standard^{(2)} \\$   | μg/sample  | Accuracy | Precision $\hat{S}_{rT}$ | Average     | Range              |
| Amphetamine     | Methanol    | D <sub>14</sub> -Meth | 0.3-3      | 15.9     | 0.0565                   | -0.0664     | +0.0531 to +0.0801 |
| Amphetamine     | Isopropanol | D <sub>14</sub> -Meth | 0.1-30     | 9.1      | 0.0508                   | -0.0074     | -0.0500 to +0.0389 |
| MDMA            | Methanol    | D <sub>14</sub> -Meth | 0.1-2.7    | 11.4     | 0.0317                   | -0.0619     | -0.0960 to -0.0109 |
| MDMA            | Isopropanol | D <sub>14</sub> -Meth | 0.1-27     | 15.4     | 0.0503                   | -0.0712     | -0.1247 to +0.0032 |
| Methamphetamine | Methanol    | D <sub>14</sub> -Meth | 0.1-3      | 8.5      | 0.0337                   | +0.0297     | +0.0112 to +0.4114 |
| Methamphetamine | Isopropanol | D <sub>14</sub> -Meth | 0.1-30     | 9.2      | 0.0351                   | -0.0343     | -0.0767 to +0.0006 |
| Phencyclidine   | Methanol    | D <sub>14</sub> -Meth | 0.3-3      | 10.8     | 0.0577                   | +0.0130     | -0.0487 to +0.0801 |
| Phencyclidine   | Isopropanol | D <sub>14</sub> -Meth | 0.1-30     | 11.3     | 0.0450                   | -0.0393     | -0.0683 to -0.0205 |
| Phentermine     | Methanol    | D <sub>14</sub> -Meth | 0.3-3      | 24.4 (4) | 0.0483                   | +0.1642 (6) | +0.1245 to +0.2035 |
| Phentermine     | Isopropanol | D <sub>14</sub> -Meth | 0.1-30     | 8.7      | 0.0495                   | -0.0051     | -0.0375 to +0.0556 |

<sup>(1)</sup> Values for methanol are from Table 31. Values for isopropanol are from Table 22. Both data are for SIM mode operation and for cotton gauze.

- (2) Internal Standard:  $D_{14}$ -Meth = Methamphetamine- $D_{14}$
- (3) Range used for calculation of precision, accuracy, and bias.
- (4) Recoveries were inexplicably high for phentermine. The precisions at each level were good.

### G. Discussion of Results

Recoveries for the ephedrine type compounds (phenylpropanolamine, ephedrine, and pseudoephedrine) were unusually low and the precisions were large at the low concentration levels. These problems may appear to be due to methanol but are more likely due to the aged and contaminated derivatizing reagent. The nature of the contamination is unknown but it was a brownish color and appeared to be coming from the cap. The bottle was also almost empty and being an older bottle of reagent, it may have succumbed to atmospheric moisture, which conceivably could have weakened the reagent's ability to derivatize the hydroxyl groups in the ephedrine type compounds. Amides are more stable once formed. Table 32 does not include the ephedrine compounds due to the poor results.

Results for MDEA are not presented because an appropriate internal standard (e.g., N-propyl amphetamine) was not included.

Phentermine barely passes. Recoveries were unusually high for this compound, for unknown reasons. The 1X LOQ level had to be omitted due to very high recovery.

The results were very good in Table 31 and compare very favorably in Table 32 for the other analytes having no alpha-hydroxyl groups, especially the more important analytes, methamphetamine and MDMA, for which the methanol data was slightly better than the isopropanol data.

#### H. Conclusions

While the results are inconclusive for the ephedrine type compounds (phenylpropanolamine, ephedrine, and pseudoephedrine), methanol appears to be an acceptable substitute for isopropanol as far as the analytical procedure in NIOSH 9106 is concerned.

Chlorodifluoroacetic anhydride should not be used if it is discolored. It may need to be stored refrigerated. No problems with chlorodifluoroacetic anhydride have been observed as long as the solution was colorless and clear. A different cap liner may be necessary than the one supplied by Aldrich. Aldrich supplies pentafluoropropionic anhydride in a glass ampoule but chlorodifluoroacetic anhydride was supplied in a bottle with some kind of elastomer cap liner. Pentafluoropropionic anhydride appears to be more stable on standing than chlorodifluoroacetic anhydride since no discoloration has yet been observed in this reagent after opening the ampoule and transferring the contents to the same kind of bottle used for chlorodifluoroacetic anhydride and standing at room temperature for several months. However a Teflon<sup>TM</sup> disc was added to the face of the cap liner. It is strongly suspected that the chlorodifluoroacetic anhydride may have reacted with the cap liner or the cap material itself causing the discoloration.

If the color changes of crystal violet during evaporation are desired,  $100~\mu L$  of isopropanol needs to be added to the methylene chloride extract just prior to the first nitrogen blow-down step.

# I. Recovery, Precision, and Accuracy Data for Methanol Wetted Cotton Gauze

Table 33 gives the individual recoveries for each analyte at the four levels tested. Table 34 gives the final accuracy, overall precision, and mean bias determinations for each of the analytes. Several options are presented which differ by which concentration levels had to be omitted to get the Bartlett's and the F' tests to pass.

# TABLE 33. PRECISION AND ACCURACY STUDY FOR METHANOL AS A WETTING SOLVENT

|                                   |            |                         |           | idy, using A | ccolade brand co | tton and CD | FAA deriv. agent |            |           |
|-----------------------------------|------------|-------------------------|-----------|--------------|------------------|-------------|------------------|------------|-----------|
| Internal S                        | tandard =  | D <sub>14</sub> -Metham |           |              |                  |             |                  |            |           |
|                                   |            |                         | μg/SAMPLE |              |                  |             |                  | RECOVERED  |           |
|                                   |            | Amphet-                 | Ephedrine | MDMA         | Methamphet-      | PCP         | Phentermine      | Phenylpro- | Pseudo-   |
| Test Level                        | Replicate  | amine                   |           |              | amine            |             |                  | panolamine | ephedrine |
| 30x LOQ                           | 1          | 3.005                   | 3.300     | 2.827        | 3.090            | 3.087       | 3.104            | 3.177      | 3.234     |
| 30x LOQ                           | 2          | 3.177                   | 2.519     | 2.686        | 3.151            | 3.062       | 3.453            | 2.598      | 2.510     |
| 30x LOQ                           | 3          | 3.036                   | 2.263     | 2.532        | 3.089            | 2.739       | 3.386            | 2.551      | 2.490     |
| 30x LOQ                           | 4          | 3.256                   | 2.408     | 2.671        | 3.269            | 3.073       | 3.479            | 2.909      | 2.534     |
| 30x LOQ                           | 5          | 3.300                   | 2.593     | 2.651        | 3.133            | 2.948       | 3.480            | 2.686      | 2.650     |
| 30x LOQ                           | 6          | 3.183                   | 2.983     | 2.757        | 3.161            | 3.070       | 3.478            | 3.215      | 2.959     |
| Average µg                        | g/sample = | 3.160                   | 2.678     | 2.687        | 3.149            | 2.996       | 3.397            | 2.856      | 2.730     |
| CV                                | i =        | 0.03719                 | 0.14535   | 0.03730      | 0.02099          | 0.04538     | 0.04356          | 0.10181    | 0.11084   |
| Group                             | Bias =     | 0.05312                 | -0.11279  | -0.01086     | 0.04891          | -0.00266    | 0.12447          | -0.05570   | -0.09531  |
| Average % l                       | Recovery = | 105.31                  | 88.72     | 98.91        | 104.89           | 99.73       | 112.45           | 94.43      | 90.47     |
| 10x LOQ                           | 1          | none                    | 0.681     | 0.835        | 1.092            | none        | none             | 0.821      | 0.740     |
| 10x LOQ                           | 2          | 1.073                   | 0.599     | 0.806        | 1.014            | 0.992       | 1.177            | 0.550      | 0.647     |
| 10x LOQ                           | 3          | 1.067                   | 0.665     | 0.798        | 1.011            | 0.924       | 1.162            | 0.876      | 0.772     |
| 10x LOQ                           | 4          | 1.100                   | 0.668     | 0.824        | 1.038            | 0.996       | 1.209            | 0.827      | 0.768     |
| 10x LOQ                           | 5          | 1.047                   | 0.705     | 0.814        | 1.020            | 0.946       | 1.183            | 0.770      | 0.762     |
| 10x LOQ                           | 6          | 1.043                   | 0.759     | 0.836        | 0.977            | 0.906       | 1.134            | 0.932      | 0.851     |
| Average µg                        | g/sample = | 1.066                   | 0.680     | 0.819        | 1.025            | 0.953       | 1.173            | 0.796      | 0.756     |
| CV                                | _          | 0.02154                 | 0.07734   | 0.01903      | 0.03730          | 0.04203     | 0.02339          | 0.16626    | 0.08684   |
| Group                             | Bias =     | 0.06605                 | -0.32452  | -0.09602     | 0.02439          | -0.04873    | 0.16482          | -0.21056   | -0.24788  |
| Average % l                       | Recovery = | 106.61                  | 67.55     | 90.40        | 102.44           | 95.13       | 116.48           | 78.94      | 75.21     |
| 3x LOQ                            | 1          | 0.3439                  | 0.1686    | 0.2559       | 0.3203           | 0.3663      | 0.3988           | 0.1873     | 0.1631    |
| 3x LOQ                            | 2          | 0.3023                  | 0.1899    | 0.2419       | 0.2903           | 0.3218      | 0.3375           | 0.2550     | 0.1948    |
| 3x LOQ                            | 3          | 0.3255                  | 0.2105    | 0.2450       | 0.2997           | 0.2961      | 0.3436           | 0.2545     | 0.2203    |
| 3x LOQ                            | 4          | 0.2807                  | 0.1811    | 0.2442       | 0.2938           | 0.3096      | 0.3507           | 0.1842     | 0.1430    |
| 3x LOQ                            | 5          | 0.3513                  | 0.2130    | 0.2604       | 0.3087           | 0.3385      | 0.3765           | 0.2789     | 0.2198    |
| 3x LOQ                            | 6          | 0.3406                  | 0.1855    | 0.2527       | 0.3086           | 0.3148      | 0.3742           | 0.2269     | 0.1968    |
| Average µg                        | g/sample = | 0.3241                  | 0.1914    | 0.2500       | 0.3036           | 0.3245      | 0.3636           | 0.2311     | 0.1896    |
| CV                                | -          | 0.08468                 | 0.09031   | 0.02964      | 0.03662          | 0.07640     | 0.06469          | 0.16800    | 0.16351   |
| Group                             | Bias =     | 0.08010                 | -0.36569  | -0.07978     | 0.01124          | 0.08012     | 0.20346          | -0.23573   | -0.37146  |
| Average % l                       | Recovery = | 108.01                  | 63.43     | 92,02        | 101.12           | 108.01      | 120.35           | 76.43      | 62.85     |
| 1x LOQ                            | 1          | 0.1416                  | 0.0654    | 0.0801       | 0.1033           | 0.1549      | 0.1786           | 0.0833     | 0.0826    |
| 1x LOQ                            | 2          | 0.1301                  | 0.0770    | 0.0856       | 0.1006           | 0.1221      | 0.1706           | 0.0976     | 0.1114    |
| 1x LOQ                            | 3          | 0.0851                  | 0.0742    | 0.0898       | 0.1084           | 0.1308      | 0.1691           | 0.0560     | 0.0851    |
| 1x LOQ                            | 4          | 0.1447                  | 0.0791    | 0.0850       | 0.1066           | 0.1403      | 0.1839           | 0.1001     | 0.0868    |
| 1x LOQ                            | 5          | 0.1385                  | 0.0691    | 0.0860       | 0.1041           | 0.1407      | 0.1703           | 0.0646     | 0.0844    |
| 1x LOQ                            | 6          | 0.1036                  | 0.0710    | 0.0837       | 0.0980           | 0.1003      | none             | 0.0781     | 0.0815    |
| Average µg                        | 1000       | 0.1239                  | 0.0726    | 0.0850       | 0.1035           | 0.1315      | 0.1745           | 0.0800     | 0.0886    |
| CV                                |            | 0.19483                 | 0.07042   | 0.03722      | 0.03684          | 0.14314     | 0.03705          | 0.21961    | 0.12758   |
|                                   |            | 0.23925                 | -0.27800  | -0.06107     | 0.03434          | 0.31322     | 0.73295          | -0.20691   | -0.11868  |
| Group Bias = Average % Recovery = |            | 123.93                  | 72.20     | 93.89        | 103.43           | 131.32      | 173.29           | 79.31      | 88.13     |

# TABLE 34. PRECISION AND ACCURACY STUDY FOR METHANOL AS A WETTING SOLVENT

|                       |                  |           |           | Chlorodifluor        | oacetic anhydrid | e           |                          |                      |
|-----------------------|------------------|-----------|-----------|----------------------|------------------|-------------|--------------------------|----------------------|
|                       | Amphet-<br>amine | Ephedrine | MDMA      | Methamphet-<br>amine | PCP              | Phentermine | Phenylpro-<br>panolamine | Pseudo-<br>ephedrine |
| OPTION #1             | Option #1        | Option #1 | Option #1 | Option #1            | Option #1        | Option #1   | Option #1                | Option #1            |
| Test Levels omitted = | NONE             | NONE      | NONE      | NONE                 | NONE             | NONE        | NONE                     | NONE                 |
| Degrees of freedom =  | 3                | 3         | 3         | 3                    | 3                | 3           | 3                        | 3                    |
| Accuracy =            | 29.424           | 43.521    | 11.406    | 8.508                | 23.699           | 36.915      | 45.550                   | 41.452               |
| Overall Precision =   | 0.1111           | 0.1003    | 0.0317    | 0.0337               | 0.0886           | 0.0460      | 0.1692                   | 0.1253               |
| Chi^2 =               | 19.839           | 3.263     | 2.383     | 1.828                | 8.741            | 3.998       | 2.550                    | 1.941                |
| pass @ 0.95?          | no               | YES       | YES       | YES                  | no               | YES         | YES                      | YES                  |
| pass @ 0.975?         | no               | YES       | YES       | YES                  | YES              | YES         | YES                      | YES                  |
| Mean bias =           | 0.1115           | -0.2703   | -0.0619   | 0.0297               | 0.0913           | 0.2935      | -0.1772                  | -0.2083              |
| from                  | 0.0531           | -0.3657   | -0.0960   | 0.0112               | -0.0487          | 0.1245      | -0.2357                  | -0.3715              |
| to                    | 0.2393           | -0.1128   | -0.0109   | 0.0489               | 0.3132           | 0.7329      | -0.0557                  | -0.0953              |
| F' =                  | 2.1941           | 8.3821    | 2.4013    | 0.4114               | 10.3807          | 73.8830     | 1.9385                   | 8.2456               |
| pass @ 0.05?          | YES              | no        | YES       | YES                  | no               | no          | YES                      | no                   |
| pass @ 0.025?         | YES              | no        | YES       | YES                  | no               | no          | YES                      | no                   |
| OPTION #2             | Option #2        | Option #2 |           |                      | Option #2        | Option #2   | Option #2                | Option #2            |
| Test Levels omitted = | 1x LOQ           | 1x LOQ    |           |                      | 1x LOQ           | 1x LOQ      | 1x LOQ                   | 1x LOQ               |
| Reason for omission = | CV, bias>10%     | bias>>10% |           |                      | CV, bias>10%     | bias>>10%   | CV, bias>10%             | CV, bias>10%         |
| Degrees of freedom =  | 2                | 2         |           |                      | 2                | 2           | 2                        | 2                    |
| Accuracy =            | 15.932           | 44.602    | A         |                      | 10.786           | 24.360      | 41.176                   | 44.316               |
| Overall Precision =   | 0.0565           | 0.1084    | 400       |                      | 0.0577           | 0.0483      | 0.1486                   | 0.1246               |
| Chi^2 =               | 7.140            | 2.088     | 1         |                      | 1.925            | 3.545       | 1.312                    | 1.890                |
| pass @ 0.95?          | no               | YES       | 1         |                      | YES              | YES         | YES                      | YES                  |
| pass @ 0.975?         | YES              | YES       |           |                      | YES              | YES         | YES                      | YES                  |
| Mean bias =           | 0.0664           | -0.2677   |           |                      | 0.0130           | 0.1642      | -0.1673                  | -0.2382              |
| from                  | 0.0531           | -0.3657   |           |                      | -0.0487          | 0.1245      | -0.2357                  | -0.3715              |
| to                    | 0.0801           | -0.1128   |           |                      | 0.0801           | 0.2035      | -0.0557                  | -0.0953              |
| F' =                  | 0.1512           | 9.7801    |           |                      | 3.3201           | 1.3815      | 3.1560                   | 9.5318               |
| pass @ 0.05?          | YES              | no        |           |                      | YES              | YES         | YES                      | no                   |
| pass @ 0.025?         | YES              | no        |           |                      | YES              | YES         | YES                      | no                   |
| OPTION #3             | 1                | Option #3 |           |                      |                  |             | Option #3                | Option #3            |
| Test Levels omitted   |                  | 1x LOQ    |           |                      |                  |             | 1x LOQ                   | 1x LOQ               |
|                       |                  | bias>>10% |           |                      |                  |             | CV, bias>10%             | CV, bias>10%         |
| A                     |                  | 3x LOQ    |           |                      |                  |             | 3x LOQ                   | 3x LOQ               |
|                       |                  | bias>>10% |           |                      |                  |             | CV, bias>10%             | bias>>10%            |
| Degrees of freedom =  |                  | 2         |           |                      |                  |             | 2                        | 2                    |
| Accuracy =            |                  | 40.851    |           |                      |                  |             | 43.663                   | 33.442               |
| Overall Precision =   |                  | 0.1034    |           |                      |                  |             | 0.1695                   | 0.1097               |
| Chi^2 =               | All All          | 3.063     |           |                      |                  |             | 2.487                    | 0.665                |
| pass @ 0.95?          |                  | YES       |           |                      |                  |             | YES                      | YES                  |
| pass @ 0.975?         |                  | YES       |           |                      |                  |             | YES                      | YES                  |
| Mean bias =           |                  | -0.2384   |           | 100                  |                  |             | -0.1577                  | -0.1540              |
| from                  | 400              | -0.3245   |           |                      |                  |             | -0.2106                  | -0.2479              |
| to                    |                  | -0.1128   |           |                      |                  |             | -0.0557                  | -0.0953              |
| F' =                  |                  | 6.7138    |           |                      |                  |             | 2.0656                   | 3.1805               |
| pass @ 0.05?          |                  | no        |           |                      |                  |             | YES                      | YES                  |
| pass @ 0.025?         |                  | no        |           |                      |                  |             | YES                      | YES                  |

### IX. OVERALL CONCLUSIONS:

The method passes the accuracy and the long-term sample storage stability criteria for NIOSH analytical methods for all of the analytes evaluated if paired properly with an appropriate internal standard and the correct wipe media is used.

No synthetic gauze was better than cotton gauze, and due to its universal availability, it is the preferable wipe material. The data show that cotton, contrary to some reports, is an acceptable media for methamphetamine. This endorsement does not necessarily extend to "cellulose" (meaning wood fiber cellulose) wipe media.

Methanol is an acceptable substitute for isopropanol as a wipe solvent.

GC-MS in either the scan mode or SIM mode is able to attain the required limit of detection for methamphetamine (0.1  $\mu$ g/sample). Additional sensitivity is possible in the SIM mode. The scan mode is essential for unknown identification.

Chlorodifluoroacetic anhydride (CDFAA) is acceptable as the derivatization reagent and is effective under milder conditions. Pentafluoropropionic anhydride (PFPA) was comparable to CDFAA when compared at one concentration level. However, calibration curves and actual analyses using PFPA indicate performance at least equal to that of CDFAA. Additional sensitivity may be possible with PFPA due to sharper peak shapes for its derivatives. PFPA may be more stable in storage than (CDFAA), but both reagents should be kept tightly sealed from moisture during storage. Derivatization efficiency with CDFAA or PFPA is related to steric hindrance and structure of the analyte. The best results are obtained using isotopic analogs as internal standards for the analytes of interest.

This analytical method may be applicable to a wide variety of other basic (nitrogen containing) illicit drugs and amphetamine like substances on a variety of wipe media using isotopic analogs of the target analyte as internal standards.

This method is amenable to the analysis of non-alkaline bulk samples (e.g. cloth) and air samples (using acidified glass fiber filters).

## X. REFERENCES

- [1] John W. Martyny, PhD., CIH, Shawn L. Arbuckle, Charles S. McCammon Jr., PhD., CIH, Eric J. Esswein, MSPH, CIH, CIAQP, and Nicola Erb, "Chemical Exposures Associated with Clandestine Methamphetamine Laboratories," (2003), <a href="http://www.njc.org/pdf/chemical\_exposures.pdf">http://www.njc.org/pdf/chemical\_exposures.pdf</a>, accessed May 10, 2004.
- [2] John M. Reynolds, Carolina Siso, James B. Perkins, "Methamphetamine and Illicit Drugs, Precursors, and Adulterants on Wipes by Liquid-Liquid Extraction," NIOSH 9106, prepared under NIOSH Contract 200-2001-0800, (Unpublished, 2004).
- [3] John M. Reynolds, Carolina Siso, James B. Perkins, "Methamphetamine and Illicit Drugs, Precursors, and Adulterants on Wipes by Solid Phase Extraction," NIOSH 9109, prepared under NIOSH Contract 200-2001-0800, (Unpublished, 2004).
- [4] John M. Reynolds, Maria Carolina Siso, James B. Perkins, "Backup Data Report for NIOSH 9106, Methamphetamine and Illicit Drugs, Precursors, and Adulterants on Wipes by Liquid-Liquid Extraction," prepared under NIOSH Contract 200-2001-0800, (Unpublished, 2004).
- [5] Eugene Kennedy, PhD et al. "Guidelines for Air Sampling and Analytical Method Development and Evaluation", U.S.Department of Health and Human Services, Public Health Services, Centers for Disease Control, National Institute for Occupational Safety and Health, Division of Physical Sciences and Engineering, May 1995; DHHS (NIOSH) Publication NO. 95-117
- [6] John M. Reynolds, Maria Carolina Siso, James B. Perkins, "Backup Data Report for NIOSH 9109, Methamphetamine and Illicit Drugs, Precursors, and Adulterants on Wipes by Solid Phase Extraction," prepared under NIOSH Contract 200-2001-0800, (Unpublished, 2004).
- [7] NAMSLD 2007. State Controlled Substance(s) Environmental Issues Bill Status Update, (<a href="http://www.natlalliance.org/">http://www.natlalliance.org/</a>) The National Alliance for Model State Drug Laws, Alexandra, Va. Access via the web on March 11, 2008.

- [8] John A .Burkart "General procedures for limit of detection calculations in the industrial hygiene chemistry laboratory," *Applied Industrial Hygiene* 1(3):153-155, (1986).
- [9] Personal communications, Eugene Kennedy, PhD, U.S. Department of Health and Human Services, Public Health Services, Centers for Disease Control, National Institute for Occupational Safety and Health (NIOSH).

Written By: John R. Reynolds, Maria Carolina Siso, and James B. Perkins, DataChem Laboratories, Inc., Salt Lake City, Utah under NIOSH Contract CDC 200-2001-0800.

