National Personal Protective Technology Laboratory

New CO₂ Dead Space Test System **Final Correlation Test Results**

Policy and Standards Development Branch

Gary Walbert

September 17, 2009

- Previous updates at December, 2005 and October, 2006 Manufacturer's Meetings
- Why upgrade the CO₂ Dead Space Test System?
- Improve accuracy in setting test conditions and performing data analysis
- Reduce variability from test to test
- correlation Allow manufacturers to duplicate the test system using commercially available components for direct

- Project Timeline
- Completed installation June, 2006
- Completed shakedown testing December 2006
- Completed efforts to equate new system with existing system – December, 2007
- Completed correlation testing July, 2008
- Completed statistical modelling of test results May, 2009

Existing and New Test Systems

- Features of New CO₂ Deadspace Test System
- Sheffield Head headform and half-torso
- Face width, 146 mm; face length, 122 mm
- Places in cell #7 of the new NIOSH Bivariate fit test panel, representing a medium-sized face
- Data monitoring/recording system powered by custom LabVIEW software application
- Data recording interval is 25 milliseconds or 4 times more frequent than existing test system
- Mass flow controllers for breathing gas control

- Features of New CO₂ Deadspace Test System
- Revised sedentary cam design provides breathing research Silverman human subject sedentary breathing cycle component durations consistent with Leslie
- Solenoid valve state change data file stamping
- Excel spreadsheet-based data analysis routine

- Performance of new CO₂ Deadspace Test System
- Control peak breathing gas CO₂ concentration at 5.00 ± 0.02%
- Control sample gas extracted from the breathing zone for analysis at 450 ± 0.7 sccm
- Consistent blank CO₂ levels generally ranging from 0.39% to 0.44%
- Precise determination of the start and end of corroborated with facepiece resistance inhalation phase from solenoid valve actuation times

- New vs. Existing Correlation Test Data Analysis
- Tested 20 respirators at both the existing and new test systems
- A simple linear regression was subsequently fit to this measured at the new system test system as a function of CO2 Deadspace Levels data to predict CO2 Deadspace Levels for the existing
- Using the R statistical software package, the optimal y-intercept and slope were calculated to be -1.097 and 1.209, respectively, and the linear regression took the
- $CO_{2 \text{ (Existing)}} = -1.097 + 1.209 \text{ X } CO_{2 \text{ (New)}}$

- New vs. Existing Correlation Test Data Analysis
- Both the intercept and slope of the model were highly statistically significant (p < 0.001 for each coefficient)
- Using this equation to predict the CO₂ level of the the variability in the new system's measurements measurements of the existing system can be explained by the variability in the R² value of 0.909, meaning that approximately 91% of existing system (as a function of the new) gives an

New vs. Existing Correlation Test Data Results

	${ m CO}_2$ Deadspace Level, $\%$	evel, %	P - Pas	ass/F - Fail
Existing	New	Existing Predicted	Existing	Existing Predicted
0.00	0.48	0.00	P	P
0.38	1.10	0.23	ס	Р
0.42	1.36	0.55	P	P
0.84	1.37	0.56	Ъ	Р
0.91	1.43	0.63	P	Р
0.57	1.49	0.70	Р	Р
0.65	1.51	0.73	P	Р
0.33	1.49	0.70	Р	Р
0.70	1.64	0.89	P	P
0.85	1.55	0.78	Р	Р
0.97	1.62	0.86	P	Р
0.68	1.63	0.87	Р	P
0.83	1.65	0.90	P	Р
1.20	1.79	1.07	F	F
1.41	1.87	1.16	F	F
0.93	1.95	1.26	P	F
1.17	1.94	1.25	F	F
1.60	2.33	1.72	F	F
2.24	2.75	2.23	F	F
2.85	3.25	2.83	F	F

- New vs. Existing Correlation Test Data Results
- 19 of 20 respirators that passed or failed at the fail, respectively, at the new system using the model existing system, were correctly predicted to pass or

- Test Procedure for Determining New Test System CO₂ Deadspace Level
- Respirators previously approved
- Measure CO₂ Deadspace Level at new test system
- Using linear regression model, determine existing test system equivalent CO₂ Deadspace Level
- If existing test system equivalent CO₂ Deadspace to the respirator tested Level is less than 1.0%, a passing grade is assigned

- CO₂ Deadspace Level Test Procedure for Determining New Test System
- New respirators
- Use new test system

Questions?

