Modeling the Dissipation of Oxygen from an Outward Leak of a Closed-Circuit Breathing Device

NIOSH/NPPTL
CBRN Closed-Circuit SCBA, and PAPR
Public Meeting
December 13, 2005
Pittsburgh, PA

Kathryn Butler and Rodney Bryant

Building and Fire Research Laboratory National Institute of Standards and Technology

kathryn.butler@nist.gov, rodney.bryant@nist.gov

John Kovac

National Personal Protective Technology Laboratory National Institute for Occupational Safety and Health ikk5@cdc.gov

NIST

Closed Circuit, Self-Contained Breathing Apparatus

- Compressed air tanks contain a maximum 1 hour supply
- Longer durations may be necessary for emergency responders
 - Contaminated environments, including CBRN
 - Tunnels, mines, ships, high-rise buildings
- CC-SCBA (rebreather) enables up to 4 hour use
 - Recirculates exhaled gas
 - CO2 absorbed
 - Fresh oxygen added

NIST

NIOSH CC-SCBA Standard

- NIOSH/NPPTL is developing a CC-SCBA standard to address use in environments containing CBRN materials identified as inhalation hazards
- Firefighter concern: Since the supply tank contains pure oxygen, what happens if there is a respirator leak in a fire environment?

NIST

Computational Model

- Can test variety of situations
 - Breathing pattern
 - Leak geometries
 - External environments
- Visualization of results
 - Oxygen / fuel gas concentrations
 - Velocity

1st step: Need to define the complex geometry of a person wearing respirator

NIST

Model Conditions External Environment: 10 % Propane Gas (just above UFL = 9.5 %) Exhaled from Leak: 100 % Oxygen

Model Conditions

External Environment: 5 % Propane Gas
(Between LFL = 2.8 %
and UFL = 9.5 %)
Flammable Mixture

Exhaled from Leak: 100 % Oxygen

Conclusions

- Oxygen expelled through leak in respirator is propelled away from head region through advection and dissipates through diffusion
- Risk of flammable mixture near head is observed in 10 % propane environment
 - This is an extreme environment (fuel-rich, near flammable mixture)
- In case of flammable environment, oxygen leak results in small fuel-lean region near head
- In fuel-lean environment, oxygen further decreases fuel concentration

NIST

Acknowledgments

NIOSH:

Nicholas Kyriazi

Dennis Viscusi

Ronald Shaffer

Konalu Shanei

Ziqing Zhuang

William Newcomb

NIST:

Nelson Bryner

Philip Mattson

Funded by NPPTL / OLES

NIST