Summary of Toxicology Data

Ann F. Hubbs, DVM, PhD, DACVP

Jeffrey S. Fedan, PhD

Health Effects Laboratory Division

The Chemical Structure of Diacetyl

- Reactive
- Can cause protein cross-links
- Can inactivate proteins

The Chemical Structure of 2,3-Pentanedione

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3

- Reactive
- Can cause protein crosslinks
- Can inactivate proteins
- Reported to be somewhat more reactive with arginine groups than diacetyl

Metabolism

Experimental Inhalation Toxicology

Normal Airway Epithelium

Acute Diacetyl (2,3-butanedione) Effect

Comparable 2,3-Pentanedione Effect

Experimental Inhalation Toxicology: Summary of Morphology Data

- Butter flavoring vapors that contain diacetyl cause airway epithelial damage (Hubbs et al, 2002)
- Diacetyl causes airway epithelial damage
 - Rats (Hubbs et al, 2008)
 - Mice (Morgan et al, 2008)
- In rats and mice the nose is the most-affected site (Hubbs et al, 2002, 2008; Morgan et al, 2008)
- Bronchi and bronchioles are affected at higher exposures or exposures of longer duration (Hubbs et al, 2002, 2008; Morgan et al, 2008)
- Bronchiolitis obliterans is produced by experimental aspiration of diacetyl (Palmer et al, 2011)
- Acute exposures to 2,3-pentanedione are comparable to diacetyl in causing airway epithelial damage (Hubbs et al, 2010; Morgan et al, 2010)

The Pharmacokinetic Model Predicts More Diacetyl is Removed by the Nose of Rats

100 ppm Exposure

Anterior	Posterior	Air Exiting	
Trachea	Trachea	Trachea	% Absorbed
1.2 mM	1.1 mM	61 PPM	39%

Human

Rat

Nose-Breathing	1.2 mM	1.2 mM	79 PPM	21%
Mouth-Breathing	1.5 mM	1.5 mM	96 PPM	4%

Morris and Hubbs, 2009

A New Pharmacokinetic Model which Includes Airways of the Deep Lung

 Dose to the bronchiolar epithelium of humans under light exercise conditions is predicted to be more than 40-fold greater than the dose to the bronchiolar epithelium of experimental exposed rats

Gloede et al, 2011

Diacetyl Instillation Causes Bronchiolitis Obliterans in Rats

- Large single dose of diacetyl by intratracheal instillation bypassed the rodent nose
- Abnormal repair of the injured bronchiolar epithelium
- Produced bronchiolitis obliterans

Palmer et al, 2011

Human Relevance

- Damage to the respiratory epithelium of the small bronchioles is believed to cause bronchiolitis obliterans (King, 1989)
- The respiratory epithelium is damaged by butter flavoring vapors, diacetyl and 2,3-pentanedione (Hubbs et al, 2002, 2008; Morgan et al, 2008)
- Inhalation of diacetyl produces a higher dose to the bronchioles of humans than rodents (Gloede et al, 2011)
- Diacetyl instillation causes bronchiolitis obliterans in rats (Palmer et al, 2011)
- Clinical bronchiolitis obliterans is seen in workers inhaling diacetyl (Kreiss et al, 2002; Akpinar-Elci et al, 2004; Van Rooy et al, 2007).

Human Relevance

In vivo Pulmonary Function Changes After Diacetyl Experimental Exposures

- Acute diacetyl inhalation decreased tidal volume and midexpiratory flow rate (Larsen et al, 2009)
- Acute high dose exposures decreased the sensory irritation effect of a subsequent exposure (Larsen et al, 2009)
- Acute high dose exposure increases the number of substance P positive neurons in the jugular ganglia (Goravanahally et al, 2010)
- Mice exposed to 50 or 100 ppm diacetyl have decreased respiratory rate after a 6 week exposure (Morgan et al, 2008)
- Mice exposed to 100 ppm diacetyl have decreased minute volume after a 6 week exposure (Morgan et al, 2008)

Diacetyl and 2,3-Pentanedione Effects on Tracheas *in vitro*

- Mild airway contractions at diacetyl concentrations from 10⁻⁷ to 1 mM in guinea pig trachea (Fedan et al, 2006)
- In vitro methacholine response was mildly increased in rat tracheas after inhaling 360 ppm diacetyl (Fedan et al, 2010)
- In vitro methacholine response was mildly increased in rat tracheas after inhaling 240, 320 or 360 ppm 2,3-pentanedione (Fedan et al, 2010)
- The effect of diacetyl and 2,3 pentanedione on in vitro tracheal reactivity does not involve the epithelium (Fedan et al, 2011)
- In vivo methacholine challenge of 2,3-pentanedione exposed rats results in a decreased response to the methacholine (Fedan et al, 2010)
- High diacetyl concentrations (3mM) may affect tracheal epithelial ion transport (Fedan et al, 2006)

Additional Toxicologic Considerations

- Diacetyl is mutagenic in vitro (Kim et al, 1987; Marnett et al, 1985; National Toxicology Program, 2007; Whittaker et al, 2008)
- Prior skin exposure to diacetyl can sensitize to subsequent exposure (Anderson et al, 2007)

Toxicology Conclusions

- Diacetyl is a reactive alpha-diketone
- Diacetyl and mixtures of butter flavoring vapors damage airway epithelium
- Airway epithelial damage is believed to be the underlying lesion for bronchiolitis obliterans in humans
- Pharmacokinetic modeling studies indicate that at a given concentration in air, more diacetyl reaches the deep lung of humans than reaches the deep lung of rats
- The structurally related alpha-diketone flavoring, 2,3pentanedione also damages airway epithelium

