National Personal Protective Technology Laboratory

Ultrasound in Respirators: Concept and Initial Results

Policy and Standards Development Branch

W. P. King and J. V. Szalajda September 17, 2009

Overview

- Ultrasound and its uses
 - Leak detection
- Initial assessment in respirators
 - Preliminary results

Objective

- Non-destructive method of monitoring fit or leakage in situ
 - Actual respirator
 - unprobed
 - Real time during use

Specific Ultrasound Objectives

- Ultrasound characterization (frequency and power spectrum) of leaks in respirators
- Correlation of ultrasound characteristics and leak rate parameters (pressure and size)
- Correlation of ultrasound characteristics with respirator/wearer interface dimensions
- Characterization of non-leak ultrasound associated with individuals wearing various respirators (including respiration and environmental sources)
- The results will provide a basis for determination of the most effective strategies for monitoring respirator fit using ultrasound

Ultrasound

• Cyclic sound pressure with a frequency greater than the upper limit of human hearing (≥ 20 kilohertz)

Low bass notes Animals and Chemistry Diagnostic and NDE

- Airborne ultrasound technology applications:
 - SONAR, Tracking and positioning
 - Leak detection

• Exposure to airborne ultrasound does not appear to pose a human health risk

TLVs for Ultrasound (2008)

Inaudible

Mid-Frequencyof Third-Octave Band	One-third Octave-Band Level In Air in dB			
(kHz)	Ceiling Values	8-Hour TWA		
12.5	105	89		
16	105	92		
20	105	94		
25	110			
31,5	110			
40	110	-		
50	110			
80	110			

Ultrasonic Ranging

Transit time of ultrasound radiation is directly related to distance, X

Leak Detection

Turbulent flow from leaks generates ultrasound radiation

Leak Detection with Generator

Leakage detection with generated ultrasound radiation

Ultrasound Technology

Salient aspects

- Low power and size
- Low cost
- Sound techniques applicable

Spectral analysis

Leak detector with source

Questions for use in respirators

- Ultrasound sources?
 - Leaks
 - Respiration
 - Others
- Assessment of information available from ultrasound
 - Amplitude (intensity): relationship with leak and fit factor?
 - Temporal: detect changes in real time?
 - Spatial: locate leaks?
 - Spectral: All of the above?

NPPTL Research to Practice through Partnerships

Ultrasound Source Assessment

• Reynolds numbers (Re):

$$Re = \frac{\text{Dynamic pressure}}{\text{Shearing stress}} = \frac{\rho v_s^2/D}{\mu v_s/D^2} = \frac{\rho v_s D}{\mu} = \frac{v_s D}{\nu}$$

Variables: Vs is the mean fluid velocity, D is the characteristic diameter, v (nu) is the kinematic fluid viscosity defined as $v = \mu/\rho$, μ is the (absolute) dynamic fluid viscosity, and ρ is the fluid density.

- Critical Reynolds number 10³ 10⁴
 - Turbulent flow expected above critical Reynolds number

Ultrasound Source Assessment

• Reynolds numbers (Re) calculated for some sources

Source	Re	V _s	D	v	μ	ρ	Ve	PF	W
		m s ⁻¹	m	m² s ⁻¹	N ⋅s m⋅² or Pa⋅s	kg ⋅m-³	L·min1		М
leak	2.4E+01	3.3	0.0001	1.37E-05	0.0000178	1.294643	20	100	0.01
nostril	3.4E+09	259.8	0.007	1.37E-05	0.0000178	1.294643	10	-	-
mouth	8.2E+02	26.7	0.023	1.37E-05	0.0000178	1.294643	20	-	-

- Nasal breathing is the only expected source of ultrasound
 - Nasal

Mouth

Leak detector with source

Amplitude versus Leak Size

Detected amplitude is proportional to leak diameter

Amplitude versus Leak Size

Adjusted $R^2 = 0.90$ exhale, 0.75 inhale

Comparison of Ultrasound Leak Amplitude to Fit Factor for Half-masks

- Used nasal breathing as ultrasound source on single subject
- Measured ultrasound level at five points around face seal
- Probed respirators to measure fit factor with PortaCount simultaneously
 - Single exercise/sampling period
- To modulate fit factor strap tension was varied on replicates
 - Loose, (normal) tight, very tight

Comparison of Ultrasound Leak Amplitude to Fit Factor for Half-masks

Data Collected							
Respirator	Condition	I	Fit factor				
		point	inhale	exhale	back ground		
SIstrm SM 20107	loose	left cheek	1	2	0		
		chin	0	3	0		
		right cheek	0	0	0	20	
		right nose	5	7	0		
		left nose	5	7	0		

Average Ultrasound Leak Amplitude versus measured Fit Factor for Half-masks

Adjusted $R^2 = 0.79$

Ultrasound leakage has a discernable correlation with fit factor

Comparison of Ultrasound Leak Amplitude to Fit Factor for N95 FFR

- Single test of each N95 FFR
- Readings from six points around face seal

Average Ultrasound Leak Amplitude versus Measured Fit Factor for FFR

Findings

Ultrasound sources

- Face seal leaks: no nascent ultrasound expected
- Respiration: nasal is significant source
- Others: friction, electrical

Assessment of information available

- Amplitude: Definite correlation with fit factor
- Temporal: (at least seconds)
- Spatial: (likely with the correct configuration)
- Spectral: Not addressed

Immediate Plans

- Ultrasound sources and transceiver
 - Prototypes for in and on mask
 - Data acquisition
- Evaluate other strategies and configurations

