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The length and width of chrysotile and rock fragments that were
collected on nine air-monitoring filters in the mine and plant of
the Lowell asbestos mine in Vermont have been measured by
transmission electron microscopy (TEM). Selective area elec-
tron diffraction (SAED) and energy dispersive x-ray analysis
(EDS) were used to identify particles longer than § wm with a
length-to-width aspect ratio of at least 3:1 (federal fiber). All
Sederal fibers were found to be chrysotile or serpentinite rock
fragment; no tremolite or other amphiboles were detected. Mag-
nifications of 400x and 19 000 were used on five filters in an
attempt to compare the size distributions of the federal fibers
likely to be measured by using phase contrast optical microscopy
(PCM) at 400 to those measured by TEM at higher magnifica-
tion. The data from the mine show that (1) the size distribution
of chrysotile determined at 19 000X differs substantially from
that determined at 400 but the size distribution of rock fragment
is nearly independent of the magnification; and (2) at 400x, 34%
of the federal fibers were chrysotile, 39% were serpentinite rock
Jragment, and 27% were composite particles, not fibers. At 19
000, the proportion of chrysotile increased to 77%, reflecting
the increased visibility of chrysotile at high magnification. The
proportions of chrysotile, serpentinite rock, and composite par-
ticles are such that if an air filter were analyzed at 400X, and 1.0
flee were determined to be the exposure, 0.3 flcc would be
chrysotile, 0.4 flcc would be serpentinite rock, and 0.3 flcc would
be composite particles. If TEM were used at high magnification,
the total federal fiber burden would rise to 1.6 flec with 1.2 flec
chrysotile and 04 flcc rock fragment. These results suggest that
the proportion of federal fibers obtained by the standard PCM
method that are actuaily asbestos may be lower in the chrysotile
asbestos mining environment than that obtained in the commer-
cial asbestos handling environments that were used in govern-
ment quantitative risk assessments. The Occupational Safety and
Health Administration excluded epidemiologic studies of asbes-
tos miners and millers from its quantitative risk assessment
because evidence showed the risk to be lower than in other
industrial environments because of fiber size. Likewise, the use

of the PCM National Institute for Occupational Safety and
Health 7400 method, which was developed from data taken in
commercial asbestos handling as an “index” of exposure, may
not be valid in mining environments. TEM analysis of air filters
may be necessary to assess chrysotile exposure adequately in

mining environments.
QX/ correlation between the incidence of the asbestos-
related diseases and the level of exposure to asbestos
as established by phase contrast optical microscopy (PCM) and
the membrane filter method.”® However, it is generally not
possible to predict closely the risk of disease within one industry
by comparing exposures of its workers to exposures and disease
incidence from a different industrial environment. For example,
the incidence of asbestos-related diseases among Canadian chrys-
otile miners is less than would be predicted from the experience
of textile workers or asbestos insulation workers.*™ Also, there
is no elevated incidence of mesothelioma among anthophyllite
asbestos miners of Paakila, Finland, although high incidence
would be predicted based on the experience of crocidolite miners
in Australia and South Africa.¢®
These observations lead to several possible hypotheses to
explain the discrepancies. First, it may be that there are signifi-
cant differences in the biological activity among the different
asbestos minerals. For example, chrysotile fibers appear to dis-
solve or in some other way be removed from the body but
crocidolite fibers do not, and because of this, the long-term
effects of exposure to chrysotile may be quite different from the
same level of exposure to crocidolite.” In fact, because of the
behavior of chrysotile fibers in vivo, tremolite-asbestos, which
in some cases has been identified as a contaminant in chrysotile,

ithin any given industrial setting, there exists a positive

has received much attention as the possible etiologic agent for

the diseases that are observed in those “solely” exposed to
chrysotile."®' Second, there may be significant differences in
the size and shape of the respirable mineral particles making up
the dust clouds in different industrial settings; differences that
are simply not reflected in the PCM exposure measurements.!®
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For example, because the average width of amosite fiber is
greater than the average width of crocidolite fiber, more of the
amosite fiber will be visible by PCM. In this case, therefore, more
of the total airborne amosite fiber will be counted to assess
exposure than of the total airborne crocidolite fiber when the total
airborne fiber concentrations of the two are actually the same.
Third, there may be differences in the aerodynamic charac-
teristics among the asbestos minerals, such as chrysotile’s pro-
pensity to curl compared to the relatively straight amosite fiber,
that affect the fate of an inhaled fiber in the body. Although the
relative importance of these variables is not well known, the
explanation for the observed differences in risk for the same
PCM-measured exposure is likely that both fiber type and fiber
size play a role, and it is important that both of these variables
be examined more closely.

This study was undertaken in order to examine the mineral-
ogy and size distribution of the airbomne particles at the Lowell
chrysotile mine in Vermont. The Lowel} mine is located in the
upper Missisquoi Valley just south of the international boundary
with the Canadian province of Quebec. Chrysotile has been
produced from this mine and nearby pits for more than 100 yr.
More than 80% of the asbestos mined in the United States has
come from this mining district, and the Lowell mine is the largest
and most productive mine in the area. It is located in the same
geologic terrane as the larger asbestos deposits in Quebec."® The
geology of the Lowell mine and vicinity is described in detail by
Cady et al."®

Specifically, the authors were interested in determining
what minerais would be included in a PCM fiber count, how
the specific minerals differ in particle size and shape, and how
the use of transmission electron microscopy (TEM) affects
determination of fiber exposure. The authors also wanted to
determine if tremolite was an important constituent of air-
borne dust in the mine because it is widely assumed that
tremolite is ubiquitous in chrysotile deposits.!'®'37- Bgti_
mates of tremolite asbestos contamination in chrysotile mines
range as high as 1.5%.%

EXPERIMENTAL MATERIALS AND METHODS
Samples

Nine air filters from the Lowell mine were provided by the
United States Mine Safety and Health Administration (MSHA).
No information was provided on the airflow or duration of
collection. Six of the filters contained particles collected in
the mine, two of the filters were from the mill, and one was
from the bagging room. The filters were collected in 1987.
The samples were prepared for TEM analysis by AMA Labo-
ratories in Laurel, Md., according to the procedures specified
by the Environmental Protection Agency®" for air filter analy-
sis in school buildings. Two 200-mesh copper grids were
prepared from each filter.

High Magnification

Randomly chosen grid openings were scanned at a mag-
nification of 19 000x. All particles longer than 5 pm with an

aspect ratio of 3:1 or greater (federal fibers) were identified
and their length and width determined directly from the screen
by comparison to a calibrated scale. The precision of this
method of measurement is estimated at 10%.2? [dentification
was based on selective area electron diffraction (SAED) pat-
temn, qualitative chemical analysis by energy dispersive x-ray
analysis (EDS), and morphology. For a federal fiber to be
positively identified as chrysotile, it had to have the appro-
priate chemical composition and possess either an obvicus
tubular structure or a characteristic diffraction pattern, Fiber
analysis continued until at least 50 federal fibers from each
filter were measured and identified.

Low Magnification

Randomly chosen grid openings were first scanned at a
magnification of 400x. All particles that met the federal fiber
size criteria, as determined by comparison to a calibrated scale
on the screen, were designated. A diagram of the grid opening
with the position of these federal fibers was made. Each
designated federal fiber was then examined at a magnification
of 19 000x. The federal fibers were identified as chrysotile or
“other” based on the diffraction pattern and tubular morphol-
ogy and, if necessary, EDS. For federal fibers exhibiting
diffraction patterns that could be amphibole, EDS would have
been used to identify the amphibole tentatively. However, no
amphibole particles were found. The length and width of all
chrysotile and other federal fibers were measured in the same
manner described above.

RESULTS
Mineralogy

In this study, a total of 517 federal fibers were measured and
identified. A total of 63% were found to be chrysotile and 37%
were identified as other. For the 256 federal fibers examined at
high magnification, all those identified as “other” had a Si:Mg
ratio and a diffraction pattern (when obtainable} consistent with
the serpentinite minerals antigorite or lizardite. MSHA, by using
an automated imaging system, had previously studied these
filters and identified 477 federal fibers on the basis of qualitative
chemical composition and, in part, diffraction patterns.” MSHA
identified a large portion of the federal fibers as antigorite/
lizardite and found small amounts of a number of other miner-
als, including magnetite, plagioclase feldspar, chlorite, quartz,
enstatite, olivine, diopside, and calcite. MSHA did not identify
tremolite or any other amphibole.

When the federal fibers designated at low magnification
were examined at 19 000x, a large portion were not fibers at
all but were composed of a linear array of smaller particles.
These particles were sometimes both chrysotile and serpen-
tinite rock fragments, and they sometimes were only serpen-
tinite rock fragments. A total of 29% of the elongated particles
from the mine were found to be such “composite particles.”
Of the elongated particles from the mill sample, 10% were
also composite particles. Although there is a significant dif-
ference between the number of composite particles found in
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TABLE 1. Distribution of Particles at 400x Magnification Size Distributions

Chrysotile Other Minerals Composite Particles The frequency distributions
Filter (No.) (%) (No.} (%) (No.) (%) of log length, log width, and log
Mine 3 20 30 27 40 20 30 aspect ratio of federal fibers col-
Mine 4 14 29 21 44 13 27 lected from the mine at 400x and
Mine 6 18 K 17 29 23 40 19 000x magnification that are
Mine 7 12 20 36 61 11 19 not chrysotile are given in Figure
Mine 9 36 49 15 20 23 3 ta—f. Log values are used to ap-
proximate normal distributions.
Mine total 100 3 116 38 90 28 The similarity of these distribu-
Mill 5 22 a4 23 46 5 10 tions indicates that there is little
evidence for systematic bias in
Total mine 122 34 139 39 95 27 the characterization of these
and mill federal fibers introduced by
changing magnifications over
the mill (one filter) and in the mine, it is impossible to tell this range. The ranges, modal classes, and means are similar.
whether this is caused by real differences in the nature of the However, only the means of log length from the low and high
airborne dust cloud in these two environments or to a differ- magnifications are statistically indistinguishable (t-test). Mean
ence in filter loading (see Table I). Because “composite parti- log width and mean log aspect ratio are ot identical even though
cles” were not fibers, they are not used in comparing the size they are close in magnitude.
distributions at 400x and 19 000x.
Table I gives the distributions of chrysotile and federal fibers
identified as *other” according to sample location and the mag- % x
. . N . ia 0 14
nification. At Jow magmfif:anon, more than half of the federal @ OTHER-. 400x - OTHER~ 19 000
fibers were found to be a mineral other than chrysotile. When the = N=116 = Ne=36
filters were first examined at high magnification, most of the ® ¥=8.8 gm = Kew7.8 pm
federal fibers were found to be chrysotile and the proportion of a2 =
other federal fibers was significantly less than at low magnifica- 2 T’:
tion. The difference between the proportion of airborne chrys- ® N
otile in the mine and the proportion of airborne chrysotile in the
R . . .. v .. 08 08 10 12 14 16 18 20 06 08 10 12 4 16 18 20
mill or bagging room is statistically insignificant (5% level of
. LOG LENGTH {sm) LOG LENGYH {urn)
significance).
TABLE ll. Mineralogical Distribution of Single % 1b x 1e
Particles at 400x and 19 000x Magnification - ol OTHER- 18 000
30 . -
Chrysotile Other Minerals w - X127 pm
Fitter (No.) (%) (No.) (%) s »
400x 20 2
Mine 3 20 43 27 57 Je A2
Mine 4 14 40 21 60 o , e
Mine 6 18 51 17 49 -1‘.5 —0.9-05 0% 03 07 14 1.5 ~1.3 -09 -05 -01 0.3 O.7 11 13
Mine 7 12 o5 36 75 LOG WIDTH {(um) LOG WIDTH {um}
Mine 9 36 71 15 29
Mine total 100 46 116 54 % x
(] "
Mill 5 22 49 23 51 : © OTHER~ 19 000
N=35
19 000% © ® R=6.2
Mine 8 38 70 16 30 2 x
Mine 6 45 92 4 8 =
Mine 4 35 69 16 31
Mine total 119 77 36 23 05 07 0F 1) 13 15 17 w2 08 07 08 1 13 15 17 18 29
Mill 4 a4 88 6 12 LOG ASPECT RATIO LOG ASPECT RATIO
Bagging 43 84 8 16
reom 10 FIGURE 1. Nonasbestos particle dimension distributions
Plant total 87 86 14 14
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The frequency distributions of log length, log width, and log
aspect ratio of chrysotile collected from the mine at 400x and
19 000x are given in Figure 2a-f. Changing magnification has
had a significant impact on the distributions of these variables.
Thin, short, high-aspect-ratio fibers dominate the populations
analyzed at high magnification.

A comparison of the size distributions of serpentinite rock
fragment and chrysotile shows that these two populations are
distinct, whether examined at low or high magnification. How-
ever, there is significant overlap at both low and high magnifi-
cation in all three dimensionai parameters, and it is not possible
to discriminate effectively between these populations by intro-
ducing a simple dimensional parameter such as an aspect ratio
of 20:1 or a width of 1 um as may be appropriate in other
environments and has been suggested elsewhere.®

DISCUSSION

Estimates of the minimum width of a fiber that can be seen by
phase contrast microscopy at 400x range from 0.1 to 0.5 pm.*”
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FIGURE 2. Chrysotile particle dimension distributions

‘Whether the observations made at 400x by TEM duplicate what
would be seen-optically by phase contrast microscopy is difficult
to evaluate, Visibility is not only a function of the resclution of
the system, it is also a function of the magnification, the differ-
ence in the index of refraction of the fiber and the substrate, and
the visual acuity of the observer.

A comparison of width distributions of chrysotile at 400x
(Figure 2b) and at 19 000x (Figure 2e) shows abundant chrys-
otile fibers with widths less than 0.4 pm present on the air filters.
1t is also evident that most of these fibers are not visible at 400x,

Figure 3 shows the aspect ratio frequency distribution of
chrysotile fibers with widths greater than 0.4 pm and those
that are visible at 400x, scaled so that the frequency of the
modal class at 400x is equivalent to the frequency at 19 000x.
The similarity in the distributicns between the chrysotile
greater than 0.4 pm and that visible at 400x reinforces the
conclusion that the visibility of chrysotile at 400x on the TEM
is comparable to the visibility of chrysotile by phase contrast
icroscopy.

Accurate assessment of the airborne fiber content in occu-
pational settings where epidemiologic studies have shown a
correlation between exposure to airborne fiber and incidence of
asbestos-related diseases is essential for risk assessment and
forms the basis for establishing acceptable exposure limits in
occupational settings. If federal fibers other than asbestos are
included in unequal proportions in different occupational set-
tings, the reliability of the occupational exposure standard for all
environments is suspect. Very few data are available on what
proportion of a fiber count, as established by the membrane filter
method, is composed of federal fibers that are not asbestos.!¥
This study clearly indicates that for this mining environment, the
proportion is large (54%); it would be inappropriate te use
exposure data from this mine to assess risk in another environ-
ment where the proportion of asbestos is different.

Because the distributions of length, width, and aspect ratio
of serpentinite rock fragments visible at 400x are so similar
to the distributions visible at 19 000X, it is reasonable to
assume that most serpentinite rock federal fibers that are
visible at 19 000x would also be visible at 400x. Of the
serpentinite rock federal fibers visible at 19 000%, 3% have
widths less than 0.3 im and none visible at 400X have widths
this small, so the populations are clearly not identical. None-
theless, the popuiations are similar enough that predictions
based on the assumption that they are the same can be reason-
ably made. Accepting this assumpticn, the concentration in
fibers per cubic centimeter of serpentinite rock federal fibers
would be the same whether the filters were examined with low
or high magnification. If an air filter from this mine were
analyzed at 400x and the total fiber concentration were deter-
mined to be 1.0 f/cc, the proportion of serpentinite rock
fragment, chrysotile, and composite particles would be 0.4,
0.3, and 0.3, respectively. If the same filter were examined
at 19 000x and the concentration of serpentinite fragments
would remain constant at 0.4 f/cc, the likely concentration of
chrysotile would be 1.2 f/cc.

445

AM. IND. HYG. ASSOC. J. (53} / July 1992




The proportions of chrys-

otile and rock fragment 500
foundon an air filter may 45
vary greatly as a function of -
the environment. That the 40.
proportion of rock fragment 35,
will be considerably greater ~ 30
inamining environment than L
in an industrial setting where g 25.
a commercial asbestos prod- W20
uct was applied is certainly S )
reasonable; it may also vary r

from one mine to another. Not
only will the amount of rock
fragment meeting the dimen-
sional criteria for a fiber as
defined by the Occupational
Safety and Health Adminis-
tration (OSHA) vary from
one mine to agother, but the
proportion of asbestos meet-
ing these criteria may also
vary. For example, the distri-
bution of length and width of
airborne chrysotile at the
Lowell mine differs signifi-
cantly from that at the chrysotile mines in Quebec as described by
Gibbs and Hwang.®® Therefore, these data cannot be applied di-
rectly to all other mining environments.

These results do suggest that the proportion of federal fibers
obtained by the standard PCM method that are actuaily asbestos
may be lower in the chrysotile asbestos mining environment than
that obtained in the commercial asbestos handling environments
(i.e., textile, insulation). The quantitative risk assessments were
calculated from these commercial asbestos environments; ulti-
mately, the levels of permitted exposure in regulatory standards
were established. OSHA, in its rulemaking deliberations on
asbestos, stated that “There is some evidence that risks in asbes-
tos mining and milling operations are lower than other industrial
operations due to differences in fiber size.” For this reason, the
epidemiologic data from mining and milling operations were not
considered.® These data show that the use of the PCM National
Institute for Occupational Safety and Health 7400 method, which
was developed from data taken in commercial asbestos handling
environments for the purpose of providing an “index” of actual
asbestos exposure, may not be valid in the mining environments.
The use of the PCM method in mining environments can present
a significant problem in determining true asbestos exposure
levels. This problem must be addressed by using more sophisti-
cated means of analysis such as TEM.

The fact that neither tremolite or actinolite were found among
the airborne federal fibers from the Lowell chrysotile mine points
up the need to determine the abundance of tremolite-asbestos
throughout the chrysotile mining industry. These data indicate
that tremolite may not contaminate all chrysotile deposits at
measurable levels. Before tremolite-asbestos can be assumed to
be the active agent in all chrysotile exposure, more data on its
abundance are needed.

ASPECT RATIO

Il =CHRYSOTILE VISIBLE AT 400x
MM =CHRYSOTILE FIBERS GREATER THAN 0.4-pm DIAMETER

FIGURE 3. Chrysotile asbestos aspect ratio distributions
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RELATIONSHIP OF MINERAL HABIT TO SIZE CHARACTERISTICS
FOR TREMOLITE CLEAVAGE FRAGMENTS AND FiBERS

by

Williom J. Campbell, 1 Eric B, Steel, 2 Robert L. Virto, 2 and Michael H, Eisner2

ABSTRACT

This Bureau of Mines report describes a study conducted to determine the
relationship of mineral habit to particle size and shape characteristics for
prismatic, acicular, fibrous, and asbestiform varieties of tremolite., Parti-
cle measurements were made with the petrographic microscope at X 1,250 and the
scanning electron microscope at magnifications up to X 10,000. All of the
varieties of tremolicte, upon Wiley milling, produced a significant percentage
of particles that meet the Federal regulatory criteria for counting as asbes-
tos fibers. However, only the asbestiform variety gave milled particles that
fell into a size range of >10 um in length and <0.5 ¢m in width; some medical
scientists consider this range significant for production of adverse health
effects.’

INTRODUCTION

In September 1976 the Bureau of Mines established a Particulate Mineral-
ogy Unit to assist local, State, and Federal agencies by establishing precise
and workable mineral definitions and by developing improved methods of particu-
late identification and quantitative measurement (1).® Attention to adverse
health effects associated with asbestos have been focused on occupational expo-
sure in industries involved in the mining, milling, fabrication, and utiliza-
tion of asbestos. Now there is increasing concern regarding the effects on
industrial employees and the general public from long-term, low-level and
short-term, high-level exposure to various elongate mineral particulates pres-
ent as minor or major constituents in ores, crushed stone, and various indus-
trial minerals, These particulates include both the more common and the
asbestos varieties of serpentine and amphibole minerals,

!Supervisory research chemist.
*Geologist (mineralogy).
All authors are with the Avondale Metallurgy Research Center, Bureau of Mines,
Avondale, Md,
®Underlined numbers in parentheses refer to items in the list of references at
the end of this report.
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Asbestos regulatory procedures are based on counting elongated serpentine
and amphibole mineral particles at 450 to 500 magnification using phase-
contrast microscopy. To be counted as "regulatory,'" the silicate particles
must meet the following size criteria: =5 um in length, <3 um in diameter,
and an aspect ratio of 23 to 1. These elongate particles are generated by
natural growth as fibers (for example, tremolite asbestos) or are produced as
cleavage fragments by the crushing and grinding of the common nonasbestos
varieties of the amphibole minerals. The present definition of a fiber used
by the regulatory agencies does not distinguish between cleavage fragments and
fibers produced by natural growth, and existing regulatory practices count all
particles that meet the above criteria as equally hazardous. That is, a short-
cleavage fragment of a nonasbestos variety amphibole 6 um long and 2 um wide
is currently counted as being equivalent to an amphibole asbestos fiber 10 um
in length and 0.1 um wide.

The principal objective of this study is to correlate the size character-
istics of particles generated from grinding a typical amphibole mineral--
tremolite-~with the habit of the mineral. The second objective is to point
out that amphibole minerals range in habit from common equant grains to the
much rarer asbestiform variety. Regulatory personnel and health scientists
should be aware of the strong dependence of particle size and shape character-
istics on the mineral's original crystallization habit.

Studies on the biclogical effects of human and animal exposure to asbes-
tos minerals do not fall within the mission of the Bureau of Mines. However,
it is important that mineralogical identification-characterization procedures
be applicable to health~related studies. The ultimate goal of 3ll concerned
groups--regulatory, medical, and industrial--is to distinguish between parti-
cles known to be hazardous and particles for which no adverse effects have
been identified so that the workers and general public are protected properly
and the domestic minerals industry is not subjected to unnecessary regulations,
Measurement of the size characteristics of particles derived from different
habits of the same mineral should assist medical scientists in evaluating the
various types of elongate silicate particles (2).

PREVIQUS STUDIES

Stanton and Layard of the National Institutes of Health conducred exten-
sive studies on tumor production in rats by introducing various types of parti-
cles in the pleural space and observing tumor production over a 2-year span
(5). They concluded that implantation of long, thin, durable fibers resulted
in tumors in a high percentage of the test animals, and that compositional
variables such as trace metals and organics had a significantly lower, if any,
effect on tumor probability. Stanton and Layard suggest there is a dimen-
sional range of fibers thar is related to tumor probabilitv.

They tested seven durable fibrous materials, each of differing composi-
tions and size characteristics. The order of probability of inducing pleural
sarcomas with these test materials ranged from approximately O to 100 percent.
Fibers of the size range of the International Union Against Cancer (UICC)
asbestos standards fell in the 65- to BO-percent probability range. Linear
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regression of the tumor probability versus size characteristics indicated that
the size class with a diameter of <0.25 ¢um and a length =8 um was the single
variable that best correlated to sarcoma.® Histologic observations suggested
that shorter and thicker particles are not as biologically active.

The relationship of fiber length and diameter characteristics to tumor
formation has been the subject of extensive discussion in the occupational
and environmental health sciences literature. For example, Wagner (§) states,
"Fibers with a diameter below 0.5 um if injected into the pleural cavity will
cause mesothelioma." Wright (7) comments that "Although the fibre diameter
should be less than 1/2 um for tumors to develop also it appears that the
fibre must be longer than 10 um." Davis (3) concluded that 'the long fibre
theory of asbestos pathogenesis and especially carcinogenicity does, at the
present time, appear to be correct but the biochemical reasons why only long
fibres should be dangerous are still obscure.' Thus, there is agreement, at
least among some medical scientists, that long, thin, durable fibers are essen-
tial for tumor production in test animals.

In this present study on size characteristics by the Bureau of Mines,
emphasis was given to the number of particles in the following size range:
length 210 um and diameter <0.5 um. Durable particles meeting these specifica-
tions would be classified as hazardous by most health researchers. There is
also general interest in the relationship, if any, between the total number of
regulatory particles and those meeting the above criteria for a long, thin
fiber. Existing regulatory standards are based on the assumption that there
is a constant distribution of asbestos particle sizes ranging Irom macroscopic
to submicroscopic so that the counting methods can be limited to those readily
visible by optical microscopy. Whether or not this relationship holds for
nonasbestos particles is an important phase of this study.

CRYSTAL HABIT

The amphiboles, a common group of rock-forming minerals in the earth's
crust, are found in many geologic settings. They crystallize inawide variety
of habits displayed in a progression from equant or equidimensional to fibrous
(fig. 1); a detailed discussion on terminology is presented in Informatiocn
Circular 8751 (1). All terms shown in figure 1 are general descriptive terms
for the crystal habits of grains. There are gray areas between all of these
terms; for example, an equant habit means approximately equidimensional, and
the break between equant and elongate habits is not precise. !llowever, these
terms still have distinctly different meanings and apply to specific particle
morphologies.

Traditionally, rock textures are described at a macroscopic or hand-
sample level using the types of terms shown in [igure 1. A change of

“Width rather than diameter is the correct terminclogy because amphibole
particles are rectangular slabs rather than cylinders. The ratio of the
width to the height in cross section ranges from approximately 2.5 to 1 to
10 to 1. 1In general, the amphibole particles are positioned on the slide
or support with the widest dimension exposed to view,
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¢ e posed of fibers. The term "thin,"
of the grains is difficult to see with the unaided eye.
o figure 1, "fibrous'" has a much more general meaning than "asbestos'.
R is correct that all asbestos minerals are fibrous, not all minerals having a
Asbestos has properties that make it unique and
different from other fibrous minerals and even from other fibrous habits of

The asbestos minerals of commercial importance have the
following characteristics:

fibrous habit are asbestos.

Macrosccpic
width

Microscoaic
width

increasing
width

FIGURE 1. - Exomples of terminology used 1o describe grains
in hond samples,

At some inceiinite point be-

tween cciculor and fibrous hobdits, the oggregote
of grains ¢an still be seen with the unoided eye;
however, owing to their thinness the individuol
grains cecome very difficult ‘o observe without

Parallel fiber growth in veins.

perspective occurs when
going from observation with
the upaided eye to the high
magnifications of the light
and electron microscopes.
Grains that appear to be
fibrous to the unaided eve
obviously appear thicker
using the microcope and,
therefore, might be termed
acicular or elongate. 1t is
importanc to stress that the
terms in figure 1 are primar-
ily meant for hand-sample
macroscopic examination, and
their use becomes nmuch less
meaningful once the perspec-
tive is changed by using

high magnification.

The term fibrous is
used in a general mineralog-
ical wav to describe any
aggregates of grains that
crystallize in a needlelike
habit and appear to e com-

as used in this report, means that the widch

In the terminology in
While it

Aspect ratios ranging upward to 1,000:1 or higher.
Very thin fibrils, generally less than 0.5 um in width.

Very high flexibility and tensile strength compared to nonasbestos

The classic crystal habit of asbestos includes all four of these proper-

ties,

With the exception of mass fiber deposits, which have reticulated or

random direction of fiber growth, all commercial asbestos has these crystal

habit characteristics.




FIGURE 2. - Mocrophotograph of prismatic tremolite showing

»

the large euhedral grains in o medium-grained
marble,

FIGURE 3. - Photomicrogreph of thin section of prismotic

tremolite under crossednicols displaying cleov-
oge traces withinthe very large grain of tremo-
lite, Some colcite can be observed within the
grain.
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The large aspect ratio,
very thin fibers and Zfibrils,
flexibility, and tensile
strength are the unique prop-
erties that make asbestos
commercially valuaole. How=
ever, there are variations
in these properties frecm
mineral to mineral. from
deposit to deposit, and even
within the same deposit.

For instance, chrysotile

does not have the tensile
strength of crocidolite.

The mass fiber chrysotile

has shorter fibers than the
other forms of ‘'vein' cnryso-
tile, and within a deposit
the fiber lengths vary con-
siderably. All of this vari-
ation takes place within the
bYounds of the characteris-
tics of asbestos listed
above. Ir is important o
note that not all ampnidoles
have Deen found wWith astes-
tos habits; Zor instance,
there is no verified occur-
rence of hornblende asbestos.

PETROGRAPHY OF SAMPLEIS

Samples were selectad
for this study to cover a
wide range of crystallica-
tion habit from essentially
equant grains to asbestiform,
Where available, approxi-
mately monomineralic samples
were used, The texture of
the prismatic, acicular,
fibrous, and asbescos
tremolite-actinolite samples
can be observed in the macro-
photographs uand the pheto-
wmicrographs of thin sections
included in this report.
Light optical properties of
the samples are listed in
table 1.
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TABLE 1. - Optical data for tremolite of various habits

QOptical parameters

Sample ny n. ny 2V, degrees Extinction angle,
i degrees
PrismatiCeevcesccsceresees 1.607 1,618 1,628 187 19
Acicular.......evo0u0eee.. 1.598 1,622 1.626 284 18
T Fibrous....i.ecvcens0.0.. 1,616 1,630 1.638 279 20
Tremolite asbestos l..... 1.612 1.628 1.638 176 14
Tremolite asbestos 2..... 1.612 1,628 1.638 176 19
FD=-72¢eieeieasnacensnanes 1.610 1.622 ND ND ND
FD=-275.. . 00uevovesonesss. 1,598 1.620 ND ND ND

ND Not determined.
1Calculated values,
2Measured values.

The sample in figure 2 from Adirondack, N.Y., is a coarse-grained pris-
matic tremolite in a medium-grained marble. The prismatic grains of tremolite
are approximately 1 to 5 mm wide and 15 to 30 mm long. Prominent striations
parallel to the long direction of the grains were observed. A thin section of
the sample shows evidence of cleavage planes but no distinct grain boundaries
(fig. 3). A few sections with crystals 2 to 3 mm wide and 10 tc 15 mm long
were picked out of the rock for grinding and subsequent size measurements.

The acicular amphibole sample (figs. 4-5) consists of subparallel crys-
tals approximately 0.05 to 1 mm wide and 0.2 to 8 mm long, with the average
grains being approximately 0.15 by 1 mm. Note that the width of most of the
grains is visible with the unaided eye. The grains generally have tapering
to pointed terminations. The specimen is listed by Ward's National Science
Establishment, Rochester, N.Y.,® as tremolite even though the chemical compo-
sition varied considerably throughout the sample. The chemical composition,
determined by the energy-dispersive X-ray spectrographic mode on the scanning
electron microscope, varied over a wide range, including magnesium amphibole
with a trace of calcium, magnesium-iron amphibole, and calcium-magnesium amphi-~
bole, and calciud-magnesium amphibole with a trace of iron. The optical data
in table 1 for the acicular sample are only approximate because of the varia-
tions in composition. The elongate grains characteristic of the acicular
habit are readily visible in the thin section (fig. 5). Although many of
these grains have an aspect ratio of greater than 3 to 1 and exceed 5 um in
length, these grains, if released intact during grinding, would not be regula-
tory particles because of their large width. Extensive preferential breakage
parallel to the long dimension would be required to produce parricles meeting
the regulatory criterion for width.

“Reference to specific suppliers is made for identification only and does not
imply endorsement by the Bureau of Mines.
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FIGURE 5. - Photomicrograph of thin section of acicular
omphibole under crossed nicols.

The Iibrous tremolite
(figs. 6-7) was collected
from a redingite vein in a
Maryland serpentinite guarry.
The grains range in orienta-
tion from random to subparal-
lel and are approximately
0.7 um to 75 .m wide and
50 um to 3C0 .m long with an
averdge grain being approxi-
mately 13 »v 30 .a. The
width of these grains is
not visible with the unaided
eye; one can only see the
masses or bundles or the
individual Zibers.

The tramolire asbestos
samples (fizs. §-9) are com-~
posed of Zider bundles rang-

ing from 20 == to 1006 == in
length and =

0.5 um to .0 .m in width,
Asbestos 1, Zrom Califoraia,
contains a amount of
fine fibrous caic. As>es-
tos 2 is a wuseum sample
collected :in Xajaschan,
India. 3o:in samples are
more brigtla than the tvp-
ical commercial asbestos,
and neither o

-

3
2z
ia
consistently had
ation about
teristic of

5.

si
the random orianc
the ¢=-axis charac
amphibole asbesto

Samples ID-72a3nd FD-275
were obtained as fine powders
from Willian 2. Smith, Tair-
leigh Dickinson tniversity.”
Sample FD-.73 was isolated
from a sampic of tremolite
taken from 4 tremolitic tale
vre body; dasbestus variety

tremolite was the source of FD-72 (4). The FD-72 tremolite was reported dY
Smith (4) to produce tumors in hamsters using intrapleural injection mc[?ods.
In contrast, no tumors were observed in the hamsters injected ~ith ED-%?).
Therefore, comparison of the particle size and shape characteristics ol these

“The cooperation of Professor William E. Smith,

llealth Research Institute,

Fairleigh Dickinson University, Madison, N.J., i3 gratefully acknowledsed.




FIGURE 6. -

Mncrophotogroph of fibrous (nonasbestos) tremolite,

FIGURE 7. - Photomicrogre

ph of thin section of fibroys
tremolite under cro

ssed nicols showing the
interlocking textyre of the grains,




FIGURE 8.

- Macrophotograph of tremolite asbessos 1,

FIGURE 9.

- Macrophotograph of fremolite asbestos 2.
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FD samples with the particles derived from Wiley-milled tremolites of various
habit may provide some insight into their relative biological activity. The
UICC amosite standard was included in the scanning electron microscope studies
in order to compare our size distribution measurements with published data; no

FIGURE 10. - Lengthwise splitting of amphibole grain to
form two elongote perticles,

FIGURE 11. - Amphibole breaking perpendiculor to the long axis
to form two shortes, lower-ospect-retio porticles.

significant differences were
noted.”

CRUSHING AND GRINDING OF
AMPHIBOLES

Important factors con-
trolling the size and shape
of amphibole particulates
that may be released during
mining and milling opera-
tions are the original crys-
tal habit of the amphibole
grains in the rock, the way
in which these grains break
or cleave, and the method of
crushing. Breakage of asbes-
tos fibrils and fiber bundles
appears to be significantly
different from that of the
nonasbestos forms.,

In figure 10 a rela-
tively blocky grain can be
seen cleaving lengthwise
along the {110} suriace to
form two elongate particles.
This direction of cleavage
competes with another direc-
tion of breakage or parting
on the {001} or {101] surface
(fig. 11) that is perpendicu-
lar to the long direction
and produces particles rhat
are shorter and more blocky.
In the nonasbestos grains
the probability of breaking
in the long direction is
somewhat higher than that of
breaking in the short direc-
tion; therefere, clongate

7UICC asbestos scandards Jdre
available from Particle
Information Services,
P.0. Box 702, Grants Pass,
Oreg. 97526.

ta
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particles with aspect ratios in the range of 3:1 to 10:1 axe produced,
together with a few particles of higher aspect ratio.

X-65
P ) &"ﬁ,‘{)p .,éi'dé{/

X 1,400

FIGURE 12. - Asbestos fiber bundle splitting into thinner,
higher-aspect-ratio fibers.

With asbestos the prob-
ability of separating the
fiber bundles to smaller
bundles and to fibrils (see
fig. 12) is one or more
orders of magnitude greater
than that of breakage in the
short (perpendicular to the
fiber axis) direction.
Therefore, thin fiber bun-
dles and fibrils are pro-
duced that have aspect
ratios of several hundred
to 1 and greater.

The next step in this
study was to examine the

; size and characteristics of

particles derived from crush=-
ing and grinding of t¢remo-
lites of various habit.
Ideally, occupational air
samples representative of
various mining and mineral
processing operations would
have been included, however;
tremolites are present as
trace, minor, or major con-
stituents in talcs, quarry
products, etc., rather than
as a single mineral. Ihere-
fore, it was decided to
limit these preliminary
studies to essentially mono-
minerallic samples.

To produce the desired
particles, each of the
tremolite-actinolite varie~
ties (prismatic, acicular,
fibrous, and asbestos) was
ground by a single pass
through a Wiley mill, and
the ground samples that
passed through a 20-mesh
screen were collected. lhe
other samples, FD-72, ID-275,
and UICC amosite, were cxam=
ined for particle sizc Jis-
tribution as received,



MICROSCOPY

Sample Preparation

Grain mounts for the petrographic microscope were prepared by dispersing
a small amount of each milled sample in an o0il with a refractive index of
1.400 to obtain high contrast. Several mounts were prepared for each sample.

The sample preparation for scanning electron microscopy varied depending
on the sample. The following procedure was used for asbestos 1, asbestos 2,
prismatic tremolite, fibrous tremolite, and the UICC amosite. A small amount
of sample was placed in a vial and then dispersed in distilled water to pro-
duce samples with little or no overlap of the particles. The vial wasagitated
by hand for 30 seconds, and then the larger grains were allowed to settle for
3 to 5 seconds. Approximately 1l ml of solution was withdrawn from the vial
and several drops were placed onto carbon-coated scanning electron microscope
stubs. These stubs were heated to ~95° C to evaporate the water, and then the
sample was carbon-coated.

The acicular amphibole and the two FD samples were prepared for counting
by the following method. A small amount of sample was placed in a vial and
dispersed in water. The acicular amphibole was agitated by hand for 30 sec-
onds, and the larger grains were allowed ‘to settle feor 3 to 5 seconds. About
1 ml of solution was withdrawn from the vial and mixed with about 20 ml of
water in the funnel apparatus for the nuclepore filters. The solution then
was filtered through the 0.1-um nuclepore filter. A section of the filter was
cut out, mounted on scanning electron microscope stubs, and copper-coated.

The FD~-72 and FD-275 samples were prepared similarly except that instead
of using hand agitation, it was necessary to place the samples in a low-energy
ultrasonic bath for 1 to 3 minutes to disperse the samples.

Particle Countin

Field of view counts were made at X 1,250 with the petrographic micro-
scope. All particles with one dimension of 1 um or greater were counted.
Emphasis was given to counting onlv those particles identified petrographic-
ally as tremolite-acrinolite.

Counting was performed on the scanning electron microscope by first ran-
domly selecting an area on the tab ar low magnifications (~X 100) and then
increasing the magnification to X 500, X 1,000, or X 2,000. This region was
photographed, and all particles in the field of view or intersecting only the
top and left side of the field of view were counted. The magnification used
to define the field of view varied according to the size distribution of the
samples; for the asbestos samples the field of view was defined at X 500, and
for the FD-72 it was X 2,000. The particles were sized using a scale cali-
brated with 0.l-um latex spheres at magnifications ranging from X 500 to
X 20,000. On each scanning electron microscope stub several fields of view
were counted on the center and edges of the stubs.

Size Characteristics

The primary objective of this study was to correlate the size characteris-
tics of the ground tremolites with the habit of the mineral. The number of
long, thin particles {>10 um long, <0.5 um wide) in each of the milled samples
was of particular interest.




The wide variation in size characteristics is qualitatively obvious in
the photomicrographs and scanning electron micrographs for each of the samples
(figs. 13-20). Size characteristics are presented in a more quantitarive for-
mat in table 2. These data represent size measurements on 200 to -00 parti-
cles for each sample; for ease of comparison, all data were normalized to 200

Differences in the data in table 2 for the petrographic microscope and the
scanning electron microscope are primarily a reflection of the rang2 of magni-
fication available with the two techniques together with some variations in

the sample preparation. Also the measurement error using optical

becomes significant for particles less than 0.5 to 1 um wide.
a larger percentage of smaller particles is counted in the electron aicroscope.
3ecause of the very limited number of particles measured for each sample, the

results should be considered as semiquantitative; however, the conclusiens
derived from this study are not expected to change significantly

in general,

13

- particles. All particles with cne dimension greater than 1 :m were counced.
The particles were placed in six classes--a nonregulatory group, and five
groups of increasing aspect ratio that meetr the regulatory size criteria.

=icroscopy

with more data.

TABLE 2. - Aspect ratio of particles from milled tremolites of ~arious Rabits
Aspect ratio range
NR1 3:1 to >5:1 to >i0:1 to >20:1 o >30:1
5:1 10:1 20:1 Z0::

NIMBER OF PARTICLES USING PETROGRAPHIC ICROSCOaV*
Prismatic........... 174 13 10 2 ! : )
Acicular........... 173 8 12 <] ! s 0
Fibrous....vveeneans 114 37 37 11 - ; 0
Asbestos 1.......... 97 13 26 27 27 ; 10
Asbestos 2...veuen.. 107 7 29 24 2o i 7
FD=72. . ieiieeennns 142 10 25 14 2 1
FD=275. ¢ e ie s eases 192 4 4 0 D l ]

NUMBER QOF PARTICLES USING SCANNING ELECTRON MICROSCO2V-
Prismatic....o...... 147 27 20 5 J l 1
Acicular®.....e.veen 187 7 3 1 1 1
Fibrous.....cocunen. 138 30 25 7 J 0
Asbestos l..i.iuieens 78 18 27 34 33 3
Asbestos 2....000000 90 4 18 28 33 27
FD=72.  veovecancucas 166 9 6 8 2 2
FD-275. .. 0. ivecarens 195 1 3 1 0 0
UICC amosite® ....... 138 2 10 21 0 8

iNR designates nonregulatory particles that do not meec the length =35 -m,

width <3 um, and aspect ratio =3 criteria,
2Size measurements on 200 parricles at X 1,250 with petrograpisic microscope.

JLow~calcium amphibole.

4“Size measurements of 200 particles with scanning clecrron microscope.

agnli-

fication up to X 50,000 was used where nccessiary to measure small-diamecter

particles.

“UICC standards were prepared in South Africa by attrition grinding.

asbestos 2.

This
grinding was more extensive than used by the Burcau on asbestos 1 and
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FIGURE 13. - Photomicrograph of particles FIGURE 14. - Scanning electron micrograph
from Wiley-milled prismotic of porticles from Wiley-milled
tremolite. aciculor amphibole.
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FIGURE 15. - Photomicrogroph of particles FIGURE 16. - Sconning electron micrograph
from Wiley-mitled fibrous of particles from Wiley-milled
tremolite. tremolite asbestos 1.
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. The important feature of the data in table 2 is the very small number of
. particles with an aspect ratio 220 for the prismatic, acicular, fibrous, and
- FD-275 samples. 1In contrast, there is a significant percentage of particles
v with high aspect ratios for asbestos 1 and 2, FD-72, and VICC amosite. This

= type of size distribution is, as anticipated, directly related to the crystal
" habit of the samples prior to grinding.

) . The size characteristics of the samples are organized in a different for-
$ i3 mat in table 3. For this table, particles longer than 10 um that also met the
regulatory criteria were placed in three groupings, depending on the width of
¥ the particle. For the prismatic, acicular, and fibrous samples, zero to three
- particles (based on 200 particles) fell in the 0.5- to 0.99-um-width group,
5. and no particles were found in the <0.5-um-width class. In contrast, asbes-
T tos 1 and 2, FD-72, and UICC amosite had a large number of long particles in

’ the width ranges 0.5 um to 0.99 ym and in the critical width range of <0.5 um.

s It should be emphasized that the UICC amosite had been subjected to signifi~
o cantly more severe grinding than the asbestos 1 and 2 samples; therefore, no
o comparison should be made of the size distributions between the two tremolite

asbestos samples and UICC amosite.

tf TABLE 3. - Classification bv width of tremolite particles
= ' 210 _m in length
S ‘ Nidth, um

0.1-0.49 | 0.5-0.99 | i-3
NUMBER OF PARTICLES USING PETROGRAPHIC MICROSCOPY!

g Prismatic..vevvrnenenoannan, 0 1 4
- Acicular®, ... ..vierivrnennens 0 3 8
s FibrouS...eeeveesennss e 0 1 26
. ASHeStOS l..vvrevernsnvnnnan, 8 11 23
L AsbesStos Z.e.viieeeosrorennas 14 12 42
& 130 10 v 2 3 5 10
5 U FD 275 s e ener b tenn 0 0 2
Cos NUMBER QOF PARTICLES USING SCANNING ELECTRON MICROSCOPY®
< PrisSMBCAC. .ovnerennosrannasns 0 1 T 20

B Acicular® ..ivivuienrinninians 0 1 3

FibrousS...veceeseesevssonnnees 0 0 21
b ASBESTOS Lusreeevonnnncnnson. 3 21 59
’ ASDESLOS 2uvenrevvcaccoesenns 10 16 51
FD72.00verevrnen. hereesaeas 4 5 6
) FDu27 5 s cervnnnenonnennnnns 0 0 0
i UICC BamOoSite...c.eveveee ... 6 15 10

1Data normalized to 200 particles measured at X 1,250
with petrographic microscope,

2Low-calcium amphibole.

. ®Data normalized to 200 particles measured with scanning

3 electron microscope. Magnification up to X 50,000 was

used when necessary to measure particles of small

width,
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SUMMARY

3ased on this limited study, there is a relationship between the number
of particles of "critical dimensions, 210 um in length and 0.5 um in width,
and the habit of the tremolite-actinolite prior to grinding. Although all the
Wilev-milled tremolites (prismatic, acicular, fibrous, and asbestos) have a
significant percentage of particles meeting the current regulatory asbestos
criteria, only the asbestos variety gave long, thin particles of the dimen-
sioxas establzshed by some medical scientists as necessary to produce adverse
bpiological effects in laboratory animals,

The asbestos regulatory counting criteria were established for air sam-
Plinsin anoccupational environment where commercial asbestos was being mined,
millad, fabricated, or installed. Under these restricted conditions, the
assucption probably is valid thatr, for each occupational setting and type of
asbestos, there is a relatively constant distribution of particle sizes and
shapes, ranging from macroscopic to particles below the limit of resolution
of the optical microscope. On that basis, measurement of elongate particles
at £ 450 reflects the presence of a certain percentage of fibers longer than
10 vz and less than 0.25 to 0.50 um wide, Particles from Wiley-milled tremol=
ite asbestos exhibit a continuum of particle size ranging from very thin to
medivz width, resulting in some particles with aspect ratios of 100 or greater.
In contrast, particles derived from the nonasbestos varieties are skewed
toward thicker particles, and the distribution is characterized by the absence
of leng, thin particles of high aspect ratio.

<he existing asbestos regulatory criteria have had an increasingly nega-
tive impact on the nonasbestos mining and mineral-processing industries,
These criteria equate all particles meering the regulatory dimensions as
equally harmful, whereas there is a significant body of data indicating that
only the particles having critical dimensions produce adverse effects in test
anirmals. With minor exceptions, all of the epidemiology and most of the labg-
ratory studies on test animals relate to exposure to commercial asbestos
(chrysotile, crocidolite, “amosite," and anthophyllite asbestos). There are
no coxmparable data on exposure to cleavage fragments of the common amphibole
minerals found in many mineral-processing industries such as crushed stone
quarries and gold and talc operations; currently these operations are being
subjected to the same criteria as applied to the mining and milling of commer-
cial asbestos. In consideration of the dual need to establish effective
environmental and occupational controls to safeguard the population and the
worker, and to avoid unnecessary economic impact on the domestic minerals
industry, it is recommended that appropriate experiments be conducted to
obtain conclusive data as to the relative effects of the various size parti-
cles. The key question to be resolved is the relative biological effect of
elongate particles 1 to 3 um wide as compared to particles of thc same length
that are less than 0.5 um wide.
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Relationship between the growth habit of
asbestos and the dimensions of asbestos fibers

A.G. Wylie

Abstract — The dimensions and shape of both airborne
and bulk amphibole-asbestos fibers are different from those of
both airborne and bulk of cleavage fragments of the amphi-
boles. These differences are related to the mineralogical
properties unique to the habit of asbestos. including the
Sfibrillar struciure. small fibril widths and distinctive crysial-
lographic faces of fibrils. Criteria for distinguishing amphi-
bole cleavage fragments from amphibole-asbestos include
mineralogical properties observable in bulk samples and the
dimensions of particles collected on air filters. It would be
very helpful to the mining and mineral indusiry if these
properties were recognized in the regulation of asbestos.

Introduction -

Asbestos is a term applied to a group of highly fibrous
silicate minerals that readily separate into long, thin, strong
fibers of sufficient flexibility to be woven, are heat resistant
and chemically inert, and possess a high electrical insuiation
and, therefore, are suitable for uses where incombustible, non-
conducting or chemically resistant matesial is required (Gary
etal., 1974).

Heat resistance, chemical inertia and high electrical insu-
lation are properties of almost all silicates. Therefore, they are
not unique to asbestos. However, long, thin, strong flexible
fibers are limited almost exciusively to asbestos and are the
properties that made the use of asbestos in building materials
so widespread.

Nonetheless, in the regulation of asbestos, the federal
government, and many state and local governments following
the federal government’s lead, define asbestos as anyone of
six minerals: chrysotile, crocidolite (riebeckite), amosite
(grunerite or cummingtonite), tremolite, actinolite, and an-
thophyilite. Further, asbestos is regulated on the exposure to
or content of particles that are longer than 5 um and have
aspect ratios (length:width) of 3:1 or greater. This has the
effect of. making cleavage fragments of any of these minerals
into asbestos fibers.

This paper will describe the mineralogical characteristics
of asbestos and the shape of both airborne and bulk asbestos
particles. The properties and dimensions refate to the habit of
asbestos. distinguish asbestos from the more common varic-
ties of the same silicate minerats, und could provide a basis for
the regulation of asbestos without the inclusion of cleavage
Ifrngmcnrs for which no carcinogenic potential has been estab-

ished.

A.G. Wylie is associate professor, Department of Geology, College
Park Campus, University of Maryland, Coliege Park, MD. SME
preprint 88-85, SME-AIME Annual Meeting, Phoenix, AZ. Manuscript
October 1987. Discussion of this paper must be submitted, in dupli-
cate, prior to Feb, 28, 1989.
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Mineralogical properties of asbestos
Chemical composition and atomic structure

In modem times. only four minerals have been mined as
asbestos on a large scale: anthophyllite-asbestos
(Mg,Si,0,,(0H),): grunerite-asbestos (amosite)
((Fe.Mg), Si O“(OH) ,))i riebeckite-asbestos (crocidolite)
(Na,Fe, Sl O”(OH).. and chrysotile (Mg,3i,0.(0H),). In earlier
times, actinolite-asbestos (Ca,(Fe.Mg),Si{ O,,(OH) ) and tre-
molite-asbestos (Ca,(Mg. FC)SSI 0,,(OH) } have been used
locally. Other minerals, including ‘arfvedsonite (Deer et al.,
1962), potassian winchite (Wylie and Huggins, 1980) and
richterite (Malyshonok et al., 1986}, talc, and erionite, may
occasionaily occur in an asbestiform habit.

All of the major types of asbestos, except chrysotile, have
essentially the same atomic structure and, because of it, are
known as amphiboles. Amphiboles have a double chain of
Si0,-4 tetrahedra as their basic building block. Amphibole
asbestos fibers are elongated parallel to the double chain.
Chrysotile is a sheet silicate. so-called because its basic struc-
tural unit is a sheet of connected Si0,-4 tetrahedra. Rolling up
of the sheet forms its fibers.

Fibrillar structure

Asbestos of all types is composed of bundles of individual
fibrils. These fibrils vary in size among the different asbestos
types and occurrences, South African and Australian croci-
dolite have fibrils that range in width from about 500 to 2000
A. Grunerite-asbestos (amosite) from South Africa ranges
from about 2000-6000 A and chrysotile fibrils from most
localities range from about 200 to 500 A in width.

These fibrils share a common axis of elongation but are
randomly oriented with respect to the other crystallographic
directions. There have been reports of other minerals forming
between these fibrils (tale, brucite), but generally asbestos
fibers are monomineralic. The fibrils are held together by
weak bonds and are easily separated by gentle pressure of the
hand. Separation of the fibrils in this manner is not cleavage:
no structural bonds are broken.

The fibrillar structure of asbestos hinders the use of single
crystal X-ray technigues to study it Instead of producing a
pattern of spots, which can be interpreted to determine sym-
metry and structure, an asbestos fiber with a diameter of about
0.1 mm (0.004 in.) will produce a pattern consisting of lines
derived from spot patterns of thousands of individual fibrils
that share only one crystallographic axis in common, For
many years, the inability to study asbestos by classical X-ray
technigues left the determination of symmetry to the optical
properties (which also are affected by the librillar structure)
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.nd the common amphibole-asbestoses crocidolite and amos-
ite were thought to be orthorhombic rather than monoclinic.
w hich they are now known to be.

Monoclinic amphiboles exhibit the property of oblique
evinction when viewed under the petrographic microscope.
This property arises because the principal optic directions (X,
Y.and Z) are not parallel to the principal crystallographic axes
(a. b, and ¢). It is found in minerals that belong to the
monoclinic and triclinic crystal systems, but is lacking in
minerals that are orthorhombic, hexagonal, or tetragonal.

Minerals of the latter group exhibit parallel extinction.
However. all types of asbestos exhibit parallel extinction,
regardless of the crystal system to which they belong. This is
because the individual fibrils are generally smaller than the
resolution of the light microscopé and their properties cannot
be examined individually. Instead, a group is always ob-
served.

In some samples of asbestos, some individual fibrils ap-
proach | pmin width. These fibrils are individually resolvable
by light microscopy and should show the properties character-
istic of the crystal system to which they belong. In some
specimens they do, but in others, they do not. Amosite. for
example, has fibrils that approach S000A. These are large
enough to be seen optically. However, they always exhibit
anomalous parallel extinction. { 100} twinning is very com-
mon in amphibole asbestos, and if pervasive, could account
for this anomalous behavior (Wylie, 1979).

The parallel extinction of chrysotile arises because of the
tubular structure of the fibrils. While chrysotile also cccurs in
fiber bundles, even if the fibrils were singular and large
enough to be viewed optically, this structure would preclude
obligue extinction even though chrysotile is monoctinic.

Tensile strength

Thehightensile strength of asbestos is clearly related to the
fibrillar structure. Asbestos has a 10- to 30-fold increase in
tensile strength over nonasbestos forms of the same mineral.
In the case of the amphiboles, the tensile strength varies
inversely with the size of the fibril cross section (Zoltai, 1984,
Sinclair, 1959). This means that the tensile strength of South
African crocidolite is greater than that of the South African
amosite, which, in tum has a tensile strength greater than
Finnish anthophyllite.

Zoltai (1984) suggested that the high tensile strength is
related to the surface structure of the fibrils as well as to their
size. Under the scanning electron microscope, the surface ot
asbestos fibers are very smooth(Dorling and Zussman, 1987).
They lack cracks and other imperfection that contribute to a
decrease in the ideal tensile strength.

By contrast, cleaved fragments of the swme mincral always
have rough, irregular surtuces. While direct comparisons of
tensile strength between cleavage fragments and fibers of the
same width have never been made, the surface structure
theory of tensile strength predicts higher tensile strength for
smooth-surfaced fibers. .

Crystul forms

Cleavage in amphiboles takes place along the [ £10] sur-
faces ({210} in the orthoamphiboles). Theretore, mostamphi-
bole particles that have been cleaved are bounded by these
surfaces. However, some amphiboles may alsoexhibit parting
along | 100} and/or {010}. Parting in common amphiboles is
not usually well developed. So. amphibole cleavage frag-
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ments are bounded by parting surtaces only rarely.

By contrast, amphibole asbestos fibrils are trequently
bounded by { 100} and {010} in addition to { 110} faces with
{ 100} being the most well developed (Harlow et al., 1984).
These are dominantly crysial faces formed during the growth
of the fibers, not cleavage surfaces, although parting devel-
oped along {100} twinning surfaces may contribute to the
dominance of the {100} surface in some samples.

In amphiboles, the {110} surfaces meet at 120° angles.
Furthermore, all { 1 10} surfaces are equally likely 10 develop.
Therefore, particles bounded by {110} cleavage planes will
have cross sections that approximate a diamond shape: a
parallelogram with internal angles of 120° and 60°.

By contrast, {100} and {010} surfaces are not equivalent
in the amphiboles. The {100} surfaces are generally larger,
and the cross sectional shape of amphibole particles bounded
by {100} and {010} will be rectangles with a width to
thickness ratio of between two and three (Wylie et al., 1982).

Size and shape of asbestos fibers
Bulk samples

Length, width, and aspect ratio distributions of populations
of bulk samples of many types of asbestos have been deter-
mined (Campbell et al., 1980: Siegrist and Wylie, 1980;
Shedd, 1985; Stanton et al., 1981). To some extent, the
dimensional characteristics of these populations depend on
the sample preparation techniques. primarily the degree of
grinding. However, except under the most extreme condi-
tions, when grinding has been so prolonged that the particles
are reduced to nearly equidimensional masses, certain charac-
teristics of asbestos are retained.

Sample preparation disaggregates asbestos fibers and. toa
greater or lesser degree, separates individual! fibrils. Because
the cross sectional dimension of a {ibril is established during
the formation of asbestos, it cannot be easily altered. How-
ever. width distributions of asbestos are affected by the
instrumentation used to measure this dimension (width is
defined as the size of the fiber perpendicular to the direction
of elongation). Studies done on TEM emphasize the distribu-
tion of the smaller fibrils. while studies based on scanning
electron microscopy (SEM) often overlook the smallest fi-
brils. Studies done on the same instrument. however, produce
width distribution that are comparable.

Another dimensional characteristic that is normally unaf-
fected by sample preparation is the relationship between
width and length. The width of an asbestos fiber is essential
independent of its length (Siegrist and Wylie, 1980). Small
widths are characteristic of both long and short fibers. This
behavior contrasts sharply with that of cleavage fragments.
For populations of cleavage fragments, as the iength of a
particle increases, so does its width.

Aspect ratio (length/width) has been used frequently to
characterize asbestos. However, to be used etfectively, aspect
ratio comparisons must be restricted to particular ranges in
length. For example, Table | gives the mean aspect ratio for
particles with alength of S grm and 10 pm . The samples used
in this and other tables were prepared or collected in a variety
of different ways. The details of collection and preparation are
provided in the references.

Despite the differences in sample preparation Jnd collec-
tion, the contrast between all samples of ashestos and cleavage
fragments is striking. For both, the aspect ratio is greater tor
10 um particles than for 5 pm particles, but the eftectis much
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more pronounced in asbestos populations. This is because
there is very little difference between the width of 10 pm
fibers and 5 pm fibers because the width of asbestos is estab-
lished during growth, and the width is independent of the
length. Therefore, there is amarked increase in aspect ratio as
length increases. For cleavage fragments, on the other hand.
longer particles have wider widths so the increase in aspect
ratio is minimal.

Table 1 — Mean Aspect Ratios of 5 pm and 10 um Asbestos
Fibers and Amphibole Cleavage Fragments

Mean Aspect Ratio

. Length

Asbesioy Sum 10 um
amosite - Transvaal South Africa’ 13 24
crocidalite - Kurman Hills South Africa’ 24 40
crocidetite - Cape Province South Alnca? 42 66
crocidolite - Australia® 35 56
actinolite-asbestos - South Africa? 13 27
tremolite-asbestas - India® 8 13
Cleavage Fragments

tremotite - New York' 3 5
actinalite - Virginia* 4 5
riebeckite - Colorado* 4 5
grunerite - Minnesota* 5 ]
cummingtonite - South Dakota* 4 7

Collection, preparation and characterization are described in the fellowing:

*Campbeli et al,, 1980 {bulk sampigs)
25hedd. 1986 (bulk samples)

SWylie and Schweilzer, 1982 {butk samples)
‘Wylie et al.. 1985 (airborne panicles)

Table 2 presents dimensional data from bulk samples of
asbestos and cleavage fragments. Two of the four cleavage
fragment populations are not amphibole and would not be
regulated as asbestos, although wollastonite is occasionally
marketed as asbestos substitute. The high proportion of asbes-
tos fibers with widths less than 0.5 um reflects the growth of
fibrils with the lower percentages found insamples with larger
average fibril width. Among these samples, chrysotile has the
smallest fibril and amosite and tremolite-asbestos the largest.
Due totheir small widths, virtuaily all of the asbestos particles
have aspect ratios in excess of 10: | (fibers longer than 5 pm).
While there are some high aspect ratio cleavage fragments,
most have aspect ratios less than 10:1. and less than 6% of any
population of cleavage fragments have both aspect ratios in
excess of 10:1 and widths less than 0.5 um. .

Airborne samples

Dimensions have been used as the basis for identifying and
counting asbestos collected on air filters in occupational

settings for many years. However, the dimensions that have
been used (longer than S pm with aspect ratios greater than or
equal to three to one) have very little relevance to the actuat
dimensions and shape of asbestos fibers. In certain occupa-
tional settings (the asbestos textile industry). this presents no
problem to the accurate assessment of the quantity of asbestos
in the air. In the mining and mineral industries (other than
asbestos mining), however, mineral particulates can be mis-
takenly classifted as asbestos under this definition. The prob-
lem is particularly acute when minerals that can occur as
asbestos in some localities are also found in forms other than
asbestos, e.g.. the amphiboles.

The dimensions of airborne fibers of asbestos differ very
little from the dimensions of bulk samples. There is a slightly
narrower range in the width of the fibers and the extremely
long fibers (greater than 500 um) rarely become airborne.
However, comparison with airborne particles of ordinary
amphiboles, airborne asbestos fibers are quite distinctive. The
longest particles reported from airborne amphibole cleavage
fragment populations are generally less than 20 pm. while
fibers of greater than 100 pm may be routinely found in
airborne asbestos populations. However, the distinction be-
tween asbestos and cleavage fragments is most obvious when
aspect ratio distributions are compared.

Two comprehensive studies examine in detail the size
distributions of airbomne asbestos. They are studies of Gibbs
and Hwang (1980) and Pooley and Clarke (1980). Table 3
presents their data in terms of aspect ratio distributions. All
Sum particles have aspect ratios in excess 10:]1 and greater
than 50% have aspect ratios greater than 20:1 Similar data
from published studies of the size distributions of airborne
cleavage fragments are presented in Table 4. Among this
population, 20:1 particles are extremely rare.

Table 5 presents the aspect ratio distribution of airborne
asbestos fibers and airborme cleavage fragments that are
longerthan 5 pm and have widths greater than orequalto 0.25
pum, These are particles that should be visible by the phase
contrast method for analyzing air filters (Leidel et al.. 1979).
While a small proportion of the total asbestos tiber is visible
using optical microscopy rather than electron microscopy
(column (a) in Table 6 vs. column (a) in Table 3). the
prevalence of high aspect ratio remains unchanged. For air-
borne cleavage fragments longer than 5§ ptm, the additional
constraint of widths greater than or equal to 0.25 um has no
effect on the aspect ratio distribution or in the proportion of
airborne fiber included in this category. Essentjaily all air-
borne cleavage fragments longer than 5 pm have widths
greater than 0.25 pm and are visibie by optical microscopy.

Table 2 — SEM Characterization of Bulk Samples of Asbestos and Cleavage Fragments

(a} (b) (e) () (e) n (@)
% of (a) with *% of (a) with % of (a} with *+ of {a) with
% longer *% of (8) with % of {a) with aspect ratio aspect ratio aspect ratio aspect ratio
than 5 um widihs < 1.0ym  widihs < 0.5um  greater than 3:1 greater than 10:1 greater than 15:1 greater than 201
A, Asbeslos
crocidolite - South Africa’ -~ 48 98 85 100 99 95 89
amosite - South Alrica' 73 91 50 100 98 84 75
chrysotile - Quebec' 38 29 94 100 100 98 96
chrysotie - Calilorma' i 54 98 94 100 99 97 94
actinolne-asbeastos - South Africa® 10 96 70 100 86 70 52
tremolite-asbestos - Libby, MT? 43 87 54 100 [:1:] 70 52
B, Cleavage Fragments -
tremalite - New York* a0 7 [ 47 3 2 2
nebeckite - Califorma? 50 27 5 78 35 21 12
anbgonte and talc - New York* s 0 0 32 ] 0 0
Wollastonite - New York” 22 22 [ 82 20 9 4

Collection, Preparation and Charactenzation of the Samples are Described i tha Followsng:

1Camobell. etal., 1980
‘Wyhe and Schweitzer, 1982
‘Alkinsan et al,, 1982
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Table 3 — Aspect Ratio Distributions of Airborne
Asbestos Fiber, All Widths

3

crocidolite’
m mlng
bagging
amosile’
mining
bagging
chrysotile'
mining
bagging
crocidoite?
amosite? ¥

Asbestos in

lung tissue
crocidolite® +
amosite? ?
chrysotite? ?

(a

s of totsl

41
1A

127
248

1.3
42
10,60
25.20

1]

* of (8) with
airborne fiber  aspect ratio

longer than S um >3

100
100

100
100

100
100
100
100

100
100
100

(e
% of {a) with

sspect ratio
>10:1

100
100

100
100

100
100
100
190

100
100
100

(d)
$ of (2) with

aspact ratio
»15:1

98
99

92
93

90
95
96
88

EL]
93
100

(e)
% af (a) with

aspect ratio
*20:1

93
96

70
73

62
7%

89
75

95

97

'Gibbs and Hwang, 1980
!Pooley and Clark, 1580
*Maximum width assumed to be < 0.5 um. This is based on the data ol Gibbs and

Hwang {1580)

Table 4 — Aspect Ratio Distributions of Airborne Cleavage

Fragments, All Widths.

% of totst
sirbame tiber
langer than 5 um

cummingtonite

South Dakota' 42
cummingtonite

South Dakota? * 44
Actinolite

Virginia' 39
Grynente and

actinolite
Minnesola® 17

{8)

&)

% of (a} with
aspect ratio

3

67

28

75

12

(e)
% of () with

(d)
$ of (a) with

aspect ratio
215:1

(e)
% of (a} with

aspect ratic
22001

'Wylie, et al., 1985. Collecied on location by MSHA.
tEckan, 1981. Collected an location by Hemestakae Mining Company.

Table 5 — Airborne Asbestas Fibers and Cleavage Fragments

With Widths Greater Than or Equal to 0.25 pm

Total
Atrborne
Particles

(s)

% longer
then 5 um

Cleavage Fragments

cummingtonite
South Dakota'
cummingtonite
South Dakota?
actinolite
Virgima'
grunente and
acbnohte
Minnesota'

Asbestos
crocidoiite?
mining
bagging
amostte?
mining
bagging
chrysoute*
mining
bagging
ciocidoiite®
amosile*

42

44

39

832
17.79

082
1.72

336
1458

(b) (e}
aspect ratie aspect ratlo
»1 »10:1
67 t6
28 9
75 11
12 1
100 100
100 10Q
100 100
100 100
100 100
100 100
100 100
100 100

]

%of(alwith % of (aywith- 5 of (s) with

aspecl ratio
=151

90
9

88
91

84
a8

26

(e}
% of (st with
aspact ratio
*>20:1

57
72

54
62

25
49

§5
69

"Wylie et al.. 1985 Collected on location by MSHA.
“Echent, 1981. Coliected on focalion by Homestake Mring Company.
‘Gibbs and Hwang, 1980,
“‘Podley and Ciarx, 1980.

MINING ENGINEERING

Conclusions

The dimensions of asbestos fibers are unique inthe mineral
world. The fibers are characterized by extremely small and
uniform widths and very high aspect ratios. These properties
are characteristic of both bulk and airborne samples. whether
they are characterized by optical or electron microscopy.
They are retained under all but the most extreme conditions
because they arise from the mineralogical properties of asbes-
tos.

Asbestos fibers attain their shape by growth, not cleavage.
They are easily separated but their extremely high tensile
strength makes any other manipulation extremely difficult.
Theirsurfaces are bounded by unequal crystallographic planes
making their cross sectional shape rectangular. [t would be
extremely helpful to the mining and mineral industries if these
properties were recegnized in the regulation of asbestos,
Using a three to one aspect ratio for the definition of an
asbestos fiber has no mineralogical justification and is not
supported by any studies on the carcinogenicity of mineral
fibers.
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L]
Evidence from human epidemiology. experimental animal
implantation and inoculation studies, and lung burden stud-
ies shows that fibers with widths greater than | um are not
implicated in the occurrence of lung cancer or mesothe-
lioma. Furthermore, it is generally believed that certain
fibers thinner than a few tenths of a micrometer must be
abundant in a fiber population in order for them to be a
causative agent for mesothelioma. These conclusions are
Sully consistent with the mineralogical characteristics of as-
bestos fibers, which. as fibrils, have widths of less than I um
and, as bundles, easily dissagregate into fibrils. Further-
more, the bivlogical behavior of various habits of tremolite
shows a clear dose-response relationship and provides evi-
dence for a threshold between fiber width and rumor experi-
ence in animals. Public policy in regulating mineral fibers
should incorporate this knowledge by altering the existing

federal ashestos fiber definitions to reflect it.
W meters in determining the carcinogenic potential of
asbestos and other specific fibrous materials. Most
investigators who have examined this subject agree that
there exists a minimum length and maximum width below
which and above which fibers are not related to tumor induc-
tion. Although fiber dimension is linked to the pathogenic
effects of asbestos and certain other fibrous materials, it is
also recognized that fiber characteristics other than dimen-
sion (i.e., durability. harshness, surface chemistry, surface
area or activity, etc.) likely play an important roie in the
pathogenetic process. Whatever fiber characteristics con-
tribute to the pathogenicity of asbestos, however, it is impor-
tant to ensure that size parameters used for regulatory
purposes reflect those most closely associated with asbestos
and known carcinogenic effects.

idth and length of fibers are both important para-

*Author to whom correspondence should be addressed

Although it is common to see the dimensions of asbestos
fibers discussed in terms of a ratio of length to width, or as-
pect ratio, the use of such a dimensionless parameter results

_ in the loss of information about the size of fibers and, there-

fore, is of little use in the discussion of fiber carcinogenicity
or exposure. While asbestos fiber length is recognized in
federal regulatory policy, width is ignored entirely. It is the
purpose of this paper to examine the relationship between
asbestos fiber width and fiber carcinogenicity, to suggest
how this parameter might be used to identify other potential-
ly harmful mineral fibers and to enhance the specificity of
existing asbestos regulations.

The National Institute for Occupational Safety and
Health (NIOSH) has established the definitions and analyti-
cal methods for asbestos used to one degree or another by all
asbestos regulatory bodies in the United States. Under the
NIOSH scheme, asbestos is simply defined as any fiber of
chrysotile, crocidolite, amosite, anthophyllite, tremolite, or
actinolite. A “fiber” is defined as a particie with a length to
width ratio {aspect ratio} of at least 3:1 and a length of 5 um
or more as determined by the phase-contrast optical micro-
scope (PCM) at a magnification of 450X-500X.""* In this
paper a “NIOSH fiber” refers to any particle with these di-
mensional parameters as determined by any accepted analyt-
ical technique.

PREVIOUS WORK
Mesothelioma and Fiber Width

Several investigators have examined the question of
what particle sizes are most likely associated with the induc-
tion of mesothelioma. Merle Stanton first proposed that a
distinct relationship exists between the shape or dimensions
of durable fibers and mesothelial tumors in rats.””’ Stanton
and co-workers concluded from these experiments that pop-
ulations with abundant fibers longer than 8 xm and narrower

Copyright 1993, American industrial Hygiene Association
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TABLE l. Bulk and Airborne Particles—Cleavage Fragments

to 0.5 um.!'"® The high inci-

dence of mesothelioma in
Turkey has been attributed to
fibers of asbestiform (wooly)

Percent less than

Mineral Length stated widths or
and Reference instrumentation Restriction mean width (xm)
Wollastonite

a. Bulk Samples

7% New York TEM None 90%<2.3; 50%<1.1

10%<0.62

Tremolite

a. Bulk Samples

7 New York SEM >5pum 9%<1.0; 0%<0.5

b. Airborne

58 New York SEM > 5um 0%<0.25
Cummingtonite

a. Airborne

1 g, Dakota SEM >5um 22%<1.0; 7%<0.5; 0%<0.25

70 g Dakota SEM >5um 11%<1.0; 2%<0.5
Actinolite

a. Airborne

75 Virginia SEM >5um 15%<1.0; 0.6%<0.5

0%<0.25

Grunerite and Actinolite

a. Airborne

69 Minnesota SEM > 5um 1% <1; 0%<0.25
Antigorite

a. Airborne

4 Vermont TEM 400X >5pum 22%<1.0; 2%<0.5

79 Vermont TEM 20KX >5um 37%<1.0; 10%<0.5
Riebeckite

a. Bulk Samples

7% California SEM > 5um 27%<1.0; 5%<0.5

erionite that are on the order of
0.1 m in width.""*'® In con-
trast, no evidence of mesothe-
lioma has been found in mining
environments where NIOSH
fibers produced by cleavage of
massive amphiboles are abun-
dant.""**" In these mining en-
vironments 78% or more of the
5 um long particles have
widths greater than 1.0 um
while 93% or more have
widths greater than 0.5 gm.
Few, if any, show widths below
0.25 pem (Table I).

Some have suggested that
- the carcinogenic potential of
mineral fibers extends to those
with widths as large as 2 um,
and there is some evidence
from animal experimentation
to support this position. For ex-
ampte, Pott et al. have induced
tumors in Wistar rats by in-
traperitoneal injection with
basalt and ceramic fibers with
median diameters close to or in
a few cases greater than |
um. @' Hesterberg et al. re-
port tumors in Syrian hamsters
after inhalation of refractory

than 0.25 pm were most closely linked to pleural tumor re-
sponse irrespective of fiber type.””” Most other researchers
who use the animal model support the position that only nar-
row fibers are capable of inducing tumors,*™"

"Evidence for the importance of narrow fibers in regard to
mesothelioma also comes from human experience. Timbreli
and co-workers observed that the differences in the inci-
dence of mesothelioma among two groups of asbestos min-
ers in South Africa noted by Harington is most likely related
to width."? In the northwestern Cape, where miners experi-
enced elevated mesothelioma, the mean fiber diameter for
crocidolite is 0.073 um. In the Transvaal crocidolite and
Transvaal amosite regions, mean diameters of 0.212 um and
(.243 um, respectively, were noted and mesotheliomas are
rare. Among vermiculite miners and millers in Libby, Mon-
tana who were exposed to tremolite-asbestos, mesothelioma
was elevated.'*!" Studies by Atkinson and co-workers on
buik samples from the Libby vermiculite mine show that
87% of tremolite fibers longer than 5 um have widths equal
to or less than 1 um and 54% have widths less than or equal

ceramic fibers with an average
diameter of 0.95 um.”* How-
ever, the effect of the wide
fibers in these studies is most evident when the fibers are
very long (up to 50 um) or when a significant number of nar-
row fibers are part of the population, a fact that may not be
evident from reporting mean or median widths of the popula-
tion. Many populations of shorter fibers (still longer than 5
pm) with widths predominantly greater than 0.5 um, such as
wollastonite, gypsum, and certain fibrous glasses, have been
shown to produce no significant tumor responses after instil-
lation in animals."****?> Furthermore, the tumor potential of
wide fibers has not been demonstrated by inhalation experi-
ments, in part, at least, because such fibers deposit in the
conductive airways in the head and lung and do not reach the
lung alveoli.”® ‘

An opportunity to examine in humans the carcinogenic
potential of a naturally occurring population of relatively
wide mineral fiber is provided by the experience of antho-
phyllite-asbestos miners and millers in Paakkila. Finland.
Anthophyllite-asbestos from this locality has a mean width
of approximately 0.6 xem, and in the fiber population, widths
less than 0.1 um are quite rare.”” In his study of lung tissue
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from four individuals exposed to Paakkila anthophyliite-as-
bestos, Timbrell reports one fiber of 4 xm in width. some
fibers between 2 and 4 xm and more than 50% of the fibers
with widths less than 0.7 wm. In fact, Timbrell has shown
that the distribution of amphibole fiber widths in lung tissue
closely resembles the distribution of fiber widths in air.'™®
Among the occupational cohort of miners and millers ex-
posed to Paakkila anthophyllite-asbestos. asbestosis is com-
mon and the incidence of lung cancer is elevated, primarily
in smokers.'”” However, the incidence of mesothelioma is
not elevated.””” The fact that Paakkila anthophyllite-as-
bestos will induce malignant tumors in animals after in-
traperitoneal inoculation'"” and inhalation*™” demonstrates
that it has a detectable carcinogenic potential in animals
under certain experimental conditions. However, the human
experience tells us that either because of aerodynamic char-
acteristics and/or the body’s defenses, a population of
durable fibers with the dimensions of Paakkila anthophyl-
lite-asbestos does not represent the same occupational or en-
vironmental mesothelioma risk as other types of asbestos.
The best explanation for these observations, in conformity
with the Stanton hypothesis, is that the most abundant fibers
of Paakkila anthophyllite-asbestos are by and large too wide
and the thin fibers are too scarce for the population to induce
mesothelioma even with the high exposures associated with
this occupational setting.

Lung Cancer and Fiber Width

There are fewer data on the relationship between fiber
width and lung cancer than there are for fiber width and
mesothelioma. However, studies of human populations ex-
posed to asbestos and animal inhalation studies involving as-
bestos consistently show an association between asbestos
exposure and lung cancer as well as between mesothelioma
and asbestos exposure.®*"'* In contrast, exposures to the
nonasbestiform analogs of asbestos minerals (cleavage frag-
ments) have not shown an elevated lung cancer risk in
man.!"*"**" Lippmann has reviewed the literature in this
area and concludes that lung cancer is associated with fibers
with widths between 0.3 and 0.8 pum (and length > 10
nm).'" His conclusions rest in part on the work of Timbrell
who has shown that lung retention is greatest for fibers with
these widths and lengths."? Such dimensions are consistent
with those commonly associated with asbestos fibers but not
for common cleavage fragments (see lubles [ and IIT). Thin-
ner fibers migrate to the pleura and peritoneum. Thicker
fibers are usually rare in an airborne population of asbestos,
and when present, disaggregate into thinner fibrils.

Lung Burden Studies in Asbestos-Related Diseases
and Fiber Width

During the past 15 years, there have been a significant
number of lung burden studies of persons occupationally ex-
posed to asbestos who have developed asbestos-related dis-
eases. Numerous investigators have published information
on the sizes of asbestos fibers found in these persons and

only rarely are fibers with widths greater than 1.0 pm detect-
ed (See Table I1). In fact. most asbestos fibers found in lung
tissue have widths less than a few tenths of a micrometer.
The data are summarized in Table 11. While there may be a
gradual transition in the carcinogenic potential of fibers
from greater to lesser as fiber width increases, as suggested
by Pott. wide fibers are not implicated in mesothelioma in
humans because they appear to be incapable of transtocating
to pleural regions. and they are not found in the lungs of peo-
ple who have developed this disease."*”

Fibers longer than 5 pm with widths greater than 1 um
are not often found in lung tissue of asbestos miners. millers,
and fabricators for several reasons. First, wider fibers con-
tain more mass than narrow fibers of the same length and are
thus less likely to become airborne. Wider fibers are also
likely to be intercepted in the upper respiratory tract before
they reach the lung. Work by numerous investigators has
shown that the penetrability of airborne fibers into the pe-
ripheral rat lung drops sharply with an aerodynamic diame-
ter above two, which corresponds to a diameter of
approximately 0.67 pm." Pott and co-workers assert that
fibers with a diameter range of 1-5 xm cannot be tested for
carcinogenicity by inhalation because they deposit in the
upper respiratory tract and do not reach the lung,*"'

There are also two very important mineralogical reasons
why wide fibers of asbestos are rare in lung tissue. First,
populations of asbestos fibers of all types are composed of
fibers that are less than | gm in width, and, therefore, wide
fibers are simply not readily available for inhalation (Table
[II). Second. asbestos fibers wider than | um are composed
of bundles of fibrils that readily split longitudinally into in-
dividual fibers of much smaller width. Even if wider fibers
were inhaled. because of the fibrillar structure of asbestos,
the fibers disaggregate. Cook and co-workers demonstrated
the effectiveness of this process in their animal intratracheal
instiliation experiments with ferroactinolite-asbestos.'™* In
these experiments they showed that the number of fibers
found in lung tissue increased following cessation of expo-
sure and that the increase was due to longitudinal splitting of
fiber bundles. Other natural fibers that have been shown to
exhibit a significant carcinogenic potency such as asbesti-
form (wooly) erionite are also characterized by very narrow
widths and the ability to split longitudinally. The fibrillar
structure is the hallmark of asbestiform fibers." All as-
bestos minerals that have been implicated as carcinogens in
humans exhibit this unique habit of crystal growth structure.

In summary, human epidemiology, experimental animal
studies, and the information on size distributions of fibers
found in human lung tissue strongly suggest that fibers wider
than | wm are not likely to be a significant factor in the pro-
duction of mesothelioma or lung cancer in man. To test the
hypothesis that | xm is a reasonable upper limit for critical
width, we have examined data from tremolite-asbestos and
nonasbestiform tremolite. This analysis will show that a
clear dose-response relationship and evidence for a thresh-
old exist between the abundance of fibers less than | um in
width and carcinogenic response. While fibers wider than |
4m that are actually fiber bundles might also be important in
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producing a carcinogenic re-

TABLE Il. Fibers in Lung Tissue of Humans Exposed to Asbestos

sponse they are usually uncom-

Percent less than

mon if? terms of fiber number  pgingras Length stated widths or
in an airborne asbestos popula-  and Reference Instrumentation Restriction mean width (um)
tion. We have therefore ne- )
. Amphibole and
glected these bundles in )
. . Chrysotile
analyzing fiber abundance data 9 lyng TEM None mean = 0.13:
although it may be inappropri- ) oo
ate to ignore them for regulato- 761 pargnchyma range: 0.05-0.32
v DUFDOSES parietal TEM None mean = 0.06;
y purposes. pleura range: 0.03-0.09
Amphibole
MATERIALS AND e TEM >4 pm 100%<1.0; 63%<0.25
METHODS 73 pleura TEM None mean width = 0.15 + 0.07
™ parenchyma TEM None mean width = 0.19 + 0.21
Tremolite occurs naturally as a ™ node TEM None mean width = 0.21 £0.12
o t of
gangue and as a componentof . .
ore at a number of r;'uncs pro- 2 mining TEM None 100%<1.0
L al . . .
gl‘:;’i‘t’;g ";‘lj:ysmfanﬁ’ ¢ r:::];']'; o TEM None mean widths = 0.13, 0.09,
crushed stone, and chrysotile- ©  lung . 0.14,0.15
asbestos. Health risks associat-
ed with tremolite have been the parenchyma TEM >4 pm 96%<0.375
source of considerable debate ©% shipyard and
. . . construction TEM >1pum 25%<0.07; 76%<0.16
in both the scientific communi- ) TEM None 100%<0.12.4 0.10
ty and regulatory arena for e
many years.***® Tremolite, in  Amosite
its massive and most common @8 mining TEM None >95%<1
habit, when crushed. forms (68) TEM None mean widths = 0.27, 0.24,
elongated cleavage fragments 0.35,0.20
that are similar in size and 2 Jung
shape to cleavage fragments of parenchyma TEM >4 pum 66%<0.375
other common amphiboles. In %) ghipyard and
this form, there are no epidemi- construction TEM >1pum 25%<0.09; 75%<0.29
ological studies that clearly 55" shipyard and
implicate tremolite as the construction TEM >4um 74%<0.31
cause of mesothelioma or lung “N  ghipyard and
cancer in man despite its construction TEM None 100%<0.43 £ 0.29

prevalence in some mining en-
vironments.®® In its rare as-
bestiform habit, on the other hand, it appears to be the cause
of both mesothelioma and lung cancer in man.!'%'"*" In ani-
mais, mesothelioma has been observed after exposure to
tremolite asbestos."***" One animal inhalation study in-
volving tremolite asbestos showed elevated lung tumors as
well as mesothelioma."” There is a modern source of com-
mercial tremolite-asbestos in Korea, and in the past tremo-
lite-asbestos has been mined locally in Europe, Asia, and
North America. Tremolite-asbestos possesses the character-
istics that distinguish the more commercially important
amphibole-asbestos types (crocidolite, amosite. anthophyl-
lite-asbestos) including flexibility, thin fibrils, and a fibrillar
structure.> Therefore, tremolite is an ideal mineral to study
because it occurs naturally in the full range of amphibole
habits, its asbestiform variety is known to cause mesothe-
lioma and lung cancer in both man and animals, it is widely
distributed, and it is known to occur in a number of important
industrial mineral products.

A number of well-characterized samples of nonasbesti-
form tremolite and tremolite-asbestos have been used in ani-
mal experimentation and made available to us for study. The
importance of these samples is that they represent a range in
naturally occurring mineral habit that has not been evaluated
for any other mineral. The tremolites include samples with
numerous fibers of a fibrillar or asbestiform habit, samples
in which only part of the tremolite is fibrillar, and samples
lacking tremolite particles of a fibrillar habit altogether
(nonasbestiform). We have examined the tumor response of
these samples (established through animal experimentation
by independent researchers) as a function of the dose of -
fibers longer than 5 wm with widths less than and greater
than | um. Only tremolite particles with a length to width
ratio of 3:1 or greater (NIOSH fibers) were included.

Davis and co-workers have recently released the results
of injection experiments that used six samples of tremolite:

"California tremolite-asbestos from Jamestown; Korean
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TABLE il. Continued

Percent less than

Mineral Length stated widths or
and Reference Instrumentation Restriction mean width (um)
Chrysotile
54 referent TEM >5um mean width=0.15+0.18
4 environmental TEM >5um mean width =0.131£0.25
3% occupational TEM >5pum mean width =0.13+0.16
53 textile plant TEM >5um mean width = 0.10 £ 0.02
53 mine TEM >5um mean width = 0.07 £ 0.01
1) TEM None mean widths = 0.07, 0.07,
0.07,0.07,0.04,0.11
8 TEM >4 um 100%<0.25
5% ghipyard and
construction TEM >1um 25%<0.03; 75%<0.06
“n TEM None 100%<0.07 £ 0.02
Ll TEM None mean width 0.09+0.15
mean width 0.07 £ 0.06
mean width 0.08 + 0.06
Anthophyliite )
@8 TEM None 80%<1
155} TEM >1um 25%<0.17;75%<0.44
t65) TEM None 50%<0.67
Tremolite
57 TEM None 100%<1.0; 80%<0.5
59 referent TEM >5um mean width = 0.66 £ 0.48
59 environmental TEM >5um mean width =0.62+0.74
4 occupational TEM >5um mean width = 0.30+0.25
3 textile plant TEM >5um mean width = 0.35 + 0.04
59 mine TEM >5um mean width = 0.32 £ 0.02
&8) TEM None mean widths = 0.24, 0.31
5 shipyard and
construction TEM >1pum 25%<0.23; 75%<0.57
Actinolite
(59 TEM >1pm 25%<0.15; 75%<0.37

the respirable fraction of these
dusts and administered it to

. rats by wusing the intraperi-

toneal injection technique.
Measurements of width and
length for the fibers in the pop-
ulations were collected by
scanning electron microscopy
after deposition on 0.2 um
pore-size polycarbonate fil-
ters. Davis and co-workers
provide dimensional data for
approximately 450 particles
from each sample. The dose in
terms of number of particles
per milligram of dust was ob-
tained directly from the data of
Davis and co-workers.""?

In earlier work Stanton re-
ported the results of 72 rat
pleural implantation = experi-
ments involving approximate-
ly 30 different inorganic
materials.”"’ Among these ma-

terials. one tremolite-asbestos
sample was implanted on two
different occasions. The sam-
ple comes from California. but
its exact origin is unknown.
Like tremolite A, B, and C, this
tremolite possesses all- the
characteristics of commercial
asbestos. In this paper it is re-
ferred to as tremolite D. Anoth-
er Stanton sample identified as
Talc 6 is a commercial
tremolitic talc from the state of

tremolite-asbestos; tremolite-asbestos from a laboratory in
Swansea; fibrous Italian tremolite (Ala de Stura); tremolite
from Carr Brae, Dornie, Scotland; and tremolite from Shin-
ress. Scotland.™” In this paper, these samples are identified
as tremolite A, B, C, E, F, and G, respectively. Tremolite A,
B. and C are composed primarily of tremolite-asbestos.
Fiber bundles. curved flexible fibers, and smail fibril widths
are evident from optical microscopic examination of the
samples. Tremolite E (Italian) consists of very long, highly
unusual, single, needle-like crystals, with limited flexibility.
Many of these fibers are twinned and in subsequent analysis,
an asbestos subpopulation was reported.”*” Sample F
(Dornie) is composed primarily of tremolite cleavage frag-
ments. However, a small portion of the sample contains fiber
bundles of tremolite-asbestos. Tremolite G (Shinness)
was obtained by crushing large prismatic crystals, and it is
composed entirely of cleavage fragments. Davis and co-
workers packed the samples into cylinders of Timbrell dust
dispensers and airborne dusts were generated. They collected

New York identified from
Stanton’s laboratory notes as
Nytal 300. This sample contains 40-50% tremolite cleavage
fragments. It is referred to as tremolite H in this paper.

Stanton and co-workers did not provide adequate dimen-
sional data to evaluate width satisfactorily, and it was neces-
sary to re-examine both tremolite D and H. Samples of
tremolite-asbestos { and 2 (tremolite D) and of Talc 6
(tremolite H) were obtained from the National Cancer Insti-
tute and prepared for analysis by gentle sonication in dis-
tilled water and filtration on a polycarbonate filter. Portions
of the filters were mounted on a polished SEM stub and car-
bon coated. For Talc 6, the filters were scanned at 5000X and
the chemical composition of particles longer than 4 um was
established by energy dispersive spectroscopy (EDS). The
particles were identified as tremolite or “other” from their
chemical spectra. and their dimensions were measured and
recorded. For tremolite D, the samples were photographed at
5000X. All particles in the photograph with lengths longer
than 4 um were measured. From each population 100-150
particles were measured.
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Stanton provided estimates  TABLE Hl. Bulk and Airborne Particles—Asbestos and Other Fibers

of the number of particles

Percent less than

longer than 4 pm in a micro-  mMineral Length stated widths or
gram*' From our measure-  and Reference Instrumentation Restriction mean width (um)
ments of tremolite-asbestos D. -
we determined that 74% of the ~ C'ocdolite
. Cape Province
particles longer than 4 um met
the definition of a NIOSH [asf',, Bulk Samples SEM . . B5%<0
fiber. We also determined that 55 1CC TE ~5km %8 /°<1'0'8. e
99% of the NIOSH fibers of EM None >99%<1.0; >90%<0.5
tremolite had widths less than > UICC TEM . None mean width = 0.23 £ 0.06
or equal to 1.5 um, 88% had - TEM >2pum 99%<1.0; 99%<0.5
. 22 yicc TEM None median width = 0.20
widths less than or equai to 1.0 o0 SEM None mean width = 0.35
pm, and 52% had widths less (2.0 —0_78.-0 16)
than or equal to 0.5 pm. From 60) TEM None mean.wi.d;h - 0.12 )
these data we calculated the ' T
number of NIOSH fibers. per (28.D.=0.31-0.05)
total dose and the number of b.  Airborne
fibers within each of the width {69) TEM None 98%<0.4
categories. (69) TEM >5um 90%<0.3
From Talc 6 (tremolite H), 2 TEM >4um 88%<0.375
we used the number of particles (45) TEM >5um 98%<1.0; 82%<0.5
per microgram tonger than 4 “s - yice TEM >0.25um 99%<1.0; 88%<0.5
4m provided by Stanton. From ) TEM None ‘ 99%<0.5
our analysis. we determined o
that 30% of those particles Crocidolite
longer than 4 um were NIOSH Transvaal
fibers of tremolite. Of these, i;, Bulk Samples _
9% had widths less than or TEM >2pam 89%<1.0; 65%<0.5
equalto 1.5 um, 9% had widths  Crocidolite
less than orequalto .0 umand  Australia
0% had widths less than or a. Bulk Samples
equal to 0.5 um. As was the &4 TEM >2um 100%<1.0; 99%<0.5
case for tremolite D, we calcu- o
. . Crocidolite
lated the number of tremolite Bolivia
NIQOSH fibers per total dose a4 Bulk Samples
and the number within each of 164) P TEM > o e
the width categories. um 85%<1.0, 60%<0.5
Smith and co-workers re-  Amosite
ported the results of intrapleur-  Transvaal
al injection of four tremolite a. Bulk Samples
samples into Syrian ham- 59) SEM >5um 91%<1.0,50%<0.5
sters.”*" Only limited informa- 8 UICC TEM None 98%<1.0; B0%<0.5
tion on the size distributions of 2 yice >5um 92%<1.0; 72%<0.5
these samples -was published, ® uice TEM None mean width = 0.47 +0.17
but one sample, FD-14, was (69 SEM None mean width = 0.55
available for additional analy- (28.D.=1.29-0.23)
sis. Sample FD-14 was an off- 160) TEM None mean width = 0.35

the-shelf sample of tremolitic

(28.D.=1.22-0.10)

talc from the state of New York

that contained approximately

50% ronasbestiform tremolite. The samples were examined
by SEM at 2000X and the particles were identified as tremo-
lite based on their chemical composition. Five hundred
tremolite particles were measured of which 64 met the defin-
ition of a NIOSH fiber. Data regarding the number of tremo-
lite NIOSH fibers in a microgram were not available for this
sample. Interestingly, very long fibers of the mineral talc

that have narrow widths and a fibrillar structure occur in this
sample. This sample is referred to as tremolite L in this paper.

RESULTS

There are several ways to examine the width data. First, the
correlation between tumor incidence and the dose of NIOSH
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TABLE IlI. Continued

between- tumor incidence and

the number of NIOSH fibers

Percentless than ..
per total dose administered

Mineral Length stated widths or f .
and Reference Instrumentation Restriction mean width (um) with widths less than or equal
- to 1 um is shown in Figure 2.
(t;;n Airporne TEM . This figure shows a dose-re-
o None 950/"<0'4 sponse relationship in the form
TEM >5pum 45%<0.3 of an s-shaped curve suggest-

o2 TEM >4 um 66%<0.375 ing a threshold and a rapid in-

2 PCM >5um 89.4%<1;94.2%<0.5 crease in tumor incidence as

e SEM None 95%<1.0;80%<0.5 the number of these thin (<1

¥ (inc. croc.) TEM None 95%<1.0; 70%<0.5 um) fibers increases. The
Chrysotile curve in Figure 2 is derived
Quebec from a least-squares linear re-

a. Bulk Samples gression of the form:

(50} SEM >5um 99%<1.0; 94%<0.5

) yIcC TEM None mean width = 0.17 £ 0.03 logit =

?2yIce TEM None median width = 0.15 m(log of total dose <1 um)+b

&7) PCM 82% >5um 81%<1.0

where

b. Airborne -

169 TEM None 98%<0.4 logit = ]n( % tumor )

(65 TEM >5um 61%<0.3 | — % tumor
Chrysotile The equation for the curve in
California Figure 2 is shown below and is

a. Bulk Samples highly significant (R? = 0.84,

(50) SEM >5um 99%<1.0; 94%<0.5 p<0.003):

(50 TEM >5um 100%<1.0; 98%<0.5

logit = 3.04(log total dose
Chrysotile < um)-6.25
Rhodesia

a.  Bulk Samples A straight linear regression

3 yicc TEM None mean width = 0.16 £ 0.04 of the form below is also high-
Chrysotile ly significant (R* = 0.90,
Vermont p<0.005). In the data in Figure

b. Airborne 2. this equation is:

(74 TEM 400X >5 um 63%<1.0

(74) TEM 20KX >5um 90%<1.0; 71%<0.5 % Tumor = 49.3(log total dose

<1 pm)-54.6
Anthophyllite
Finland Another way to illustrate

a.  Bulk Samples the importance of width rela-

58 JICC TEM None 90%<1.0; 60%<0.5 tive to tumor response is to

@@ yice TEM None median width = 0.61 characterize the samples in

b. Airborne terms of the percentage of

51) TEM None 70%<1.0; 40%<0.5 NIOSH fibers that have widths

fibers wider than 1 gm is illustrated in Figure i. It is clear
that the dose of wide fibers (>1 pum) shows no relationship
to the 1ikelihood of producing tumors. It is important to note
that the number of wide (>1 wm) NIOSH fibers in the dose
of tremolite in the cleavage fragment sampies (G, F, and H)
is comparable to that in the tremolite asbestos samples.
Thus, the argument that more tumors might have been ob-
served if there had been more wide NIOSH fibers in these
samples is not supported. In contrast, the correlation

of less than | pm. It has been
shown in most cases that up to
30% of ordinary cleavage frag-
ments of amphibole longer than 5 um have widths less than |
um, and more than 90% of asbestos fibers have widths less
than 1 wm (all asbestos fibrils will be less than 1 um). (See
Tables I and I11.) Therefore, the proportion of a fiber popula-
tion with small widths is 2 measure of the asbestos-like na-
ture of the population or of the abundance of the asbestiform
components in a sample. Figure 3 shows the correlation be-
tween tumor incidence and the percentage of the tremolite
NIOSH fiber population that has widths less than 1.0 wm. By

gl
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TABLE Ill. Continued

Percent less than

Mineral Length stated widths or
and Reference instrumentation Restriction mean width (um}
Actinolite-asbestos
a. Bulk Samples
B4 Minnesota TEM None mean width = 0.41
50%<0.24
7St Gouth Africa SEM >5um 96%<1.0; 70%<0.5
(49} TEM None 80%<0.33; 50%<0.06
(75} SEM >5um 98%<1.0; 90%<0.5
22 Fed. Rep. Ger. TEM None median width =0.17
Tremolite-asbestos
a. Bulk Samples
2 Montana TEM >5um 87%<1.0; 54%<0.5
77 Montana TEM None 81%<0.6; 67%<0.4
77t Metsovo TEM None 96%<<0.8; 85% <0 4;
64%<0.2
b. Airborne
66 Korea TEM >0.4 um 99%<1.0; 80%<0.5
" Montana TEM >5um for w >0.45: 98%<1.24;
93%<0.88; 68% < 0.62
Tremolite-asbestas
and tremolite
a. Bulk Samples
2§ Carolina TEM >5um 81%<1.0; 48%<0.5
7S ndia SEM >5um 61%<1.0; 34%<0.5
Asbestos, mineral ID
not specified
b. Airborne
(59 TEM None 80%<0.43
Wooly Erionite
a. Bulk Samples
22 Turkey TEM None median width = 0.38
22 Qregon TEM None median width = 0.21
0 QOregon TEM None width range = 0.01-0.13
mean width = 0.03
Nemalite
a. Bulk Samples
22 TEM None mean width = 0.06

A straight linear regression of
the data using the equation
below is also highly significant
(R*=0.93. p <0.005):

% Tumors =
1.2(% fibers =1 um) - 14 .4

DISCUSSION

Figures | and 2 contrast the
pteural and peritoneal tumor re-
sponse (mesothelioma) pro-
duced by wide ‘and thin
tremolite NIOSH fibers. For
wide NIOSH fibers alone, there
is no regular dose-response re-
lationship, whereas for thin
fibers, the s-shaped curve indi-
cates a strong relationship

between dose and carcino-
genicity. Furthermore, as illus-
trated by Figure 3, as the
proportion of tremolite NIOSH
fibers with widths greater than
1 pem increases, the tumor inci-
dence produced by the sample
decreases. Complicating this
somewhat simple picture is the
fact that as the width of fibers
increases, the number of fibers
per microgram must decrease.
Hence, the number of wide
fibers will always be less than
the number of narrow fibers in
samples of equal weight.
Notwithstanding this reality,
however. is the observation that
without thin fibers, tremolite
NIOSH fiber populations are
not associated with the induc-
tion of pleural or peritoneal tu-
mors in animals. It is also made

this measure an increase in tumor incidence is again ob-
served as the proportion of tremolite fibers <1.0 um in
width increases in the population. The curve in Figure 3 is
derived from a least-squares linear regression of the form:

logit = m(% fibers =1 pum)+b

The equatien for the curve in Figure 3 is shown below and is
highly significant (R* = 0.85, p <0.005):

logit = 0.008(% fibers = | um)-4.6

clear in these figures that char-
acterization of populations of
nonasbestiform tremolite by
the NIOSH aspect ratio criterion for fibers produces an index
that shows no relationship to mesothelioma risk.

The tremolite samples can be divided into three groups
based on their carcinogenic potential: those without signifi-
cant response, those with intermediate responses, and those
that produce tumors in almost all the experimental animals.
Criteria for a “significant” response varies according to the
experimental animal, the level of total dose, the method and
location of sample introduction of the fibers, latency, and
experience of controls. Davis and co-workers indicate that
by intraperitoneal injection, tumor responses in less than
10% of the animals are insignificant. For Stanton and
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B: Addison—Davis Korean Tremolite Asbestos

C: Addison—Dovis Swanseg Tremolite Asbestos
D1: Stenton Tremolite Asbestos 1

D2: Stanten Tremalite Asbestos 2

F: Addison—Davis Dornie Tremolite Cleavage Fragments/

Asbestos

G: Addison~Dovis Shinness Tremolite Cieovage Fragments
H: Stanton Talc 6 Tremolite (Non—asbestiform)

£: Addison—Davis ltalion Tremolite Asbestos/Cleavage

Fragments

Figure 1. Percentage of tumors observed in experimental animals after exposure to tremolite as a function of the total dose of
tremolite (number of fibers) equal to or longer than 5 um, wider than I gm, and with an aspect ratio equal to or greater than 3

Lo - -

co-workers, 30% tumors were necessary for a significant re-
sponse by pleural implantation.

Samples G, H, and I fall into the first category. Two of
these samples are tremolitic talc from the state of New York
(H and I). The high proportion of wide tremolite fibers in
these samples is a clear indicator that the tremolite is
nonasbestiform.

Samples E and F produced intermediate tumor responses
in the animals. However, while sampie E produced a high
proportion of tumors. the mean survival time of the animals
was almost twice that of the animals injected with tremolite
A, B, and C, leading Davis and co-workers to conclude that
tremolite E represented one-fortieth the hazard of tremolite
C, a relationship not evident from the total tumor response.
The intermediate responses might be expected from these
two samples based on their mineralogical characteristics.
Sample E contains a large proportion of highly unusual
mineral fibers that lack a recognizable fibrillar structure,
Other researchers, employing higher resolution electron mi-
croscopic techniques. report an asbestos subpopulation in

this sample.“® The long latency observed in the animals in-
jected with this material might reflect a slow disaggregation
of twinned or possibly asbestiform fibers. This hypothesis is
further supported by the fact that the number of fibers per
microgram, whether defined as total NIOSH fibers or as
NIOSH fibers with widths less than 1 um, in sample E is less
than in sample F. The inverse correlation between dose and
response could be explained by sample alteration in vivo as
well as by several other mechanisms resulting from differ-
ences in surface properties. A comparison between the width
distribution of the sample and the width distribution of the
fibers found in the lung is necessary to evaluate the hypothe-
sis that disaggregation occurs in vivo.

Sample F contains a small proportion of asbestiform
fibers. The limited response of the animals to this material is
most likely due to a low dose of asbestos. Davis and co-
workers characterize this sample as unlikely to be carcino-
genic to man given the marginal biological response
observed in what is generally regarded as the most sensi-
tive animal tumor induction technique (intraperitoneal

247

AM. IND. HYG. ASSOC. J. (54)/May 1993

e -7‘&“ o -~



Z TUMORS

w A N O =
© o o | o |0 6 |o |o |o |

N

—

N

I I
3 4

LOG TOTAL DOSE (TREMOLITE NIOSH FIBERS X 105) WITH WIDTH < 1.0 UM

A: Addison—Daovis California Tremolite Asbestos

B: Addison—Davis Korean Tremolite Asbestos

C: Addison=Davis Swansea Tremolite Asbestos
D1: Stanten Tremolite Asbestos 1

D2: Stanton Tremolite Asbestos 2
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F: Addison—Davis Dornie Tremolite Cleavage Fragments/
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G: Addison—~Dovis Shinness Tremolite Cleavage Fragments
H: Stanton Talc 6 Tremolite (Non—aosbestiform)

Figure 2. Percentage of tumors observed in experimental animals after exposure to tremolite as a function of the total dose of
tremolite (number of fibers) equal to or longer than 5 uum, less than or equal to | um wide, and with an aspect ratio equal to or

greater than 3

injection).""" Tumors have been induced with this test
through the introduction of substances as benign as saline
solution."”

Tremolite-asbestos samples A, B, and C produced pleur-
al tumor incidences in excess of 95% with very short latency
periods. While tremolite-asbestos samples D1 and D2
produced 75%- and 79% tumor incidences, respectively,
Stanton considered this response equivalent to a 100% tumor
probability.

Because the tremolite studies did not involve inhalation
exposures in ¢ither man or animals, they do not directly test
carcinogenic potential relative to lung cancer. However,
human epidemiology, lung burden data, and animal experi-
mentation previously discussed support the hypothesis that
as the number of asbestos and certain other fibers with
widths below | um (and 5 x#m or longer) increases, the risk of
both lung cancer and mesothelioma increases as well. There-
fore, to the extent mesothelioma tumor experience
observed in these tremolite animal studies is consistent with
both fiber-size observations and biological response reported

elsewhere, reasonable assumptions about lung cancer can be
made with respect to the tremolite sampies discussed here. It
has already been established that excess lung cancer and
mesothelioma are not evident in human populations exposed
only to amphibole cleavage fragments but they are evident
for human populations exposed to tremolite asbestos.

CONCLUSIONS

Combining tremolite samples that have been administered in
different ways and to different animal groups such as we
have done may appear to overlook important distinctions
among these approaches. Despite this simplification, the
data show a systematic relationship between dose based on
width and mesothelioma tumor response in animals. [t
should also be noted that by using oniy the Addison and
Davis data, the relationship of tumor response to fiber width
remains strong. Furthermore, the fact that asbestos, with its
unique dimensions, is known to cause lung cancer and pneu-
moconiosis suggests that width is related to respiratory
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Figure 3. Percentage of tumors observed in experimental animals after exposure to tremolite as a function of the percentage of
tremolite equal or longer than 5 um with an aspect ratio equal to or greater than 3 that have widths less than or equal to 1 um.

diseases other than mesothelioma. It seems clear that width
is an extremely important variable that to date has been over-
looked in regulatory policy. While fibers from a tenth to 200
pm long have been found in human lung tissue, it is the nar-
row width of these fibers that has given them access. A fiber
15 pm long and 5 um wide meets the NIOSH criteria for a
fiber, but such a particle is highly unlikely to cause disease
in humans because it cannot gain access to a human lung.
Not only is width a useful indicator of mesothelioma tumor
induction, but a dose-response with a threshold is indicated
as well.

We propose that NIOSH fiber size parameters used in the
quantification of asbestos be modified to include only parti-
cles longerthan § pm with widths less than 1 gm and that the
use of the aspect ratio criterion be abandoned. Furthermore,
in monitoring airborne asbestos particles or in determining
the weight percentage of asbestos in bulk mineral samples,
all 5 pm or longer particles that exhibit a fibrillar structure
should be included as possible asbestos regardless of width.
The potential of fiber bundles to disaggregate, in the air or in
vivo, appears to be one of the most hazardous aspects of as-
bestos. The observation of fiber bundles should be included

" as part of the asbestos identification procedure. Electron

and/or polarized light microscopy of the bundles would be
necessary to determine the mineral composition.

Regulatory policy should also recognize that there exists
a natural background of mineral particles that are longer than
5 sm and have widths less than 1 pm, which are not asbestos
and which, from all evidence, are not associated with any
carcinogenic risk. Nonasbestiform amphiboles, pyroxenes,
feldspar alumino-silicates, and even phyllosilicates may
form elongated fragments when they are crushed, and some
will be of this size. However, populations of these elongated
mineral fragments are easily distinguished from populations
of asbestiform mineral fibers and vice versa. By establishing
thresholds and meaningful definitions, ashestos regulations
will not be extended to harmless rock fragments unnecessar-
ily. While we may advocate asbestos regulation based on
specific widths, we fully recognize that the scientific basis
for regulation comes from populations of mineral fibers and
that if asbestos is present in a population of mineral parti-
cles, the full range of its dimensions will also be present. It
must be stressed that our recommendations have been de-
rived from data and literature references on minerals whose
asbestiform variety is known to be carcinogenic. Given the
broad range and complexity of physio-chemical properties
typically associated with mineral dusts, it is not reasonable
to assume similarly sized particles of different minerals will
act the same way once in the human lung. Therefore, the au-
thors do not advocate the untested application of dimensional
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observations addressed in this paper to all elongated parti-
cles. Rather. their application shouid be restricted to as-

be
ca

stos until such time that their relevance to other materials
n be empirically demonstrated.
It is clear. however, that dimensional parameters can be

effectively appiied to distinguish asbestos dust populations

an

d other fibrous dust exposures from common cleavage

fragment dust exposures. This distinction appears to be both
dose and risk dependent as well. It is also reasonable to con-
clude that all fiber populations of similar width. length, and
crystal morphology as asbestos should be viewed with cau-
tion and perhaps given deference with respect to biological
testing.

2
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and Identification-Characterization

By W.J. Campbell, R. L. Blake, L. L. Brown, E. E. Cather,
and J. J. Sjoberg

This curent report on asbestos has been prepared by the
Burequ of Mines, U.S. Department of the Interior 1o
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selected silicate minerals gnd their asbestiform
varieties.
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FIGURE 2. - Macrophotographs of serpentine (top, . - :
X 1) and chrysotile {bottom, X 3). FIGURE 3. - Macrophetographs (X 3)of tremalite (tep) and
tremolite asbestos (bottom).




FIGURE 4. - Macrophatographs (X 3) of anthophyllite (top) and FIGURE 5. - Macraphotographs of actinolite {tap, X 1) and
anthophyllite asbestas (bottom), actinalite asbestos (bottom, X 3),




10

FIGURE &, - Mocrophotographs (X 3) of cumming-
tonite (top) ond cummingtonite-
grunerite asbestos (bottom).

FIGURE 7.

- Macrophotogrephs (X 3} of riebeckite (top) and
crocidolite {bottom),
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% Concentrations of Small SIZE AND SHAPE CHARACTERISTICS OF AMPHIBOLE
ASBESTOS (AMOSITE) AND AMPHIBOLE CLEAVAGE

2d Particles in Cylindrical _ FRAGMENTS (ACTINOLITE, CUMMINGTONITE)

COLLECTED ON OCCUPATIONAL AIR

f Charged Particles from- MONITORING FILTERS

Thannel by Image Force,”

Robert L. Virta, Kim B. Shedd, Ann G. Wylie and Janet G. Snyder

Avondale Research Center
Bureau of Mines

U.S. Department of the Interior
Avondale, Maryland

ABSTRACT

The objective of this study by the Bureau of Mines (BOM) was to deter-
mine if particle populations from asbestiform and nonasbestiform mineral
sources can be distinguished through least-squares regression analyses using
the relationship:

log)p width = F logyg length + b

where F = fibrosity indcx, the slope of the regression line
b = intercept on the logyg width axis

Amphibele particles on air monitoring filters [rom three mining and two
industrial sites were characterized by scanning electron microscopy (SEM)
and energy-dispersive X-ray spectroscopy (EDS) analysis. The data are
evaluated using particle length and width summary statistics and compared
with analyses by linear regression.

Conclusions based on comparison of data manipulation using these two
techniques follow: The mining site particle populations are morpholaogically
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634 ASBESTOS

similar, the industrial site particle populations are morphologically similar,
and size and shape characteristics of mining site populations are statistically
different from those of the industrial sites. Determination of either an
asbestos or a nonasbestos source of amphiboles using linear regression
techniques on data obtained from examination of air monitoring filters
is a potential application of this technique.

INTRODUCTION

The purpose of this study by the BOM Particulate Mineralogy Unit, was to
determine if particle populations collected on air monitoring filters' from
asbestiform and nonasbestiform amphibole mineral sources can be dis-
tinguished by the application of least-squares regression analysis to size and

. shape characteristics. Amphiboles collected on air monitoring filters from

three mining sites where nonasbestiform amphiboles are major rock-forming
minerals and two industrial sites employing commercial amphibole asbestes
were characterized, and the data were statistically evaluated.

* Airborne amphibole particles at mining and industrial sites are of interest
to health scientists and regulatory agencies because of adverse health effects
resulting from exposure to airborne amphibole asbestos [Selikoff and
Hammond, 1979]). To regulate asbestos exposure in the occupational
environment, 2ir monitoring filtration techniques are used to determine the
amount of asbestos suspended in the air. At present, federal regulations define
chrysotile, amosite, crocidolite, tremolite, actinolite and anthophyllite
particles as asbestos if they are =5 pm in length and €5 pm in width, possess
straight sides, 4nd have aspect ratios »3:1 [OSHA 1975]. This definition
does not distinguish between amphibole asbestos fibers and cleavage {rag-
ments of nonfibrous amphiboles {Campbell et al. 1977].

Siegrist and Wylie [1980] characterized the size and shape of amphibole
particles in monomineralic bultk samples and compared their populations
using the linear regression relationship:

logyq width = Flogyg length + b (4))

where  F = slope of the regression line = fibrosity index, a measure of the dependence

of width on length
b = intercept on the log width axis

As shown by Wylie {1979], F may be used to distinguish amphibole cleavage
fragments, the widths of which increase with increasing length, from amphi-
bole asbestos fibers, which display relatively constant widths,

In the present study, the linear least-squares regression of log width vs log
Jength is applied to amphibole particles collecied on air monitoring filters
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and compared with values obtained by Siegrist and Wylie [1980] on bulk
samples. A potential application of this technique is the determination of an
asbestiform or nonasbestiform source of amphiboles collected on air nionitor-

hY
" ing filters from various mining and industrial sites. As with any characteriza-

tion technique, the results are only as good as the samples. Extrapolation
from bulk mineral characterizations to classification of particles on air filters
must be done with caution, since the assumption is not always valid that the
source of the particles is either asbestos or nonasbestos. Particles from veins
of ashestos can be present in air samples from operations in essentizlly
nonasbestiform mineral deposits. In addition, sorting may occur in air
currents and result in selective deposition of particies. For these two reasons,
air monitoring {ilter samples may not be representative of a2 whole depasit.

SAMPLES

Alr monitoring filters were obtained from the Mine Safety and Health
Administration (MSHA) and the Occupational Safety and Health Administra-
tion (OSHA), from mining operations in amphibole-bearing rocks and from
industrial sites employing asbestos, respectively. Mine selection was based on
geology and mineralogy reported in the literature. The criteria used were the
presence of amphiboles, the absence of minerals that were difficult to
distinguish from amphiboles on the basis of chemistry and morphology, and
the importance of the products—iron ore, gold and crushed stone. The type

of mining or industrial operation and the amphibole(s) present at each site
are listed in Table [.

SAMPLE PREPARATION

The industrial site filters were prepared by cutting 5- X 5-mm partions from
the air monitoring filters as received from OSHA and mounting the sections
with double-stick tape on SEM stubs. Latex spheres, 1,099 pm in diameter,
were placed on each SEM stub for magnification calibration. The samples
were carbon-coated in a vacuum evaporator before analysis. Samples were
prepared in this manner because the long asbestiform particles are easily
observed on the textured substrate of the collection filters.

Mining site filters contained very small particles that were difficult 1o
observe on the textured filter. Therefore, portions of each filter were ashed
in a low-temperature asher. The resulting ash was suspended in |G ml distilled
filtered water containing approximately 0.5 ml Acroso! OT dispersing agent,
agitated ultrasonically for 5 minutes, and then filtered through a 0.1-um
Nuclepore filter. A 5- X S.mm section of the Nuclepore filter was cut and
mounted on a SEM stub. Latex spheres were placed on each SEM stub 1ot
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calibration of magnification, and the samples were carboncoated. The

Nuclepore filter substrate provided a smooth surface for observation of the

very small particles present in these samples.

SAMPLE ANALYSIS

All samples were examined using SEM with EDS capability. The filters
were scanned at 5000X, and particle measurements were made at 10,000X on
the cathode ray screen of the SEM. Whén particles extended beyond the field
of view, measurements were made at lower magnifications. A minimum of
250 particles with aspect ratio 22:1 for the mining site samples and 23:1 for
the industrial site samples, straight sides, and suitable amphibole compaosition
were measured. Most nonamphibole particles were eliminated by the use of
the above criteria. :

In all samples except those from the Peter Mitchell Mine, amphiboles could
be distinguished from other minerals on the basis of particle morphology and
chemistry (using EDS). In the Peter Mitchell samples, the pyroxenes
hedenbergite {(Ca,Fe)Si20g) and hypersthene [(Mg,Fe)3Si;04] could not be
distinguished from hornblende and cummingtonite. However, pyroxenes are
less abundant than amphiboles in the Peter Mitchell samples [Gundersen and
Schwartz 1962} and should not represent a significant number of the
particles measured. The length and width data for the amphiboles and
pyroxenes on the Peter Mitchell Mine air filters were combined for the
statistical analyses because of the similarities in their morphological character-
istics,

Summary statistics including mean, minimum and maximum values were
established for lengths and widths of each sample. Regression of the log width
vs log length and standard error of estimate of log width based on log length
were calculated for each particle population. The slope or “fibrosity index"
of the regression equation was used to indicate the dependence of width
on length for all samples. The summary statistics and aspect ratio distri-
butions, commonly used to characterize particle size distributions, were
used as the basis for evaluating the results of the regression analyses. These
values were also compared with those obtained by Siegrist and Wylie [1980]
on bulk mineral samples.

RESULTS

Particle Size Distribution

Results from the particle size distribution (Tables I and 111} and regression
analyses (Table 1V and Figure 1) show two distinct sets of particle popula-
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tions: one from the mining sites and one from the industrial sites, The
particles from the mining sites are typically shorter and wider than those
from the industrial sites. Length ranges for the particles from the mining sites
are smaller than those from the industriai sites, while the ranges in widths are
greater for the mining site particles. _ o

Table II. Length and Width Characteristics of Airborne Amphibole Particles

Number of Length (um) Width (gm)
Particles

Site Counted Mean Min. Max. Mean Min. Max,

Mining ]
Homestake Gold Mine 266 4.6 09 175 1.1 0.3 438
Peter Mitchell Iron Mine 464 - 55 1.0 324 1.2 02 S50
Charlottesville Crushed Stone 605 5.3 08 36.0 14 02 120

Industrial )
“- Shipyard 698 8.2 09 93.5 04 0.1 2.6
" " Electric Company 285 156 1.3 1810 05 01 1.7
1 T Ll T

KEY
Charlotiesville Stone——
Peter Mitchel| ————

E Electric Co, —=——=~—
< Shipyard —-———
E Homestake ——=—=——
g 0" -
H o —
T
g U
-1 H ! !
-1 0 1 2 3

LOG ,LENGTH, um

Figure J.  Regression lines summarizing length and width data collected for amphiboles
on air monitoring filtcrs trom mining and industrial operations.
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Table 11I. Compasison of Aspect Ratios for Airborne Amphibole Particles

Distribution of Particles, (%) for Aspect Ratio

:1

50

20

10:1

1

2

1

>100

H

[T+
99.9

to
49.9:1

H\

to
199

to
9.9:1

to
4.9:1

to
2.9:1

Site

h(ll,““,rtvf(‘.

Mining

m{?‘“"'

265
464
605

28

46
62
a1

22

Homestake Gold Mine

et

27

Peter Mitchell lron Mine

k] 21

Charlottesville Crushed Stone

Industrial

698

30
37

31

23

ND?
ND2

Shipyard

285

14

24

13

Ficctric Company

AND = not determined.

sy
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Table 1V. Fibrosity Index for Airborne Amphibole Particles

Regression Analysis -

Fibrosity Index Y Intercept Standard Error

Site (F) (b) of Estimate

Mining

Homestake Gold Mine 0.68 -0.4.3 0.17

Peter Mitcheil fron Mine - 0.76 ~0.52 0.18

Charlottesville Crushed Stone ' 0.78 -0.46 0.20
Industrial

Shipyard 0.24 -0.64 0.26

Electric Company R ) -0.61 0.26

Aspect Ratio Distribution

The aspect ratio distributions (Table 1) emphasize the significant differ-
ences between the mining and industrial site samples. The mining site
populations have more particles in the lower-aspect-ratio categories than do
the industrial site populations. Aspect ratios for 93% of the mining site
particles are <10:1, while only 25% of the industrial site particles are <i0:1.
In terms of higher aspect ratios, only 1% of the mining site particles exceed
20:1 in aspect ratio, while >45% of the indusurial site particles fall in this
category. Long, thin amphibole particles (high aspect ratio) are the ones
generally associated with adverse biological effects. These results for airborne
particles are in general agreement with data on milled tremolite samples of
varjous habits reported by Campbell et al. [1979]. ‘

Linear Regression Analysis

The linear least-squares regression of log width vs jog length is another way
of displaying the results described by the particle size and aspect ratio distri-
butions (Table [V). The larger b values along with larger “fibrosity indices"
indicate that the mining particles have greater widths than the industrial
particles. The larger “fibrosity indices™ for the mining samples also indicate 2
dependence of width on length, a characteristic typical of cleavage fragments
[Siegrist and Wylie 1980]. In contrast 1o this, the low “fibrosity indices™ of
the industrial samples reflect the uniform width (independent of length)
typical of asbestos fibers [Wylie 1979]. The fibrosity indices of each sample

L Pry
& q AkagsdA AN NG
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were compared with those obtained by Siegrist and Wylie [1980] on bulk
asbestos and nonasbestos amphibole samples (Table V). The fibrosity indices
of the industrial site samples are similar to those obtained on bulk asbestos
amphibole samples. The fibrosity indices-of the mining sites are similar to
those obtained on bulk nonasbestos amphibole samples,

Visual examination of the regression lines (Figure 1) provides a rapid
morphological evaluation of the particle populations. The two distinct sets of
particle populations described above can be easily seen. The mining site
particle length range is smaller than the industrial site particle length range,
and the industrial site particles have higher aspect ratios than do the mining
site particles. The dependence of width on length and differences in particle
widths for the five populations is also evident.

DISCUSSION

The differences in particle. morphology can be attributed to the habits of
the asbestos and nonasbestos amphiboles present in these samples. Asbesti-
form amphiboles, which are present in the industrial site samples, are
composed of fibrils approximately 1000-1700 A wide and up to several
inches long. These fibrils can be easily separated from one another, but
resist breakage across individual fibrils. Thus, long, thin, high-aspect-ratio
particles are generated. Nonasbestiform amphiboles, like those present in the
mining site samples, generally crystallize in a prismatic habit. These crystals
have well-developed cleavage, which results in breakage both perpendicular
and parallel to particle length. Consequently, short, prismatic, low-aspect-
ratio cleavage fragments are produced as the particles are reduced in size.

Table V. Fibrosity Index for Bulk Amphibole Parricles [Sicgrist and Wylie 1980}

Regression Anaiysis

Fibrosity Index Y Intercept Standatd Emor
Sample {(F) (b) of Estimate

Prismatic

Tremolite 0.67 -0.19 0.18

Ricbeckite 0.56 -0.34 0.34
Asbestiform

Amosite 0.18 -0.56 0.20

Crocidolite 0.14 -0.71 Nt
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CONCLUSIONS

Three main conclusions are drawn from the calculations of length, width
and aspect ratio distributions:
1. The three mining sites have similar particle populations.
2. The two industrial sites have similar particle populations.

3. The mining sample populations can be distinguished qualitatively from the
industrial sampie populations.

These conclusions are similar to the results obtained from linear regression
analyses. Based on the fibrosity indices, the analyses indicate morphoiogical
similarities among the industrial site particle populations and among the
mining site particle populations. The industrial site particle populations are
different from the mining site particle populations. Correlation between
fibrosity indices of airborne and bulk amphibole samples suggests that
fibrosity indices can be used to determine whether an airborne amphibole
population is from an asbestos or a nonasbestos source. Thus, the linear
least-squares regression technique is suitable for quantitatively describing the
morphclogy of particle populations as well as aiding in the identification of a
predominantly asbestiform or nonasbestiform amphibole source for the
airborne amphibole particles,
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In terms of morphotogy there are four major types of calcic amphibole; massive, prismatic, finely aci-
cular and asbestos. Represeniatives of each of these types have been examined by optical microscopy, X-
ray diffraction, scanning and transmission electron microscopy, and electron probe microanalysis. Mas-
sive specimens (nephrite) consist of randomly oriented clusters of fine, roughly lath-shaped, sub-micro-
scopic crystals; within each cluster the lath lengths (z) are approximately aligned but neighbouring laths
are rotated with respect to one another. Finely acicular specimens ( “byssolites™) have well-formed crys-
tals bounded mainly by {110} (100) and (010) faces and characteristically have striations paraliel to their
lengths. Asbestiform varieties range from finer {flexible) to coarser (more brittle) specimens and many
specimens contain a mixture of fine and coarse fibrils. The fibrils in a bundle are aligned parallel to z but
are in a range of azimuthal orientations. It is inferred that they are formed by multipie independent nu-
cleation and growth parallel to = rather than through parting or cleavage on {110} planes. (100) defect or
twin planes, or on (010) planar defects.

The {110} cleavage in amphiboles is well reported but (100) features are rarely mentioned in the liter-
ature. Our observations reveal the importance of (100) as a cleavage or parting as well as the tendency in
nephrites, byssolites and asbestos towards a lath-like (parailel to z) morphology with flattening on (100).
In the latter varieties therefore, the y-direction is that of second fastest crystal growth, after z.

When subjected to moderate grinding, the comminution of asbestos fibres proceeds more by separation
of fibrils and less by fracturing to shorter lengths as compared with prismatic and byssolite specimens.
Prolonged grinding does, however, shorten lengths of even the least brittle asbestos.

Transmission electron microscopy revealed extensive sub-grain boundaries and dislocation networks
(suggesting a deformation history ) in all prismatic and nephrite specimens. Fine multiple (100) twinning
was observed in asbestos but not in other vanieties. Although chain-width defects [on {(010)], with visi-
bility enhanced by beam damage, were most abundant in nephrites and fibrous tremolites, there appears
to be no completely consistent relationship between such features and morphological type.

Electron probe analyses showed that specimens that contain more than a very smal| amount of alumin-
ium do not have asbestiform habit. Asbesios specimens alse have lower contents of Mn, Na and K and
have formulae closer to the ideal Ca,(Mg,Fe);Siz0,,(OH),. Small departures from this in asbestos in-
volve Na in the A site compensated by Na for Ca rather than Al for Si whereas the reverse is true in
byssolites. Chemical substitutions in prismatic specimens are much less constrained.

The characteristics of the four morphological sub-groups correlate reasonably well with what is known
of their geological environments,

(Received January 9, 1986; accepted December 4. 1986)

associated with them. Whether or not the non-

During the past several years the amphibole and asbestos amphibole counterparts possess equally

chrysotile varieties

of asbestos have been increas- harmful properties is not yet known, but there

ingly studied, mainly because of the health hazards appears to be a tendency (perhaps with httle justi-
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cation) to associate the same hazards with all forms
of amphibole.

The habits of amphibole minerals vary from
stubby prismatic crystals of homnblende, through
prismatic or acicular crystals of riebeckite, actino-
lite, tremolite and others, to fibrous forms of grii-
nerite (“amosite™), anthophyllite, tremoiite-
actinolite and riebeckite (*“crocidolite”). The pris-
matic and acicular crystal habits occur more com-
monly, and asbestiform habit is relatively rare. Some
of the amphiboles, such as hornblendes, are not
known to occur at all with asbestiform habit.

Processes which result in amphibole minerals
being formed can be explained on the basis of
chemical reactions, but the conditions of formation
specifically of the asbestiform varieties are not well
understood. Specimens of the tremolite-ferroactin-
olite series with almost identical chemistry, for ex-
ample, can nevertheless exhibit very different
morphological and physical properties.

The fact that asbestiform varieties are not very
common may be an indication that asbestos re-
quires very specific conditions for its development.
Variations in chemical or physical properties of am-
phiboles may be responsible for differences in the
morphology adopted. Alternatively, variations in
morphology may be primarily a consequence of dif-
ferences in conditions and mechanisms of crystal
growth. But even in the latter case, chemical and/or
physical differences may accompany, even if they
do not cause, different morphologies. Either way it
seemed important to investigate whether or not
there are any fundamental differences between am-
phiboles of different habit.

Many investigations of amphibole asbestos have
been carried out in recent vears, mainly on cum-
mingtonite-griinerite (amosite) and anthophyilite,
but comparison has not usually been made with their
prismatic counterparts. Exceptions to this were the
studies by Ampian (1976), Campbell et al. (1977),
Zoltai (1978) and Wylie (1979), but these were
based almost entirely on optical properties, and in
the case of Wylie (1979) on some X-ray diffraction
in addition to optics. The aim of the present study
was to determine the characteristics of both asbes-
tos and non-asbestos varieties, but confining atten-
tion in the first instance to members of the tremolite-
ferroactinolite series. A large number of specimens
were examined by a variety of methods including
optical and electron microscopy, chemical analysis

by electron microprobe, and X-ray and electron dif-
fraction. Preliminary results were described by
Dorling and Zussman (1980). More complete re-
sults are described here under three main headings:
morphology and cleavage, internal sub-microscopic
features and chemical composition. Specimens are
listed in the latter section.

Useful reviews of the crystal chemistry of amphi-
boles have been given by Hawthorne (1981, 1983),
and of the electron microscopy of asbestos by
Chisholm (1983).

Morphology and cleavage

The amphiboies studied range from fine-grained
massive, to blocky, bladed, prismatic or acicular
crystals, the latter grading into asbestiform vari-
eties. Most of the specimens studied had prismatic
morphology. Three were of massive appearance but
were crypto-crystalline; this variety is known com-
monly as nephrite jade. In this study, only speci-
mens which occur as bundles of fibres (commonly
having splayed ends), which readily split into still
finer sub-microscopic units (fibrils), are referred to
and are classed as asbestos. The remaining speci-
mens exhibit very fine acicular or needle-like crys-
tals and are not included in the group of asbestiform
specimens. The name “byssoiite” which was used
by Dana (1922) and Hart (1927) for a fine acicular
variety of actinolite and has also been used by Wy-
lie (1979) will be used throughout this study to de-
scribe this habit. Their occurrence as ctusters of
individual crystals in cavities, e.g., in pegmatite
veins in granite suggests that they have formed by
different processes to those which give rise to
asbestos.

Optical microscopy

Some specimens were prepared for optical study
by crushing in an agate mortar. others were fine-
grained and sufficiently friable to give suitable par-
ticles without crushing. As noted by Ampian {1976},
Campbell et-al. (1977) and Wylie (1979), asbestos
specimens tended to separate on moderate crush-
ing, mostly into long thin fibrils whereas others
cleaved and fractured to produce particles most of
which showed only moderate elongation.

A relatively simple observation which could be
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made on large numbers of grains (100 for each spec-
imen) was that of extinction angle, When such
grains are scattered on a glass slide it is expected
that the majority will lie on their predominant ( hk0)
face. This orientation can in principle at least be re-
cognised by the measured extinction angle, the vari-
ation of which can be predicted by the Biot-Fresnel
relationship. Resuits for the various morphological
types of specimen were as follows:

Prismatic specimens. Some, when lightly crushed
showed no dominance of {110}, (100} or any other
(hk0) face. Others, which tended more towards aci-
cular morphology have dominant surfaces approxi-
mating to {110}, indicating greater ease of {110}
cleavage.

Byssolites. Most showed dominance of (100) im-
plying a lath-like morphology.

Asbestos. For asbestos it has been suggested (e.g.,
Wylie, 1979) that one of its characteristics is straight
extinction in all orientations in the {001] zone (de-
spite monoclinic symmetry), due to either submi-
croscopic multiple twinning, or fibril structure with
random azimuthal orientation. Most of the as-
sumed asbestos specimens examined here yielded a
fraction composed of tiny individual crystals, some
of which showed oblique extinction, and only two
specimens (Table lc, sample Nos. 15 and 16)
showed no oblique extinction at all.

For those specimens which showed straight ex-
tinction only, this could be due either to the mor-
phology [fattening on (100)] of individual
resolvable fibrils, or to the twinning or random ori-
entations of sub-microscopic fibrils referred to
above. Thus, when the “particle” size is very small,
as in the case of asbestos specimens, the resuits of
optical microscopy alone are ambiguous. Neverthe-
less, they are consistent with the detailed observa-
tions of individual particles by electron microscopy
(see below), which can distinguish which of the
above effects gives rise to straight extinction in any
particular case.

Undulose extinction which was observed for as-
bestos bundles is probably due to twisting of fibres,
i.e. an indication that fibres are not strictly parallel
in the bundle (confirmed by SEM observations).

X-ray powder diffractometry and "single-crystal”
diffraction

It might be expected (see, ¢.g., Ampian, 1976),
that powdered specimens of asbestos vanieties would

471

be particularly strongly oriented and give fewer
powder reflections than their non-fibrous counter-
parts. This distinction, at least for the Ca-amphi-
boles studied, is not as clear as predicted. The
strongest observed reflections for both non-asbes-
tos and asbestos specimens are those from 310 and
110; quite strong intensities are obtained for 240,
131, 330 and moderate intensities for 200, 040, 020.
The 020 reflection certainly appears to be weaker
for asbestos. However, even though it does not sup-
press many reflections completely, the orientation
effect is more marked for asbestos varieties than for
the prismatic specimens.

Since the specimens for powder diffractometry are
finely crushed, the orientations produced are an in-
dication largely of cleavage planes rather than nat-
ural faces in the case of prismatic specimens, but
may still be an indication of natural faces in fibrous
specimens, bearing in mind the widths of fibrils
(<1000-8000 A).

We have used the relative intensities of X-ray
powder reflections as another indication of the rel-
ative dominance of particular prism faces or cleav-
ages, or parting planes. The weil-known {110}
cleavage is expected to enhance the 110 intensity,
and indeed it does, but only by a factor of 2.4 for
prismatic and 3.3 for fibrous tremolites as com-
pared with intensity for a random pewder. The 200
intensity however is enhanced far more, by factors
of 9 and 21, for prismatic and fibrous tremolites,
respectively. The surprising importance of the (100)
cleavage, parting or natural faces, particularly in fi-
brous specimens is thus indicated,

X-ray “single-crystal” methods have been espe-
cially useful in studying byssolite specimens which
might otherwise have been regarded as asbestos.
Needle-like specimens ranging from 130 to 15 ym
in diameter, gave diffraction patterns of single crys-
tals. By comparison, asbestos fibres of similar
thicknesses proved to be bundles of fibrils giving
typical rotation photographs from an oscillating
crystal.

Scanning electron microscopy (SEM)

Observations using a scanning electron micro-
scope show a number of differences in the mor-
phology and natural sizes of crystals or fibrils for
different specimens of the tremolite-ferroactinolite
series.
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TABLE |

List of spccimens in order of decreasing Mg/Fe ratio {localities, specimen numbers and/or donors, and chemical formulae. all on basis of 23 oxygen
equivalents, are given)

(a) Prismatic and massive (nephrite) specimens.

{1} Tremolite {Canaan, Conn,, U.5.A.; JM 4173.7-4)
N2y 03 Ko 0sCa1 54N 162 00 M4 96F€0.01) 2.93515.040::( OH)»

(2} Tremolite (Nigeria; BM 1932, 207)
Cay gr{ Mg, g2F €0 01) 3 90315 0:02:{ OH)

(3) Tremolite (Przeworno. L. Stlesia, Poland; Dr. B, Kwiecinska, Acad. Mining & Metall., Cracow. Poland)
Nag ,2(Ca; wsNag o ) 1.00( M4 oiFeogsAlp 23) 1 04515 13Alg 2:02:{OH ),

(4) Tremolite {New York. U.S.A.; Colorado School of Mines. Golden, Colo., U.S.A.)
(Ca, 53Mn5.0:MBo 07)1 91 (MBav2Feo 53Al0.05) 5 00513 0102:{ OH)

(5) Tremolite (Verla Irene. Sweetwater, Wyo., U.S.A.; Prof. T. Zoltai. Univ. of Minnesoia, Minneapolis. Minn., U.5.A.)
Cayoy( Mg, s1F€0 13)a 85513 0101:(OH)»
(6} Tremolite (Lander. U S.A. (nephrite); Prof. W.S. MacKenzie, Univ. of Manchester. Manchester, U.K.)
Cayvr{ Mg, 557 €0.15) 5.00515.0:02:{ OH)
(7) Tremolite (Balmai. N.Y., US.A_; TN)
Nagae( Car7sNag 15Mng.0s) 2.00( MBa asMRg 09A 0.0 )5 00818 0,022( OH)
(8) Tremolite (I1aly, Cape Asbestos Fibres L1d., Uxbridge, U.K.}
Nag ay( Ca, 33sN25.00MB0 03) 200 MB4 51 Fe0.15Al0.04) Sig.00022( OH ) 2
(9) Tremolite (Perth, Ont., Canada; Jagiellonian Univ., Cracow, Poland)
Nag,»5Ko.05Caz 00l M24 61 Feo.10Al0.08) 3 2851~ 5340 4202:(OH)2

(10) Tremolite { nephrite) (Verlalrenc, Wyo., U.5.A; Prof. T. Zoltai, Univ. of Minnesota. Minneapolis. Minn.. U.5.A.)
{Ca; osM8o.03) 201 (M84.63F€0.25Cr0 04k 06) 5.0051 7 38l 12022( OH )5

(t1) Tremolite (Gouverneur. N.Y., U.S.A.; JM 4173-52-3)

Nag 26Ko,13(Ca) 76N20 30) 2.00 (MEa s:F€0 22l 08) 4 07 S 534k 1 70:2( OH),

(12) Tremolite (Walliston, Ont., Canada; UM)

Cay .1 (Mg 71Fe0.20)5.00515.040:2:( OH).

(13) Tremolite {Greenland: BM 93371)

Nag 15{Cay 43N0 07:MEo 0s) 2 00{ Mg s3F 0.1\l 06) 5.00Sk7. 7516 25022 (OH) »

(14)  Tremolite (San Francisco. Calif.. U.S.A.; BM 39400)

Nag, a(Cay sNao, sM8o.04) 2.00( ME4 51 Feo csAlo 05) 5.00515.0022(OH) »

{15} Tremolite (Tyrol, Austria; BM 31020)

(Ca, 4/ Nag 0sMrg o1} 2.00{ MR 5sFe0 43MNg 02) 5 00515.0:02:( OH)

{16) Tremolite {Sweden; BM 1939, 185; “actinolite™}

Nagor( Cay o3Nag eoMnNg a1 ) 2.00{ MBs 46F€0.1aM Mo 03AY 04} 5.00517.95Al0 04022( OH ),

(17)  Actinolite {Loch Ailsh, Scotland, U.K.; Prof. R.A. Howie, Kings College. London, U.K.)
Nag oa{Ca, 51 Nag.0sMng 03M8o.13) 2,00 Mg 42F €0 52Al5 06 ) 5 00517.90Al0 1002:( OH )2

(18) Actinolite (unknown locality; Jagiellonian University, Cracow, Poland)
Nag 0y (Cay 2aN20.00M g 0aMEo.09) 2.00( M8 44 F€0 56500517 95Al0.03F €0.020:2( OH),;

(19) Actinolite (Zillenal, Austria; UM)

Nag 2(Ca) 5:Nag 07Mgo 11) 2 00{ MB4 29F€0.4Cro.0sAl0 1) 5.005171 89Alo 110::(OH ),

(20) Actinolite (Salzburg, Austria; UM) .

Nay go( 21 42Nag 0sMBo.10) 2 00{ M4 31 FE0 45A1h 05,0081 040 66022 { OH)

(21) Actinolite (Salzburg. Austria; JM 3647-152-10)

Nag :(Cay 2sNay 1 :M8a 11) 1 oe(M8a 1 Fey 6CTogsAlg0) s 06517 0aAlopsa O (OH )2

(22) Actinoiite (Yancey Co.. N.C,, US.A,; UM)

(Ca, 15Mrig 5sMEy 14) 2 02 MEausFen :0Criasly 1) s 087 714l 2002:(OH)

{23) Actinoiite (Verla Irene. Wyo., U.S.A.; Prof. T. Zoltai, Univ. of Minnesota. Minneapolis. Minn.. U.S.A.)

Nay, 21(Cay 4yNag.,sMgg 0112 ool Mea wsFe, <adla 13) 500510 264l 202:{OH )
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TABLE } {continued)

(a) Prismatic and massive (nephrite) specimens (cont.):

(24) Actinolite (Los Angeles, Calif., U.S.A_; Colorado School of Mines, Golden, Colo., U.S.A.)
Nag pe(Ca, 53Nay 1My 03) 2 000 MBa saF €0 56MNg 01 Cro0sAlo.06) 5 005i7.93Al0 07O2{ OH )2
{25) Actinolite {Habachtal. Austria; UM)

Nay ,2(Ca, 5 Mo 0aM8 24} 13(ME3 1aFenssAln 10} 5.00517.78Alp 2, 0:2:( OH )5

(26) Actinolite { Telemark, Norway; UM)

Nay 0o(Cay :aN2g. 11 MBa.13) 2.00{ ME3 93F€0 30Alp 08) 5.00517.91Alp 070::( OH ) »

(27) Actinolite {U.S.A.; BM 36209)

Nan 13(Ca) 41 Nay 6:Mno.43M8o.04) 2.00( M81.91 Fen 95Al0 14) 5 00517 74Alg 2602:( OH ) »

(28) Actinolite (Wrightwood. Calif., U.S.A.; TN)

Nan 1 7(Cay xsNao 10Mno.63M80 03) 2.00( MB1#3F€0.55Cr003Al0.15) 5.005i7 63Al6.3:0:2:{ OH) »
(29) Richterite (Warm Springs. Calif., U.S.A.; IM 4869-1-1)

Ka.13N2p so(Cay.24Nag 16 )2 00 MBs 25F€0.01) 5.00815 0202:( OH) »

(b) Byssolites:

(1} Actinolite (Doferthal, Tyrol, Austria; OUM 9250)
Nag 191 Cay.99Naa0) )2.00l MB3 ssFer. 1 :MRg 03Alg 1 2) 5 00517 69Ak0 31 O22{ OH)

{2) Actinolite { Untersuizbachthal, Austria;: OUM 13680)
Nay w{Cay o Mng 0sMBoos)20i (MBy asFer 16Alo 19) 500517 5, Al 4902:{OH),

(3) Actinolite {Sulzbachtal, Austria; OUM [35149)
Nay 16Cas o (MBraaFe: syMnposAlo 1234 00507 61 Al 360::( OH)

(4} Actinolite (unknown locality; OUM i6175)
N2y 27(Ca) 9 Mno.0sMBo.07) 200l ME; 2aF ) s0Al0 16) 5.00517.66A10 12022 ( OH )2

(5) Actinolite (Nedre Erker, Norway, ( Drammen granite), Dr. Rowbotham, Univ. of Keele, Keele. U.K.)
Ny oa{Cay osNtg 01 ) 2,000 MB2saF ey 73MNg 05AlG 12) 4 04515 74 Alp 2402:{ OH ),

(6) Actinolite (unknown Jocality; H 109834 Harvard Mus., Cambridge, Mass., U.S.A.)
Nao 1a{Ca;.9xMBa.05) 203 MB2.02F 82 0741001 ) 5 00517.20A k0 200:2:{ OH )2

(7) Actinolite (St. Christopher, France; OUM 1819)
Nag s{Caso:Mng.1) 21 3{ MB2 soF€7.25Mng 25) 500517 85410 070 12{ OH);

(8) Ferroactinolite (unknown locality; OUM 1822)
Nay 1Ko 0:Ca sl M8, 19F €2 5 Mg geAly 02)4.08517 74Alg2602:( OH)

(¢} Asbestos specimens:

(1)  Tremalite {Pennsyivania, U.S.A.; Prof. R.A. Howie, Kings College, London, U.K.)
Nay 10{ Cay sN3u 01 Mgy 04) 2.00( MEa 45F€0.05) 500517 3:022{ OH)

{2) Tremolite {Korea; Cape Asbestos Fibres Lid., Uxbridge, U.K.)
Ca: .00 M. 8oF€0.09)4.98315.000:2(OH),

{3} Tremolite (Ialy; BM 66130)
Na, 0:{Ca; 9:N25.03) 2.00( Mg, :F€0.11)4 96517.9602:(OH )

{4y Tremotlite (Piedmont, Ntaly; BM 406; pilolite)
Nag oo Ca1 wuMe0.01) 100 {M8a sFeo.18) 5 005i7.0:02:(OH)4

{5y Tremolite {unknown locality: Dr. A. Wylie, Univ. of Maryland. College Park, Md., U.S.A.)
(Cas aMBi02)202{ Mgy aFey ) s oSty 00022 (OH )

(6) Tremolite (Corsica, France, BM 59440)
Ca, oriMgaaiFeuis)s S, 0::10H),

(7} Tremolite (St. Gotthard. Swuzerland: QUM 6806)
Na 18C2s uel MBy s F € 20) 4 40317 04l 150 :-(OH ).

{8) Tremolite (Haly; TN)

Nauodd Ca, /N2y Mo os) s oof M2y aFen 1) s 0Sin i O:2:( OH)

{9) Tremolite {Baja Verepaz, Guatemala: U.S. Bureau of Mines, Washingion, D.C., U.5.A)
Nay 1w Cay usNaw Mg oad 2 ead MBa 0 Fes ) < 00817 0,0 (OH) .
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TABLE | (continued)

(c) Asbestos specimens (conl.):

{10) Tremolite
(Cay. Mg 02 Mo 11 ) 203 (MBa 5 Feo 20} 500817, 430:2:( OH)

(11) Tremolite
Nay 14Cas 1u( M8y s:F €4 31) 4 80818.0:02:(OH)

{12) Tremolite
(Ca s MRy mM&u MDzosl ME-MFED s ouSi’ 9501:(0:“)2

(13)  Tremolite
Ca oo MEs 1sFea 13Mng 04)5 018150/ 022{ OHY 2

{14) Tremolite
Cay gsMgoui{ Mis 23F€0 57}5.00519 0:02:(OH):

(15) Actinolite (Mexico; JM 4869-2-6)

(St. Gotthard, Switzerland; OUM i820)

(Jamestown. Calif., U.S.A.; JM 4173.70-1)

(Udaipur. India; Dr. A, Wylie, Maryland, College Park, Md., U.§.A.)

{Rajasthan. india: U.S. Bureau of Mines, Washington, D.C., US.A.)

{ Kobuk River. N.W. Alaska, U.5.A.; Colorado School of Mines, Golden, Colo., U.5.A.)

Nayg 05(Ca, 32Nag geMng 0sMBo.01) .00 MBr.07F €1 s0Alo.04) 5.00517 90Alg 01 022(OH)2

{16} Ferroactinolite
{Cay gaNag ; My osMBo.01 )1 97A MBy.12F8 55 500518 05022 OH ),

(“prieskaite™) (Ex Mine, Prieska, South Africa; Dr. Rowbotham, Univ. of Keele, Keele, U.K.)

Key to donors: BM = British Museum (Natural History); M =Johns Manville Co. Ltd.; TN =Turner and Newall Lid.; UM = University of Man-

chester, Department of Geology: OUM = University of Oxford Museum.

The morphology of coarse prismatic crystals is
close to that generally regarded as typical for am-
phiboles i.e. with major {110} and smaller (010)
and (100) faces. The topography of a cleavage sur-
face is clearly different from that of a growth face.
Growth surfaces (Fig. 1a) are usually roughened and
striated due to the presence of vicinal faces and small
irregularities, and often have adhering particles giv-
ing a “dusty” appearance. Cleavage planes (Fig. 1b)
appear as clean and smoother surfaces but are bro-
ken up by steps in the {110} cleavage plane.

The massive variety of nephrite is fine-grained

and exhibits near-random polycrystalline texture
(Fig. 2).

Byssolite crystals appear as thin laths, bounded
by crystallographic planes striated paraliel to their
length (Fig. 3). These striations represent vicinal
faces which are normally associated with rapid
growth and metastability. Stepped faces observed by
transmission electron microscopy ( TEM) on asbes-
tos fibres see p. 476) were found to be a combina-
tion of {110} and (100) planes. It is possible that
the steps observed on byssolite needles are of a sim-
ilar character.

Fig. 1. Scanning electron micrograph of: (a) growth surface (actinolite — Italy); and (b) cleavage surface (actinolite — Habach-

tal, Austria).




Fig. 2. Scanning electron micrograph of fracture surface of
massive variety (nephrite jade. Warm Springs, Calif., US.A.)
exhibiting texture of randomly oriented crystals.

A common feature was observed for asbestos
fibres and byssolite crvstals, i.e. flattening of crys-
tals on (100). No cleavage cracks were observed on
the surfaces perpendicular 1o the z-axis of asbestos
fibres or byssolite crystals.

It appears that the morphologies observed for as-
bestos specimens and byssolites depart from the
morphologies predicted for the tremolite-actinolite
series by Chisholm (1980) based on estimates of
surface energy derived from electrostatic bond
strengths. The morphology predicted is such that the
forms (010) and {110} are prominent and more or
less equally developed, vielding a cross-section per-
pendicular to z which would be slightly elongated in
the direction perpendicular to y rather than the
elongation parallel 1o y observed.

It is generally thought that rounded and other non-

Fig. 3. Scanning electron micrograph of *'byssolite™ (13680)
showing striations paraijlel to the crystal’s length.
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planar surfaces, also vicinal faces, form on crystals
as metastable features, occurring during the first
stages of crystallization and transforming into flat
faces if growth continues (Chojnacki, 1973). Those
observed on natural asbestos are consistent with the
conclusion from laboratory experiments (e.g.,
Makarova et al., 1970) that asbestos forms as a re-
sult of rapid growth from a supersaturated medium,
conditions applicable to fluid-filled vugs and veins.
Experiments also showed that prolonged favoura-
ble conditions lead to the coarsening of fibres; the
presence of some coarse fibres within a natural as-
bestos bundle may be explained in a similar fashion.

Transmission electron microscopy (TEM}

The method of TEM has been particularly useful
in our study of: (1) the morphological features of
asbestiform specimens; and (2) internal defects in
each of the morphological groups. In general ion-
thinned specimens and dispersions were examined,
but for asbestiform specimens cross-sections pro-
duced by ultramicrotomy were particularly useful.

In electron microscopic studies the surprising im-
portance of (100) development revealed by optical
observations is again evident. In asbestos, bysso-
lites and in the crystailites of nephrites there is a
tendency towards a lath-like morphology (y> x di-
mension). For asbestos, lath widths varied from 500
to 3000 A in most specimens but fibrils up to 8000
A wide were observed.

The sizes of fragments of asbestos fibres are of
course greatly influenced by the treatment during
sample preparation. Experiments carried out on as-
bestos showed that prolonged ultrasonic dispersion
leads to reduction in fibres’ widths and thicknesses,
and not so much to reduction in lengths, whereas
prolonged grinding in a mortar prior to dispersion
causes fibres to break into shorter fragments.

Observations of cross-sections and dispersions
indicate that most fibrils are produced by separa-
tion along interfibrillar boundaries and not by
cleavage or parting of unit fibrils. It has been sug-
gested (Chisholm, 1973; Veblen, 1980) that the fi-
brous nature of amphibole asbestos might be a
consequence of breakage on (010), the plane on
which Wadsley defects (chain-width errors) occur.
Although we observe beam damage to occur readily
on such planes, they do not appear 10 act as planes
of cleavage or fracture. The possibility of fibrils
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Fig. 4. Actinolite asbestos (Mexico). Low-magnification
electron micrograph of ion-thinned cross-section. X =areas
with fibres tightly packed in a bundle.

breaking longitudinally along (100) faults and {110}
planes cannot be ruled out however, and it may be
an especially active mechanism in coarse fibres, al-
though some of the observed separation on {110}
may have been induced during the sample prepara-
tion by uiltramicrotome.

If fibrils were indeed primarily derived from the
fracture of larger units on such planes as (100),
(010) or {110}, then one would expect to find that
fibrils are in similar orientations. In fact TEM stud-
ies of cross-sections of fibres (see below for detail)
show that even within small clusters the individuals
are in a variety of azimuthal orientations. It is per-
haps surprising that the {110} cleavage of amphi-
boles does not feature more prominently in TEM
studies. The cleavage property may therefore di-
minish in prominence with decreasing crystal size.

The relative orientations of asbestos fibrils and
the boundaries between them were most clearly re-
vealed in cross-sections, A low-magnification elec-
tron micrograph of ion-thinned actinolite (Table Ic,
No. 15) fibres cross-section is shown in Fig. 4. Many
fibrils, even very small ones, were separated by the
resin during embedding, so the natural boundaries
between these fibrils were not observable. How-
ever, in some regions {e.g., X in Fig. 4), fibrils were
less separated, showing the actual arrangement of
fibrils within a bundle, fibrils fitting tightly hke a
jigsaw puzzle. A number of fibrils are partially
bounded by what seem to be {110} planes.

Various fibril morphologies have been observed;
those of irregular outline, but nevertheless flattened
in one direction; some with unusual morphology
(Fig. 5a) bounded by {110}, and (010) and (100)
crystallographic planes; and fibrils approaching an
“ideal” crystal shape. In Fig. 5b the fibril, although
only 0.1 um wide, is bounded by low index crystal-
lographic planes {1103}, (100) and very small (010)
faces, For some fibrils (Fig. 5¢) high-resolution
electron micrographs show that parts of the (100)
and {110} faces consist of a series of very fine steps,
sometimes only a few lattice planes deep.

Cross-sections of ferroactinolite asbestos { Table
Ic, No. 16) were examined only by means of ul-
tramicrotome sections with approximate thickness
of 300 A. Its fibrils were seen to be smaller than those
of actinolite ( Table 1c, No. 15) and were often 1000
A wide. They were found also to have more irregu-
lar morphology. The most commonly observed out-
line of fibrils, still held together in a bundle, is
illustrated by Fig. 6. This specimen did, however,
also contain some fibrils partially bounded by
straight faces. Fibrils are randomly oriented in the
bundle; in the example shown fibrils are rotated
around the z crystallographic axis with respect 10
one another by up to 40°.

“Massive”™ varieties of amphibole commonly
known as nephrite jade, and one specimen which
proved to be of richterite composition, have been
examined by TEM using the dispersion and ion-
beam thinning techniques to prepare specimens.
Detailed results were given in Dorling and Zuss-
man (1985) and only a brief summary is given here.
The specimens were found to contain clusters of very
small lath-like crystallites with --axes approxi-
mately parallel but in a range of azimuthal orienta-
tions (Fig. 7). It is suggested that these clusters,
which are themselves in varied orientations, are the
result of post-tectonic re-crystallization of strained
amphibole crystals, the new crystals inheriting the
z-axis orientations of the old. The extreme tough-
ness of nephrite jade is attributed 10 a number of
the sub-microscopic features observed including the
sizes, habits and orientations of its crystallites and
the nature of its grain boundaries. These observa-
tions on nephrite are consistent with those obtained
using the polarizing microscope and the scanning
electron microscope.



Fig. 5. Actinolite asbestos (Mexico). Electron micrographs
of:

a. Single fibril (cross-section) with unusual morphology,
bounded by straight crystallographic planes, i.e. (100}, {110},
(010).

b. Single fibril approaching an “ideal" crystal shape.

¢. High-resolution tmage of part of a fibnl with {110} lattice
planes resolved. Note the siepped nature of the (100) face.

Internal sub-microscopic features

In this study similarities and differences have
been noted as between different morphological va-
rieties of amphibole with regard to such fine-scale
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Fig. 6. Ferroactinolite asbestos (Prieska, South Africa). High-
resolution etectron micrograph of microtomed cross-section
perpendicular to 2. Note irregular outline of fibrils, and vary-
ing orientations in the bundle.

features as grain boundaries, exsolution lamellae,
multiple-chain defects (010), twinning on (100),
dislocation networks and alteration margins.

Prismatic varieties

Many of the features mentioned above were ob-
served in the prismatic actinolite from Habachtal
(Table la, sample No. 25) and for this a fairly full

~ WL

Fig. 7. Nephrite jade ( Verla [rene, Sweetwater, Wyo., U S.A.).
Electron micrograph of cross-sections of crystallites exhibit-
ing approximately random orientation. The directions of y-
axes of individual crystallites are indicated by the (010)
defects.
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description is given. For other prismatic specimens
only additional features are reported. In hand spec-
imen, the actinolite appears as dark-green, coarse
prismatic crystals. Electron microscopic studies re-
vealed that it contains abundant defects on (010),
{1.e. chain-width defects), dislocations and an ex-
tensive grain boundary network characteristic of
deformation structure.

A typical area of this actinolite is shown in Fig.
8a. The specimen was tilted slightly away from the
[100] zone axis to obtain contrast from the (010)
defects, visible as linear features running parallel to
the z-axis. An extinction contour running across the
crystal is slightly displaced at the defects. Some-
times Wadsley defects appeared at low magnifica-
tion to be non-parallel, as for example shown in Fig.
8b, where defect 7 continues along the same plane
through a considerable distance, whereas defect /7
1s displaced through the crystal in step fashion to-
wards /. This is because defect IT consists of several
defects, each extending through a relatively short
distance and then being offset by a few planes at the
fault which is visible by fringe contrast. Fringe con-
trast indicates that the fault plane at which the ter-
mination occurs is inclined to the projection plane
and that there is a certain amount of strain associ-
ated with the termination. Terminations of defects
can be seen in Fig. 8c (e.g., at 4 and B) where the
fault plane is edge-on.

Where dense chain-width defects were observed,
these gave rise to streaking along b* in the diffrac-
tion patterns, an effect expected due to the consid-
erable structural disorder involved.

Chain-width defects have been examined by the
one-dimensional lattice imaging technique, tilting
the specimen in the electron microscope to bring the
[100] direction, or indeed any other zone axis per-
pendicular to y, parallel to the electron beam. At
high resolution, chain-width defects appear as wider
spacings among approximately 9 A (020) lattice
fringes corresponding to the normal amphibole
double chain width (see, e.g., Fig. 14). The best re-
sults were obtained from areas close to a thin crystal
edge. but the edge itself was often beam-damaged.
Beam-damage also occurred along chain-width de-
fects. This was observed frequently and in most
cases it causes the defects to appear to be wider than
they really are. Decomposition, probably by dehy-
dration, usually appears to progress along defects
from the edge of the specimen. This must indicate




Fig. 8. Prismatic actinolite (Habachtal, Austria) ion-thinned
specimen:

a. A low-magnification electron micrograph showing abun-
dant defects on (010).

b. Defects on (010) 7 and /I. Defect IT crosses the crystal in
step-wise fashion via faults.

c. Terminations of (010) defects at faults, e.g. A and B seen
edge-on.

d. Microstructure showing dislocations in mostly curved sub-
grain boundaries.

some different property of the defect lamellae com-
pared with the double-chain matrix, possibly a dif-
ference in chemical composition. Beam damage
appeared to be most evident in regions where there
are higher multiples (4-chain and above) of chain
width, or a higher density of chain-width errors of
all kinds.

Other 1ypical microstructures are illustrated in
Fig. 8d. At sufficiently high magnification it could
be seen that sub-grain boundaries consist of a series
of dislocations, roughly parallel to {001]. The sub-
grain boundaries in general were slightly curved and
did not follow any particular crystallographic
direction.

Pianar arrays of dislocations were commonly ob-
served. Isolated individual dislocations frequentiy
present in this specimen were studied by contrast
experiments, and the Burgers vector b was deduced
to be parallel to [001]. Where dislocations with
Burgers vector parallel to z have been described in
pyroxenes, it was suggested (Christie and Ardeli,
1976) that their formation took place by transla-
tion of the layers of chains involving breaking of onty
metal-oxygen bonds between the chains rather than
the Si-O bonds in the chains. Similar mechanisms
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probably apply here to amphiboles. Lorimer (1974)
suggested that the sub-grain networks probably form
during a recovery and recrystallization process,
while the planar arrays of dislocations and individ-
ual dislocation networks are primary deformation
structures. Rearrangement of dislocations into
boundaries is one of the mechanisms for releasing
strain energy accumulated during deformation
(Hull, 1975). Further imperfections occurring in
this actinolite were stacking faults on (100).

Another prismatic actinolite (Table la, sample
No. 26) exhibited exsolution lamellae, on (100), of
a Ca-free phase which were identified as griinerite
using the analytical mode of the Philips 400T elec-
tron microscope.

A prismatic tremolite from Nigeria (Table la, No.
2) and another from New York (Table la, No. 4)
showed regions of alteration to talc. the margins of
which appear to be associated with either faults or
low-angle sub-grain boundanies. In Fig. 9, talc ap-
pears to be eroding tremolite along (020) planes.
By contrast, in another prismatic specimen there is
a sharp talc-actinolite interface (Fig. 10} for which
the diffraction pattern suggests coincidence of ¢*
(talc) with [110]* (actinolite). The relationship a
(tale) =c¢ (1remolite), as observed by Stemple and
Brindley (1960) possibly occurs also in this case.
These relationships suggest parallel growth rather
than alteration.

The specimens of tremolite and actinolite of pris-
matic habit studied here by electron microscopy
have been shown to contain highly deformed areas
(1.e. with dense dislocations and boundanies) as well
as homogeneous, almost defect-free regions. This
indicates the need to examine several sections of a
specimen before drawing conclusions as to the
abundance of defects.

Fine acicular varieties of actinolite ( byssolites),
and nephrites

Individual needle-like crystals of three byssolite
specimens were mounted directly across brass rings
and ion-thinned. Observations revealed the pres-
ence of faults on (100), disfocations and multiple-
chain defects, but in general byssolites are free of
defects as compared with prismatic specimens. An
unusual effect was observed 1n some specimens of
byssolite and is illustrated in Fig. 11. These are
thought to be fluid inclusions with large strain fields
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Fig. 9. Prismatic tremolite (New York, U.S.A.). Electron micrograph showing:

a. The alteration of tremolite to talc (with large pores). Inset: SAED pattern from tremolite on either side of the alieration “river”
of talc (beam parallel to [ 101]). Slight rotation at the boundary is indicated by spiit reflections.

b. Enlargement of the boundary area between talc and tremolite showing alteration developed along (010) planes.

Fig, 10. Prismatic actinolite (unknown locality). Direct {at-
tice resolution of 1alc with numerous faults. Inset: SAED across
the interface talc-actinolite; ¢* of taic coincides with [110)*
of actinolite.

around them, but attempts to identify the nature of
these tiny inclusions were unsuccessful. In the three
nephrite specimens examined, chain-width errors on
(010); some isolated and some regularly repeating,
are more abundant than in other amphibole speci-
mens. Beam damage occurs preferentially along

Fig. 1'1. Actinolite (variety byssolite). Electron micrograph
showing faults or sub-boundaries decorated with void-like
features.

these defects (as well as at grain boundaries) and
helps to reveal them even at relatively low
magnification.



Asbestos

Asbestos specimens were prepared by ion-thin-
ning of doubly polished thin-sections, by ion-thin-
ning of fibres directly mounted longitudinally on a
specimen grid, by the dispersion method or by ul-
tramicrotomy of cross-sections. A common prob-
lem encountered with the ion-thinned specimens
was overlap of fibrils. Whereas such specimens were
useful for the observations of defects, they did not
readily provide information about sizes and orien-
tation of fibrils. LameMar features often present in
such sections would seem to indicate twinning but
electron diffraction patterns are complex and are
similar to those produced by fibrils in random azi-
muthal orientations as well as twinning.

Observations on ultrasonically dispersed fibres of
actinolite asbestos (Table 1¢, sample No. 15) show
well-separated units which are believed to represent
naturally occurring individual fibrils. Not all fibrils
show smooth parallel sides. Features as arrowed on
Fig. 12a are thought to be “‘impressions’ of other
fibrils growing in different directions. In some spec-
imens, boundaries running across fibres, i.e. roughly
perpendicular to their lengths, were observed where
the (020) lattice fringes show rotation of approxi-
mately 10° across the boundary.
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Multiple twinning is frequently present. Fibrils
showing twinning by diffraction contrast are lying
approximately on (010). Evidence of twinning was
observed also on b* c* diffraction patterns, i.e. with
the electron beam perpendicular to the twin plane.
These frequently exhibited anomalous features, i.e.
they appeared to contain 040 and Ol reflections
-with k odd which are not allowed by the space group
C2/m. This can be explained by the superimposi-
tion of the two orientations; in most cases the elec-
tron beam was parallel to [ 100] in one part of the
itwin and 1o [101] in the other part. (The addi-
tional reflections were too intense to be explained
by double diffraction.) Multiple (100) twinning in
asbestos (Table 1c, No. 15) seen in longitudinal
sections was observed also by diffraction contrast
in cross-sections, e.g. Fig. 12b.

Changes, most likely due 10 beam damage. oc-
curred in some specimens. forming “amorphous”
rims on fibrils, as shown for example in Fig. 13;
similar changes were found to occur at the defects
and fibril boundaries. Crawford (1980), in his
studies on crocidolite asbestos in human tissue,
showed a similar effect, which was described as a
“grey layer” and its presence was explained by ero-
sion which had occurred as a result of biological ac-
tivities of lung tissue and blood serum. There could

Fig. 12. Actinolite asbestos { Mexico):
a. Electron micrograph showing morphology of fibrils dispersed without grinding. “Impression™ features are arrowed.
b. Section of fibrils approximately perpendicular to z-axis. slightfy tilted, giving rise to diffraction contrast in multiple twinned

fibrils.




Fig. 13. Electron micrograph showing beam damage occur-
ring at the outer rims of fibrils sectioned perpendicular 1o z-
axis.

be difficulty in distinguishing possible effects of this
kind from thgse which arise purely from electron
beam damage.

Multiple twinning was shown also by ferroactin-
olite asbestos (Table Ic, No. 16), the twin lamellae
having thicknesses of approximately 200 A. Se-
lected-area diffraction patterns from such fibres
show e¢longation of reflections along a* due to the
very fine-scale twinning. The a* direction is com-
mon for both parts of the twin.

Chain-width defects were particularly abundant
(Fig. 14) in fibrils of tremolite asbestos (Table ¢,
No. 13). Streaking parallel to b* was frequently ob-
served in diffraction patterns. In other studies (e.g.,
Hutchison et al., 1975) it was reported that such
defects in tremolite asbestos did not cause streak-
ing, but this may be dependent upon the density of
defects, which can vary considerably from fibril to
fibril even within one specimen. Cross-sections of
this asbestos confirmed the presence of chain-width
defects and showed that some of them terminated
at a fibril’s surface and others within a fibril. Chain-
width defects were common also in other speci-
mens of fibrous tremolite but very few were ob-
served in the two specimens of actinolite asbestos
{Table ic, Nos. 15,16).

Chemical composition

Throughout the present study the nomenclature
recommended by the IMA Commission (Leake,

i
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Fig. 14. Tremolite asbestos (Jamestown, Calif., U.S.A.). High-
resolution lattice image of fibril showing chain-width defects
on (010).

1978) is used, according to which all amphiboles
with (Ca-+Na)x > 1.34 and Na, <0.67 on the basis
of 22(0) and 2{OH) per formula unit are mem-
bers of the calcic amphibole group. The name tre-
molite is used for specimens for which
(Ca+Na)x>1.34, Nay <0.67, (Na+K) a4 <0.5,
Si>7.50 and Mg/(Mg+Fe)>0.90. The name ac-
tinolite is used when Mg/(Mg+ Fe) is between 0.50
and 0.90, whiie other factors are the same as for the
definition of tremolite. End-member tremolite has
the formula Ca,;Mg;Sig0,.,(OH),. Assignment of the
cations to the various sites was made following the
recommmendations in Leake (1978).

Electron microprobe analyses

The specimens of the tremolite-ferroactinolite se-
ries we have studied are listed in Table | with local-
ities, catalogue numbers and chemical formulae. The
formulae were calculated from the electron probe
analyses which are tabulated in order of decreasing
Mg/(Mg+Fe) ratio in Table 2a, b and c. In all cases
the results represent mean values obtained from
cach specimen by analysing several spots. In elec-
tron microprobe analyses there is no distinction be-
tween the two oxidation states of iron; total Fe was
used for calculating the ratio Mg/(Mg+ Fe). In ad-




dition to the major elements of the tremolite-fer-
roactinolite series, i.e. Ca, Mg, Fe, Si, specimens
were analysed for Al, Mn, Ti, Cr, Na and K. Be-
cause the water content has not been determined,
the numbers of atoms per formula unit were calcu-
lated on the basis of 23 oxygen equivalents.

In the case of asbestos and asbestiform speci-
mens, the resulis can be regarded as average com-
positions for a bundle of fibrils since the beam size
is approximately ten times larger than the average
fibril diameter (0.1 um). In all, 54 specimens were
analysed; 26 prismatic, 3 nephrites, 8 byssolites and
17 asbestiform amphiboles. The analyses were car-
ried out using a Cambridge Geoscan instrument

TABLE 2a
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with Link Systems energy dispersive spectrometer.
Accelerating voltage was 15 kV, specimen current 3
nA, and counting time 100 s. ZAF corrections were
applied. The accuracy of the method and details of
procedures were discussed by Dunham and Wilk-
inson (1978). Standards were: Si wollastonite; Al
corundum; Mg periclase; Fe fayalite: Ti rutile: Mn
tephroite; Cr metal; Ca wollastonite; Na jadeite; K
orthoclase.

The totals of analyses presented in Table 2 fall
mostly between 97% and 98%. This would be ex-
pected since constitutional “water” (H,O™*, nor-
mally about 2%) and adsorbed water (H,O",
normally between 0 and 1%) are not detected by

Electron microprobe analyses of prismatic and massive ( nephrite) specimens of the tremolite-ferroactinoliie series

1 2 3 4 5 6 7 8 9 10
$10, 58.88 58,72 57.48 58.97 58.04 58.86 58.77 58.59 36.74 58.27
ALD, — - 3.48 0.30 0.39 — 0.37 0.28 1.54 113
Cr,0, — — — — — — — — — 0.36
FeO 0.21 0.25 0.46 0.27 1.23 1.35 —_ .20 1.62 219
MnO - —_ - 0.59 — — 1.33 —_ — —
MgO 24.06 2394 22.98 24,65 22.66 23.89 23187 1353 22.38 23.24
Ca» 12.57 14.14 13.83 12,58 i3.78 13.48 12.00 12,57 13.55 13.67
Na,0 0.73 - 0.50 — — — 1.05 0.83 0.92 —
K.0 0.46 - - — — — — — 0.47 —
Total 96.91 97.05 98.73 97.36 96.10 97.58 97.39 97.00 97.19 98.86

1 12 13 14 15 16 17 13 19
Si0, 57.29 59.03 56.56 58.00 57.86 57.43 58.06 57,51 57.00
AlLO, 1.55 - 1.97 0.27 - 0.50 0.98 0.46 1.27
Cr,0, — _ — — —_ —_ — - 0.44
FeQ 2.35 2,53 3.54 3.78 3.72 379 4.58 3.01 5.20
MnO — —_— - 0.26 0.30 a2 0.30 —
MgO 22.66 2 22.43 22.10 22.04 21.74 21.41 21.96 21.22
Ca0O 11.98 13.12 12.73 12.00 12.86 13.03 12.42 12.01 12.27
Na,O .88 0.88 1.20 0.31 0.51 0.42 0.46 0.36
K.O 0.76 — - — — - - - -
Total 08.47 97.90 98.11 97.35 97.05 97.30 98.08 97.71 97.76

20 21 22 23 4 25 26 27 28 2%
10, 57.57 57.55 55.61 53.27 56.72 56.16 56.59 35.56 33.03 38.09
AlOy 0.60 0.84 3.6 5.26 0.79 2.46 091 245 308 —
Cr.0. - 0.46 0.27 — 0.40 — - - 0.28 —
FeO 5.66 6.03 6.02 6.32 6.84 7.59 8.41 3.1 8.17 0.24
MnO - - 0.45 — 0.50 0.32 — 0.32 0.29 —_
MgO 21.48 20.97 20.46 18.96 19.57 19.41 19.44 19.00 18.57 2439
Cao 12.33 11.70 11.95 12.88 12.24 12.15 11.71 1276 12.3] 3.42
Na.0 0.69 0.75 — ot 0.79 0.53 0.73 0.35 1.00 1.73
K.O — — — - — - — — - 032
Total 98.33 58.3! 97.92 97.70 97.85 98.62 97.79 v3.75 98.73 97.29

Specimen Nos. 6. 10 and 29 are nephrites: the latter 1s a richtente with nephrite texiure.
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TABLE 2b

Electron microprobe analyses of byssolite-type specimens of the tremolite-ferroactinolite series

1 2 3 4 5 6 7 8

Si0, 53.07 51.98 52.10 53.07 53.35 53.43 52.12 51.75
ALO: 2.52 4.01 3.55 291 2.38 1.21 0.68 1.59
Cr.0, - — - - - - - -
FeQ 9.65 12.04 12.10 13.24 13.98 16.96 18.36 20.08
MnO 0.24 0.29 0.23 0.38 0.28 — 2.95 0.48
MgO 17.05 15.81 14.96 15.37 13.96 13.66 10.39 10.73
Ca0 12.84 1231 12.86 11.93 12.48 12.63 12.54 12.73
Na:0 - 1.06 0.56 1.09 0.29 0.51 0.42 0.46
K:0 - — 0.19 — - - - 0.18
Total 95.37 97.50 96.55 97.99 96.73 98.40 97.46 98.00
TABLE 2¢

Electron microprobe analyses of asbestiform and asbestos specimens of the tremolite-ferroactinolite series

| 2 3 4 5 6 7 8
Si0. 58.53 58.20 57.88 58.04 38.03 38.33 57.712 55.63
ALGOL — — _ — — — 0.32 -
Cr.0, — — — — - — — —
FeO 0.30 0.70 1.06 1.42 1.45 1.62 1.73 2.48
MnO - — — — - — — —
MgO 24.65 23.81 23.68 23.80 23.60 23.42 22.87 22.15
Ca0 13.36 13.05 £3.34 13.47 13.33 1326 13.98 12.41
Na,O 0.42 — 0.36 0.35 — — 0.59 0.32
K.0 —_ — — —_ —_— — — _
Total 97.26 95.76 96.32 97.08 %6.61 96.63 97.21 92.99

g 10 t 12 13 14 15 16
SiO, 31.47 57.76 54.45 58.39 58.43 58.03 41.30 52.18
AlLO, — — — — — - 0.25 —
CF:O\ - - - - - - - -—
FeQ 2.56 2.49 2.66 2.88 3.82 4.96 11.65 30.25
MnQ - 0.24 —_ 0.36 0.37 — 0.28 0.29
MgO 2294 23.40 20.34 23.56 2172 21.56 10.80 4.54
Ca0 13.12 12.86 13.27 12.68 14.03 13.08 8.78 10.95
Na.O 0.72 —_ 0.49 - — — 0.37 —
KO — — — —_ - - — —
Total 96.81 96.75 91.21 97.87 98.39 97.63 73.43 98,21

electron probe analysis. In a few cases {Table Ib,
No. I and ¢, Nos. 2, 8 and !5) totals are exception-
ally low since for these the specimens analysed were
appreciably narrower than the probe size and the
quality of the polished surfaces were poor. Even for
these however. the estimates of the relative amounts
of elements present are expected to be meaningtul
and a formula has therefore been calcuiated.

Compositional nends

The specimens in this study were chosen to be
near to tremolite-ferroactinolite in composition, but
it can be seen from the chemical analyses, that most
{34 out of 54) specimens depart significantly from
the idealized formula. Ca,(Mg,Fe)sSi;0.,(0OH),,
of the series. Substitutions of AI'* for Si**, AP+
for (Mg,Fe)** and Na* for Ca>* are found, and




the A-site has some content of Na*, or Na* plus
K*. These are all possible within the limits of the
general amphibole formula Ay_; X, Y$Z30,,(OH),.

Observed deviations from the ideal tremolite-ac-
tinolite formula can be assigned to compositional
trends toward other amphibole end-members as il-
lustrated graphically in Fig. 15. Considering the way
that the main morphological varieties of tremolite-
ferroactinolite plot on the compositional diagram,
some systernatic chemical features can be discerned.

The asbestos specimens show zero or very slight
departures from the ideal tremolite-actinolite for-
mula, and when they do divert they tend to fall on
the plane tremolite-richterite-winchite, i.e. they have
Na in the X- and A-sites but little or no Al in Z. For
14 of the 16 asbestos specimens the content of alu-
minium is below the limit of detection ( <0.01 at-
oms per formula unit), and the remaining two have
0.01 and 0.05 AL In the latter case 0.01 Al is in sub-
stitution for Si.

For 6 of the 8 byssolite specimens the X-site is
full without the need to allocate Na to it, and for the
remaining two only 0.01 Na is needed. Substitution
of Na in the A-site is however appreciable, as also is
Al for Si and Mg. Byssolites thus plot close to the
base plane of Fig. 15, with Na(X) = (.

The 26 prismatic specimens of tremolite-actino-
lite show a wide range of compositions including
some which have the restrictions referred to above.
It should be clearly understood therefore that the

NaGaNaRZSig AICHTERITE
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conclusion that asbestos cannot have significant Al
content does not imply that it will necessarily form
if Al is absent. A similar caveat applies to byssolites
and their lack of Na(X).

Of the massive (nephrite) specimens examined.
two were close to richterite and tremolite respec-
tively and the other showed a tschermakitic trend,
but too few specimens were available for any gen-
eral conclusion to be drawn.

Additional variations of chemistry with mor-
phology are evident from the probe analyses. Potas-
sium is not present in any of the asbestos specimens
but it is present in some of the prismatic and bys-
solite specimens. Sodium is observed in fewer of the
asbestos specimens and when present shows a nar-
rower range of contents. Manganese occurs in fewer
asbestos specimens than in byssolites, and when
present is in lower concentrations.

According to published accounts, Fe3* is present
only in relatively small amounts { <0.2 at./formula
unit) in the more Mg-rich members of the tremo-
lite-actinolite series, but in the more Fe-rich actin-
olites the amount of Fe as Fe** can be appreciable
(Deer et al., 1963). The total FeO content deter-
mined by means of electron microprobe was recal-
culated for Fe?* and Fe®* for 22 of our specimens
{14 prismatic, 5 byssolites and 3 asbestos), using
the method of Papike et al. (1973). Most of the
tremolites, i.e. specimens containing 0-10%
Fe/{Mg+Fe) do not appear to have Fe as Fe*. Al-
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though total Fe and Fe*~ content is variable across
the range of specimens examined, it was found that
Fe** is either absent or is a very small proportion
of the whole Fe content in byssolite and asbestos-
type actinolites, despite the fact that they are Fe-
nch.

The minor-element contents of Al, Ti, Cr, Mn, Na
and K are summarized for the four morphological
groups in Fig. 16. The asbestiform group shows
lower maximum contents of all the above-men-
tioned elements and moreover these are present in
a relatively small proportion of the asbestos speci-
mens. Viewing the overall chemical composition,
the asbestiform specimens appear to have compo-
sitions closer to the ideal for the tremolite-actino-
lite series.

The most striking chemical feature of asbestos
specimens, their lack of aluminium, is discussed in
greater detail below.

The role of aluminium in amphibole crysial
chemistry and morphology

All the main amphibole groups which are known
to occur sometimes in asbestiform habit, e.g., griin-
erite, anthophyllite. riebeckite, tremolite, actinolite
and richterite, are Si-rich and have end-member
ideal formulae with [8is0-.], i.e. with no tetrahe-
dral Al, whereas common hornblendes, pargasites,
hastingsites, tschermakites and edenites all have
appreciable tetrahedral Al content and do not occur
with asbestiform habit.

The amounts of Al present in analyses of tremo-
lite-actinolite compiled by Leake (1968) varies from
1.0 to 6.0 wi.% which is equivalent roughly to
0.16-1.00 atoms per formula unit, the maximum
allowed by definition in his classification of amphi-
boles. Unfortunately from our point of view, crystal
morphological descriptions were not given in the
above work. Our observations show that, within the
range of Al content permitted by definition, truly
asbestiform specimens are restricted to those at the
Al-free end-member composition. or very near to it.
Thus it appears from the analyses of natural speci-
mens that there is a link between asbestos forma-
tion and lack of aluminium,

Published experimental studies also give useful
information about the growth of amphibole fibres.
Asbestiforrm amphiboles have been synthesized
{e.g., Fedoseev et al., 1970; Kalinin et al., 1975) us-
ing a wide range of composittons including some
with major components {e.g., Ni. Co, Zn. Cu) not
normally found in natural specimens®, but as em-
phasized by Grigorieva et al. (1973), compositions
including Al did not vield a fibrous amphibole.

The above-memiioned workers also demon-
strated that fibrous amphiboles are formed at rela-
tively low temperatures and so temperature of
formation may be another factor as well as Al con-
tent which correlates with morphology (see also
Kostyuk and Sobolev, 1969). Since higher temper-
atures usually favour higher [Al]" content, the two
factors are mutually consistent. It may be suggested
that if appreciabte Al is present asbestos wiil not
form even at the right temperatures for its forma-
tion, and that if Al is absent, asbestos forms at lower,

*One natural specimen (zincian actinolite. Franklin, New
Jersey) studied by us contains 6% ZrO and is asbestiform.
Further details are given in Dorling and Zussman (1984).




rather than higher, temperatures of crystallization.
Alternatively (but rather unlikely), it may be that
fibres form at such low temperatures that even very
small amounts of Al are excluded, even from an Al-
rich environment. The association of asbestos for-
mation with lower temperatures as shown by exper-
imental work is also indicated by its natural
occurrence in veins, the latter being of secondary
{lower temperature) formation.

Theoretical reasons for.the correlation of fibrous
morphology with Al content have been alluded to
by Harry (1950) and DeVore (1953, 1955, 1957),
and are developed further here. Harry (1950) sug-
gested that low values for Si replacement by Al
common in the actinolitic amphiboles may result in
weaker bonding between chains of tetrahedra,
thereby favouring asbestiform development. Con-
versely, a high degree of Al substitution for Si, as in
the hornblendes, favours strong links between chains
and therefore a stumpy prismatic habit. DeVore
(1953) also noted that Al for Si substitution weak-
ened the bonding within the chains. .

The substitution of Al for Si increases the Z2-O
bond distances (Papike and Clark, 1968; Litvin,
1977) and therefore reduces the strength of bond-
ing within and parallel to the length of the amphi-
bole chains. This in itself would argue for a lesser
tendency to fibrous habit, and this effect will be en-
hanced by the necessary compensating substitution
of Al in Y-sites. Whereas Al in M1 or M3 would

TABLE 3

Morphology and properties of tremolite-actinolites; a general comparison
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strengthen each amphibole ribbon, Al in M2
(strongly preferred) should decrease M2-04 dis-
tances and thus strengthen lateral bonding between
neighbouring chains.* The alternative compensa-
tion by Na entering the otherwise vacant A-site will
also serve to strengthen lateral bonding but there is
no indication from our observations or from the lit-
erature that specimens of asbestos have lower A-site
contents than non-asbestos varieties.

While the effects of a large amount of Al substi-
tution on bonding and crystal growth can be readily
visualized, our observation that even very small
amounts of Al can be effective is surprising. A pos-
sible expianation can be offered as follows. At the
structural sites where Al atoms occur in the amphi-
bole chain, development of a lateral growth step will
be favoured through stronger lateral bonding, Once
formed, however, the step could act as a nucleus for
rapid growth paraliet to the chain length. The pro-
cess of lateral steps at Al atoms and z-direction
growth could be repeated. It must be admitted,
however, that there is no direct evidence for the
mechanism having operated.

Conclusions

The physical and chemical features that can be
assigned broadly to each of the four morphologi-

*Standard M site labelling (see, €.8., Hawthorne, 1981).

Properties Crystal Multiple Well- Multiple Dislocation  Exsolution  Chemical substitutions
units twinning developed chain networks and
crystal (010) sub-grain NainA NaforCa AlforSi
Morphology faces defects boundaries
Prismatic large none common abundantin one common some varied varied varied
crystals specimen; few specimens
in others
Acicular slender none common  rare none none appreciable very little  appreciable
(“byssolite™) needles
or laths
Massive submicro-  none rare abundant sub-grain none ) ) ")
(*’nephrite’} scopic bounda-
short Tics
laths common
Asbestos submicro- common rare abundantinre- none none varied little almost zero
scopic molites; few
fibrils in actinolites

*Insufficient samples for generalization.
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cally different kinds of calcic amphibole are sum-
marized in Table 3. Caution is needed however in
its interpretation for two main reasons: (1) asbes-
tiform varieties range from finer (flexible) to
coarser (more brittle) specimens and many Speci-
mens contain a mixture of fine and coarse fibrils;
and (2) there can be some variability in properties
[e.g., density of (010) defects] even within an ap-
parently homogeneous specimen.

The characteristics of the four morphological sub-
groups correlate reasonably well with what is known
of their geological environments. For asbestos spec-
imens, their low level of substituting cations (par-
ticularly Al), lack of exsolution, lack of dislocations
and sub-grain boundaries and generally poorly de-
veloped crystal faces are all compatible with rela-
tively rapid multiple nucleation and growth in a low-
temperature  stress-free  environment. Multiple
twinning on (100) also seems favoured by these
conditions. The opposite properties and conditions
apply to most prismatic specimens. The nephrites,
with massive fine-grained 1exture, derive from re-
crystallization of pre-existing coarser-grained am-
phibole. The features of the finely acicular bysso-
lites, reminiscent of “whiskers”, are consistent with
stress-free growth from fluids or vapour in cavities,
perhaps at moderate growth rates and tempera-
tures. There appears to be no consistent relation-
ship between abundance of chain-width defects and
morphological type.

With regard to the question of heaith hazards, it
seems unlikely, though not impossible, that some of
the distinguishing features enumerated above (e.g.,
twinning or Al content) would confer different bi-
ological activity on the different varieties. We are
left then with the widely accepted view that mor-
phology itself is the important factor, small parti-
cles with high length/breadth ratios being the most
hazardous. Qur studies allow us to conclude quali-
tatively that although crushed non-asbestos speci-
mens produce some small highly elongated particies
the proportion of these is far lower than for dis-
persed or crushed asbestos. This is because asbestos
is comminuted mainly by the separation of fibrils
whereas the others break across prism, lath or needle
length, as well as by {110} and (100} cleavages and
partings.

The prominent {110} cleavages are always em-
phasized in textbook discussions of amphiboles. Our
observations on the macro-, micro- and sub-micro-

scopic scale show the surprising importance of (100)
cleavage or parting as well as the tendency of a lath-
like (parallel to z) growth morphology with flatten-
ing on (100).
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FIBER LENGTH AND ASPECT RATIO OF SOME
SELECTED ASBESTOS SAMPLES*

Ann G, Wylie

Department of Geology
University of Maryland
College Park, Maryland 20742

The primary diagnostic characteristics of asbestos used by most microscopists
studying environmiental air and water samples are mineral identity and aspect ratio
(length/width). These indices are used primarily because other asbestos characteris-
tics. such as tensile strength, surface charge, and flexibility, are not practically
demonstrable under the microscope for such samples. Therefore, microscopists rely
heavil: . .nd sometimes exclusively, on morphologic features. However, the choice of a
3:1 aspect ratio as the definition of a fiber' is an unfortunate one. Many minerals,
including the amphibeles, pyroxenes, and alumino silicates, such as sillimanite, readily
cleave into fragments with this aspect ratio. It is especially inappropriate for
distinguishing between tibrous and nonfibrous amphibele fibers.

Yet, the constraints of phasc-contrast microscopy for particle counting require a
reasonable aspect ratio criterion for asbestos. To help establish such an aspect ratio,
we have characterized four samples of commercial asbestos by size distribution
analysis und mincralogy. These data suggest that the choice of an aspect ratio on the
order of 20:1 would cnsure that most asbestos particles are counted. This aspect ratio
would probably preclude the misidentification of nonfibrous silicates. However, aspect
ratio cannat be used as the only criterion for the identification of asbestos.

SAMPLES

Four <vmples of asbestos were characterized in this study: a short-fiber chrysotile
from the New Idria Serpentinite Body, Diable Range. California (COF-25); a
.mg-fiber chrysotile from the Jellrey Mine, Asbestos, Quebec, Canada (Plastibest
Zth: an aawsite sample that consists of about 95% gruncrite asbestos and 5% actinolite
asbestos from Africa (8-33): and a crocidolite sample (blue asbestos), also from
\frica (M1 6). The two chrysotile samples had not been milled but had been
processed to remove impuritics. The amosite and crocidolite samples were both air-jet
milled 10 reduce the average particles length.

ANALYSIS
Sample Preparation

All samples were prepared for observation in the scanning electron microscope
(SEM) in the following manner. A few milligrams of the mineral were agitated in
Atilled water with a small amount of detergent added to aid in dispersion. This
suspension was filtered onte a 0.1 um Nucleopore® Fiter and washed scveral limes
with distil'zd water to remove the soap. Segments of the filter were then mounted

*Supporied by a grant from the Burcau of Mines, Department of the Interior.
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directly on aluminum specimen tabs, and a drop of a suspension that contained 1.1 um
latex spheres was added and allowed to dry. These spheres served as the internal
standard for size cafibration for all measurements. The tabs were then coated with
cither copper or carbon before being placed in the SEM.

Data Collection

To obtain data that would describe the samples in terms of number of particles,
oniy the length and width of particles whose center fell closest to the center of the ficld
of view as the specimen tab was moved in increments were recorded. This technique
essentially reduces all particles to points and ensures that the data are not skewed to
faver the longer-sized fractions. Length and widths were measured directly on the
cathode ray tube by a ruler cafibrated 1o the 1.1 um latex spheres. It should be noticed

- that in most cases, the width measured was the intermediate dimension, because most
particles will scttic out of suspension with their minimum dimension perpendicular to
the surface on which they settle. Generaliy, morphologic features alone were sufficient
10 ensure that only asbestos particles were being counted. However, when the aspect
rato of a particle was small, energy-dispersive x-ray analysis was performed to
confirm the mineral's identity. This procedure was necessary since all of the bulk
samples contained small but significant mineral impuritics. The data for each mineral
represent between 1200 and 2000 individual particle measurements taken from 12-20
scparate sample preparations. All data were collected with a Cambridge Mark Ila
SEM located at the Institute for Physical Sciences and Technology, University of
Marytand, or an AMR 1400 SEM located at the Burcau of Mines, College Park.
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RESULTS
. ]
FIGLRES 1-4 summarize the results of these experiments. The raw data are LI
presented as the percentage of particles in cach length class that have a given aspect H
ratio. Also shown flor each sample are the frequencies of each aspect ratio class. R
It is clear from these Figures that there is a lincar relationship between aspect @ 'sg'“
ratio and icngth. The linear equations derived from a regression analysis of the mean 5 .
aspect ratio of each length class and the mean length in cach length class arc as follows a2
(sce FIGURE 5): .
1) long-fiber chrysotile CF) ° '
v 30
log,, aspect ratio = 1.01 (log,, length) + 0.77 (n é 2
2) short-fiber chrysotile (SEM) 5 E s
log,q aspect ratio = 0.99 (log,, length) + 0.83 (2) W
v -
1) crocidolite < - »
log,o aspect ratio = 0.88 (log,, length) + 0.62 3) * o
4) amosite 0
log,q aspect ratio = 0.77 (log, length) + 0.59 (4) -
L]
The data fit lincar models cxceptionally well. The R® values, or “percent ‘tg"

cxplained.™ by the four lincar modcls given above are: long-fiber chrysotile, 97.17%;
short-iber chrysotile, 98.2%: crocidolite, 99.2%; and amosite, 98.9%.

Equations 1-4 can be written in a general form as follows: FiGuRe 2. Froqumovs

ratio frequencics are agmm

logl/w=Mlog! + B, (5) af aspeet ratios found 1
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FIGLRE 3. Frequency of aspect ratios in ¢ach lengih class of amosite. Aspect ratio frequencies
are expressed as percentages; lengths are given in micrometers. The frequencies of aspect ratios
found in the sample as a whole (all particle lengths) are also indicated.

where [is the length, wis the width, and M and B are constants.
Rearranging Equation 5. we have:

—logw=1logl{(M-1) + B. (6)

From this equation, it is evident that whea M = 1, width remains constant throughout
all length classes. This relation holds for both samples of chrysotile. There is a stight

.
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IiGure: 4. Frequency of aspect ratios in cach length class of crocidolite. Aspect ratio
frequencics are expressed as percentages; lengths are given in micrometers. The frequencies of
aspect ratios found in the sample as a whole {all particle lengths) are also indicated.
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Fraure & Linear models show aspect ratio dependency on length. The cquations for the
straight lines were derived from regression analyses of the mean aspect ratio in each length
class.

increase in width as length increases for crocidolite (M = 0.88); the eflect is more
pronounced for amosite (M = 0.77).

CONCLUSIONS

The widths of asbestos fibers show very little variation with length, probably
because asbestos is composed of fibrils, unit single or twinned crystals.”* Individual
fibers may be composed of one or more librils. The chrysotile fibrid has a distinct
tubular structure, with a diameter of 250-500 A.* Amphibole fibril widths exhibit
more inter- and intrasample variations. Franco et al.* have reported finding crocidolite
fibrils ranging Irom 500 to about 1500 A in diamcter. The crocidolite described here
has fibril widths less than 3500 A; the amosite fibril widths are less than about 5000
A More work is needed to describe more accuratcly the shape and size of these
fibrils. )

The value of Af (Equation 5) may be a good “fibrosity index.” It is essentially a
measure of the dependency of width on length. Asbestos with well-developed uniform
fibrils, such as chrysatile, will have Af values close to unity. The values of A for
asbestos types that exhibit more variation in fibril shape, such as crocidolite or
amosite, will be slightly less. Preliminary results from a study of massive tramolite
suggest that Af valucs characteristic of nonfibrous amphiboles are less than 0.5.

TAaBLE
ASPHCT RaTio FREQUENCY FOR ASBESTOS PARTICLES LONGER THAN S am

Particles with Particles with Particies with
Aspect Ratios Aspecl Rattos Aspect Ratios
Grcater Than or Greater Than or Greater Than or
Equal 10 10:] Equal to 20:1 Equal to St 1
(3 () (7)
L ung-liber chevsotile 99.5 96.2 76
Short-fiber chrysotile 99.2 95.7 5

Amosite 96.8 839 9
Crocidolite 99.0 89.0 17

th

9.
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Further testing of this model is required before its velidity as a reliable measure of
fibrosity can be established.

The aspect rativs predicted by Equations 1-4 are very large for long particles, but
for particles less than | um, they approach ratios typical of many nonfibrous silicates
(less than 5:1). But 5 um is usually given as the practical working microscopic limit for
asbestos purticle measurement.® TABLE | shows that more than 96% of all measurcd
parlicles longer than 5 um have aspect ratios in excess of 10:1; manv have aspect ratios
in excess of 50:1. Aspect ratios of this magnitude and frequency are uncharacteristic
of most rock-forming mincral fragments and are probably unique to asbestos. This
vbscrvation does not mean, however, that a single mineral particle with an aspect ratio
of this magnitude is nceessarily an asbestos tiber, Only the prevalence of high aspect
rutios in a pupulation of particles of a mineral known from hand samples to occur in an

-asbestiform habit should be used as a criterion for asbestos identilication.

Since the preferred index of asbestos exposurc is the presence of fibers longer than
5 wm counted on membrane filters at 430x by phasc-contrast microscopy,’ the data
suggcest that once the presence of asbestos hus been established, if only particles with
aspect ratios in excess of 20:1 are counted, most asbestos particles would be included:
most nonfibrous mineral fragments probably would not be counted.

The choice of 10:1 as the aspect ratio used would increase the probability of
including a/i asbestos fibers, but, in this case. some nonlibrous aciculur cleavage
frugments nught also be counted as asbestos. The exact aspeet ratio criterion might be
designed to fit the particular circumstinces of cach individual case. In uny event, the
usc of 3:1 is not justiticd on mineralogic grounds and should be abandoned.

SUMMARY

Four samples of asbestos: short fiber chrysotile, long fiber chrysotile, amosite and
crocidolite, have been characterized by particle length and aspect ratio on the
scanning electron microscope. A lincar moedel expressed by logi/w = Mlog!l + B (or,
—logw = log 1{M—1) + B) approximates the data very well. Itis proposcd that M be
considered as a “fibrosity index.” The data indicate thal most asbestos fibers longer
thun 5 um in jength are characterized by aspect ratios in excess of 20:1.
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Characterizing and Discriminating Airborne Amphibole Cleavage
Fragments and Amosite Fibers: Implications for the NIOSH Method

ANN G. WYLIE,*® ROBERT L. VIRTA® and ESTELLE RUSSEK®
ABureau of Mines, Avendale Research Center, Avondale, MD 20782; ®Department of Geology. University of Maryland, College Park, MD 20742,
®Department of Animal Science, University of Maryland, College Park, MD 20742

The NIOSH method for determining asbestos exposure in the mining environment involves using phase contrast microscopy to examine
mineral particulates collected on air monitor filters. Particles are classified as asbestiform or non-asbestiform based on their size and
length-to-width (aspect) ratio. The procedure works well when only fibers are present. In most non-asbestos mining operations, however,
cleavage fragments are the most abundant airborne particulates. In this research, discriminate function analysis was applied to morphologi-
cal data for airborne amphibole particulates to show that dimensional criteria could distinguish between amphibole asbestos and amphibole
cleavage fragments. The particulates for this research were collected from industrial sites where amosite alone was in use and from mining
sites where amphiboles are major rock-forming minerals. The resuits suggest that cleavage fragments can be differentiated from asbestos
fibers based on dimensional criteria alone, but ouly if the current working definition of a fiber is modified. The data suggest that an
appropriate definition of a regulatory fiber would be a particle longer than 5um with a width less than 3um and an aspect ratio of 20:1 or
greater. Adoption of the 20:1 aspect ratio would greatly increase the precision of the NIOSH method. However, a new aspect ratio criterion

must be coupled with a lower exposure index in order to prevent an increase in worker exposure to asbestos.

Introduction

The membrane filter method is specified as the method of
test by the Occupational Safety and Health Administration
(OSHA) Federal Standard for asbestos in industrial air (29
CFR Part 1910.1001} and in the Mine Safety and Health
Administration (MSHA) regulations (30 CFR 55.5-1(b),
56.5-1(b), 57.5-1{b) and 71.202) governing mining air. The
federal standards define asbestos as chrysotile, amosite, cro-
cidolite, tremolite, anthophyllite and actinolite. The mem-
brane filter method (NIOSH analytical method #P&CAM
239) defines an asbestos fiber as “a particulate which has a
physical dimension longer than five micrometers and with a
length to diameter ratio of three to one or greater.™"
Futhermore, it specifies that “in an atmosphere known to
contain asbestos, all particulates with a length to diameter
ratio of three to one or greater, and a length greater than five
micrometers should, in the absence of other information, be
considered to be asbestos fibers.”" The five micrometer
length is the most practical minimum fiber length measur-
able by phase contrast microscopy for fiber counting.®™
The choice of an elongated aspect ratio was made to elimi-
nate most confounding mineral particles such as dirt and
rock fragments, but the lower bound of three was arbi-
trary.® As long as the asbestos fiber definition is applied to
an industrial environment in which only asbestos is being
used, it provides a useful basis for exposure monitoring.
However, in the mining envirenment, where many non-
fibrous particles may fit the definition of a fiber, it may not
be appropriate. The problem is especially acute when
amphibole minerals are abundant.

Of the six minerals regulated as asbestos in the United
States, all but chrysotile belong to a group of silicate minerals
known as the amphibeles. Amphiboles are extremely

common in the earth’s crust. Approximately 30% of the
rocks found in the continental United States contain amphi-
boles as major constituents."® Amphiboles are characterized
structurally by a double chain of silicon-oxygen tetrahedra
and they form prismatic crystals. When crushed, they form
prismatic cleavage {ragments “~hich frequently have aspect
ratios in excess of 3:1. Only rarely do the amphiboles grow
with the extreme elongation and narrow widths typical of
asbestos. This rare habit is characterized by flexibility and
high tensile strength. A more extensive discussion of the
asbestiform habit is presented elsewhere.”® Because of the
unique physical properties of asbestos, the distinction
between asbestiform and other amphibole habits is readily
apparent in hand specimens, but these macroscopic proper-
ties often cannot be observed on small discrete particles such
as those collected on air monitoring filters. In many mining
operations amphiboles are a common constituent of the
rock while amphibole asbestos is present in trace amounts or
absent entirely. In these environments, elongated cleavage
fragments are classified as amphibole asbestos fibers accord-
ing to the existing regulatory criteria and the membrane
filter method.

The Bureau of Mines undertook this study in an attempt
to provide criteria for discriminating between airborne
amphibole cleavage fragments and amphibole asbestos [ib-
ers. Specific questions addressed were:

I. What are the dimensional characteristics of both
populations?

2. What particle dimensions are common to both pop-
ulations and how abundant are these particles”

3. How can the populations be best distinguished?

Copyright 1985, American Industrial Hygiene Assoceatian
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This type of study is necessary because amphibole cleav-
age {ragments are often abundant in the mining environ-
ment and because, where comprehensive epidemiological
studies have been made, no association between amphibole
cleavage fragments and cancer has been demonstrated.®""

Samples

Sixteen air-monitoring filters from two industrial sites
where amosite (grunerite-asbestos) alone was being used
were provided by OSHA, and eleven air-monitoring filters
collected from three mine sites where amphiboles are major
constituents of the country rock were provided by MSHA.
These are: the Homestake Gold Mine, South Dakota; Peter
Mitchell Iron Mine, Minnesota; and the Charlottesville
Stone Quarry, Virginia.

For this study, we have assumed that the particles col-
lected from the industrial sites are fibers of amosite, not
cleavage fragments of grunerite. While the mining of amo-
site may produce cleavage fragments in the raw ore, during
processing the fibers are separated from the gangue. This
separation results in a commercial product which is essen-
tially free of cleaved fragments of country rock. We have
also assumed that the particles collected at the three mines are
cleavage fragments. This assumption is based on the fact
that the geology of the deposits has been described in detail
in the literature and significant amounts of asbestos have not
been noted "2 On the other hand, the country rocks are
known to contain large quantities of nonasbestiform
amphibole: cummingtonite at the Homestake Gold Mine;
grunerite, hornblende and actinolite at the Peter Mitchell
Iron Mine; and actinolite at the Charlottesville Stone
Quarry."*™™ At all three mines, the country rock is crushed
during mining and processing, producing large quantities of
amphibole cleavage fragments. Futhermore, in preliminary
studies of the mine particles collected in the same air filters,
Virta er al."® have shown that the regression coefficients F
and b, derived from a least-squares linear regression analysis
of the form: log width = F log length + b, are similar to those
derived from the same analysis of bulk samples of amphibole
cleavage fragments and are markedly different from those of
bulk asbestos."*'® While we recognize that, because we are
dealing with real-world samples, we can not rule out the
possibility that there could be an asbestos fiber among the
cleavage fragments and cleavage fragments among the
asbestos fibers. However, the approach that we have used is
one that evaluates population characteristics, and the pres-
ence of a few anomalous particles would not affect the
results and conclusions of this study.

Approximately 1000 particles were measured from each
environment on the scanning electron microscope. All parti-
cles have aspect ratios of 3:1 or greater. Energy dispersive
x-tay analysis was used to confirm the identity of every
particle measured. Details of sample preparation and mea-
surement have been presented-elsewhere."”

Discriminant Function Analysis

Indiscriminant function analysis, the objective is to find the
linear function of the variables — in this case, log width and
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log length — that most efficiently discriminates between two
previously defined groups. The data were transformed into
log values so that their distributions would more closely
approximate normality. The analysis defines a linear func-
tion which, when computed for cach particle in the two
sample types, maximizes the variance between the groups
relative to the variance within the groups."” Discriminant
function analysis depends upon a prior knowledge that there
are, in fact, two distinct populations. In this study the two
populations from which the discriminant function was
derived are the amosite asbestos fibers collected from the
industrial sites and the amphibole cleavage fragments col-
lected from the mine sites. The discriminant function that
divides the two populations is of the form

Y = 5.9 log length — 9.2 log width — 6.63 (1)

A particle is classified as a “Group A" particle ifits value of Y
is greater than 0 and as a “Group B” particle if Y is less than
0. By using equation (1), 81% of the asbestos fibers were
assigned to Group A and 919 of the cleavage fragments were
assigned to Group B. We will call the particles in Group A
“fiber-like™ and those in Group B “cleavage-like.”

The frequency distributions of width, aspect ratio, and
length for the cleavage fragments and asbestos fiber popula-
tions are shown in Figure . Also shown are the frequency
distributions of the cleavage fragments that were classified
by equation (1) as “fiber-like™ and the asbestos fibers that
were classified as “cleavage-like.” Several characteristics of
the populations are evident from the distributions shown in
Figure 1. First, the distribution of length of the cleavage
fragments is similar to that of the asbestos fibers while the
distributions of width and aspect ratio are different. Second,
while the cleavage-like asbestos fibers are wider and shorter
(609% are less than 5um) than the asbestos population as a
whole, their most notable characteristics are that they have
low aspect ratios (93% have aspect ratios less than 10:1) and
large widths (80% are wider than 0.6um). The distributions
of aspect ratio and width of the cleavage-like asbestos fibers
are very similar to that of the cleavage fragments. Third, the
particles from the mine which were classified as fiber-like are
distinguished from the other cleavage fragments by their
narrower widths and higher aspect ratios. Seventy-six per-
cent have aspect ratios in excess of 10:1 and 719% have widths
less than 0.6um. However, their lengths are only slightly less
than those of the cleavage fragment population as a whole;
approximately half are less than 5um long.

Discussion

We do not consider it practical to use the specific discrimi-
nant function we have derived as a basis for the regulation of
asbestos fiber exposure. The magnitudes of the coeffecients
are too sensitive to slight changes in the populations. How-
ever, it is possible to make some general observations from
the analysis which might form the basis for formulating
alternative dimensional criteria. First, there are dimensions
that are common to populations of airborne amphibole
cleavage fragments and amosite asbestos fibers. Amosite fib-
ers which are wide and have low aspect ratios look like
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Figure 1 — Frequency distributions of width, length and aspect ratio of the amphibole cleavage fragments {Mine Samples) and
amosite asbestos {Industrial Samples). Group A and Group B are the two populations defined by the discriminant function analysis.
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cleavage fragments and cleavage fragments which have nar-
row widths and high aspect ratios look like amosite fibers,
Second, particles which cannot be differentiated based on
dimensions comprise a fairly small percentage of the total
airborne particle population. Futhermore, amosite fibers are
generally wider and have lower aspect ratios than other
forms of commercial asbestos, crocidolite and chrysotile.
Yet only 19% of the airborne amosite fibers could not be
differentiated from cleavage fragments. These results tmply
that the definition of a fiber could be based on dimensions,
and, if carefully chosen, could inctude enough asbestos fib-
ers to provide a reasonable basis for an exposure standard
while it would exclude most cleavage fragments and alleviate
the problem the mineral industries face under current defini-
tions. Third, if dimensional criteria are to be used to define a
fiber, they should be chosen to describe and include long,
thin particles of high aspect ratio. These are the dimensions
which are most characteristic of asbestos fibers and least
common in a population of cleavage fragments.

In Table I we have examined the effectiveness of six
dimensional criteria for differentiating the two populations.
Three of the criterta have been cited in the literature as
having biological relevance. Two were chosen because they
were generally consistent with our findings from the discrim-
inant function analysis. The sixth is the criteria employed in
the membrane filter methed (NIOSH criteria). It is evident
from the data that both the industrial and the mine popula-
tions are composed of significant amounts of “fibers™ if the

TABLE |
Percentage of Amphibole Cleavage Fragments and
Amosite Asbestos Fibers that Conform to -
Several Dimensional Criteria

Percent of

Dimensional Criteria Total Particles

Amoaosite
Length and Cleavage  Asbestos
Aspect Ratio Width {w) Fragments Fibars

Length = 5um* all widths 41 64
Aspect ratio= 3 w = 0.25um 41 50
3um=w=0.25u 39 50
Length = 5um all widths 6 57
Aspectratio =10 w=0.25um 6 43
3pm = w=0.25um 6 43
Length = 5um all widths 1 41
Aspect ratio =20 w=0.25um 1 27
Ium 2w =025um 1 27
Length = 10um w < 025um® 0 5
Length = Sum w=<05um® 2 42
Length = 8um w=025um" (o] 7

ANIOSH membrane filter method criteria for a “fiber.”

Suggested by Pott {1978)"'¥ as having a high probability of being
carcinogenic.

‘Suggested by Spurney et al. (19792 as having a high probabitity of
being carcinogenic.

PSuggested by Stanton et af (1981)*® as having a high probability of
being carcinogenic.
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NIOSH criteria are applied. According to these criteria, the
two populations appear similar; in both populations close to
half of the elongated particles meet the regulatory criteria for
fibers. It is evident that the NIOSH criteria do not dicrimi-
nate between cleavage fragments and fibers. The dimensions
suggested by Stanton er at."® and Pot"? include a very
small number of the airborne amosite fibers, and it would
appear that it would be impractical to base an exposure
standard for amosite on them. On the other hand, if other
dimensional criteria are applied, the populations can be dis-
tinguished fairly well. Forexample, an aspect ratio of 20 and
length greater than or equal to 5um would include 41 of
the amosite fibers while it would eliminate almost all of the
cleavage fragments. Similar results are obtained by using the
dimensional criteria suggested by Spurney er al®™®

The NIOSH method uses phase contrast microscopy for
monitoring asbestos exposure. By examining only particles
with widths greater than or equalte 0.25um, 1t is possible to
evaluate the effects of the use of the optical microscope in
conjunction with various dimensional criteria for fiber count-
ing. A value of 0.25um was chosen as the lower limit of
visibility of fibers in the optical microscope. This is somewhat
lower than the theoretical resolution of the optical conditions
normally employed in air filter analysis but probably is a
good approximation of the width of a visible fiber.?" The
effects of an upper width limit of 3pm, the maximum width of
a respirable particle, are also given in Table 1.

From Table I it is evident that the optical microscope and
the SEM provide essentially identical data from the mine
samples. This agreement is a result of the large widths of
amphibole cleavage fragments. On the other hand, for the
airborne amosite population the use of the optical micro-
scope results in a reduction in the number of particles in all
dimensional categories, espectally in those of higher aspect
ratio. For example, while 419 of all the amosite fibers are
longer than or equal to 5um and have aspect ratios greater
than orequal to 20:1, only 279 of the visible fibers fall in this
category, These data reflect the mineralogical reality that
asbestos fibers have narrow widths and that many airborne
fibers are not visible by optical microscopy. If the same
analyses were made for crocidolite or chrysotile, the effect
would be much more striking. These minerals have signifi-
cantly smaller widths than amosite and considerably fewer
would be visible by optical microscopy. For example, in one
study it was shown that only 15% of the crocidolite fibers
longer than 5um can be seen by optical microscopy.®® Under
the present regulatory procedures and definitions, the differ-
ence in the widths of cleavage fragments and asbestos fibers
has the effect of aliowing higher total exposures to asbestos
fibers. a designated carcinogen, than to cleavage fragments
for which no carcinogenic potential has been established.

Recommendation

The existing reguiatory criteria for counting asbestos “fibers™
are useful for industrial monitoring during the processing
and utilization of asbestos. These criteria have been in place
for many years and are used worldwide to evaluate exposure
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The ability of inhaled asbestos to produce asbestosis, lung cancer, and mesothelioma in
both humans and animals is well established, and asbestos exposures in the occupational
and general community environment are recognized as significant hazards. However, it has
not been possible to establish realistic and credible dose-response relationships, primarily
because of our inability to define which constituents of the aerosols produce or initiate the
pathological responses. It is generally acknowledged that the responses are associated with
the fibers rather than the nonfibrous silicate mineral of the same chemical composition.
Available data from experimental studies in animals exposed by injection and inhalation to
fibers of defined size distributions are reviewed, along with data from studies of fiber
distributions in lungs of exposed humans in relation to the effects associated with the
retained fibers, It is concluded that asbestosis is most closely related to the surface area of
retained fibers, that mesothelioma is most closely associated with numbers of fibers longer
than ~5 um and thinner than ~0.1 pm, and that lung cancer is most closely associated with
fibers longer than ~10 pm and thicker than ~0.15 um. The implications of these conclusions
on methods for fiber sampling and analyses are discussed. © 1988 Academic Press, Inc.

INTRODUCTION

The evidence from both human epidemiology and experimental animal inhala-
tion studies is clear and consistent. Inhaled asbestos fibers cause (1) asbestosis, a
diffuse fibrosis in the nonciliated portion of the lung; (2) lung cancer; and (3)
mesothelioma, a cancer of the pleura and peritoneum. However, the exposure-
response relationships for these diseases are much less clear and consistent.

There are three different types of concentration indices which have been used
for airborne asbestos. Initially, the most widely used index was the number of
particles per unit volume of air, expressed in millions of particles per cubic foot
(MPPCF), and determined from impinger samples analyzed by the old USPHS
standard dust counting technique using a 10X objective lens. Since there was no
discrimination between fibrous and non fibrous particles, and since fibers are a
very variable fraction of the total dust in most cases, dust counting for occupa-
tional exposure evaluations was replaced by a technique which counts fibers only.
At the time the fiber counting technique was first adopted in the UK, it was
already clear that long fibers were of most concern. This, combined with the

! Presented at the Eighth Annual Scientific Meeting, Universities Occupational Safety and Health
Educational Resource Center, New York, New York, April 2, 1987.
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practical limitation that fibers shorter than ~5 pm could not be reliably identified
by light microscopy, led to the adoption of a counting procedure which uses a 45 x
phase-contrast objective to count the fibers collected on a membrane filter having
a length/diameter (aspect) ratio >3 and longer than 5 pm (ACGIH-AIHA Aerosol
Comm., 1975). The phase-contrast optical method (PCOM) is specified in the
OSHA occupational health standard for asbestos. Table 1 summarizes recom-
mended occupational exposure limits and standards used in the United States
over the last 40 years.

The third type of concentration index is based on the mass concentration of
asbestos, or on the mass concentration passing a pre-collector meeting the British
Medical Research Council (BMRC) or American Conference of Governmental
Industrial Hygienists (ACGIH) sampler acceptance criteria. Some of the recent
animal inhalation studies report the chamber concentrations in terms of the
“‘respirable’’ mass based on samples collected using samplers which meet the
BMRC criteria.

Environmental exposures have been measured either in terms of fiber count or
fiber mass. Fiber counts have been made using both phase-contrast optical and
electron microscopy. The reported concentrations have differed according to the
size distributions of the fibers, the resolving power of the microscope, and
whether there was any discrimination in the analyses according to fiber type. The
fiber mass index was developed by Selikoff et al. (1972) at Mt. Sinai School of
Medicine. The fibers in the sample are mechanically reduced to fibrils, which are
then identified and measured by electron microscopy. Mass concentrations in
nanograms per cubic meter are calculated from the numbers of fibrils and their
dimensions.

Use of these various exposure indices has sometimes led to the development of
a site- or industry-specific exposure-response relationship for one or more of the
asbestos-related diseases, but it has not been possible to develop any generic
relationships. This demonstrates the inadequacy of our current indices of expo-
sure,

TABLE 1
RECOMMENDED AIR CONCENTRATION LIMITS AND STANDARDS FOR ASBESTOS
Group Year Limit
ACGIH 1946 5 x 10° particles/ft®
ACGIH 19687 12 fibers/ml or 2 x 10% particles/ft®
'ACGIH 1970, 1974° 5 fibers/ml
OSHA 1972 5 fibers/ml
OSHA 1976 2 fibers/ml
NIOSH 1976 0.1 fiber/ml
ACGIH 1978,° 1980° 0.2 fiber/ml! for crocidolite

0.5 fiber/ml for amosite
2.0 fiber/ml for chrysotile and other forms
OSHA 1986 0.2 fiber/ml

@ Notice of Intent.
& Adopted as threshold limit value (TLV).
< All fiber limits based on phase-contrast optical determination at 400-450% magnification.
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sition by interception at or near the carinal edge. To the extent that a fiber is
entrained in the secondary flow streams which form at bifurcations, its deposition
probability by interception should be further enhanced.

Deposition in Nonciliated Airways and Effects at Deposition Sites

Deposition patterns within the nonciliated airways distal to the terminal bron-
chioles may be quite varied. Brody er al. (1981} have studied the deposition of
chrysotile asbestos in lung peripheral airways. They exposed rats for 1 hr to 4.3
mg/m? of respirable chrysotile. The animals were killed in groups of 3 at 0, 5, and
24 hr and at 4 and 8 days after the end of the exposure. The pattern of asbestos
fiber retention on the epithelial surfaces was examined by scanning electron mi-
croscopy of hung sections cut to reveal terminal bronchiolar surfaces and adjacent
airspaces. The rat does not have recognizable respiratory bronchioles, and the
airways distal to the terminal bronchioles are the alveolar ducts. In rats killed
immediately after exposure, asbestos fibers were rarely seen in alveolar spaces or
on alveolar duct surfaces, except at alveolar duct bifurcations. There were rela-
tively high concentrations on bifurcations nearest the terminal bronchioles, and
lesser concentrations on more distal duct bifurcations. In rats killed at 5 hr, the
patterns were similar, but the concentrations were reduced. Similar deposition
patterns were seen in rats exposed for 1 hr to an aerosol of crocidolite asbestos by
Roggli et al. (1987).

The sudden enlargement in air path cross section at the junction of the terminal
bronchiole and alveolar duct may play a role in the relatively high deposition
efficiency at the first alveolar duct bifurcation. Little is known about the flow
profiles in this region of the lung.

Johnson (1987) exposed rats to UICC crocidolite aerosols at 10 mg/m> for 6
hr/day, 5 days/week for periods ranging from 1 day to 12 months, and examined
cells in structures distal to the terminal bronchioles. Alterations in the distribution
of cells were seen within 3 months. Airway bifurcations were the initial sites
where evidence of cell damage and collagen deposition was seen. By 12 months,
there was substantial thickening of the epithelial lining of the bifurcations. Type 11
cell hyperplasia was evident without apparent damage to Type I cells.

For rats receiving inhalation exposures to chrysotile at 11 mg/m’ for 7 hr/day,
5 days/week for 12 months, Pinkerton et al. (1986) found that fiber accumulation
in the airways immediately distal to terminal bronchioles was inversely related to
airway pathlength and, to an even greater extent, to the number of bifurcations
along each conductive airway path. Fiber concentrations were much higher in the
cranial region of the left lung than in the costolateral, which had higher concen-
trations than the caudal. The differences increased with increasing fiber length,
with the ratios increasing to 9:2:1 for fibers >20 pum in length. In addition, fiber
burden within each region was strongly correlated with the degree of tissue injury
present. The authors concluded that focal irregularities of pulmonary asbestosis of
the type characteristic in exposed workers may be due to regional differences in
the deposition and retention of asbestos fibers.

Fiber Clearance and Translocation
The fate of fibers deposited on surfaces within the lungs depends on both the
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interstitium of the lung parenchyma. Roggli et al. (1987) subsequently performed
essentially the same study with a crocidolite aerosol. For the crocidolite, there
was a progressive increase in mean fiber length with increasing time postexpo-
sure, but the change was less pronounced than that for chrysotile. In addition,
there was no change in fiber diameter with time for the crocidolite. In contrast, the
longitudinal splitting of the chrysotile into fibrils had caused a marked reduction
of diameter with time.

Accumulation of fibers in distal fung airways may, by itself, slow the clearance
of fibers and other particles from the lung. Ferin and Leach (1976) exposed rats by
inhalation to 10, 5, or 1 mg/m® of UICC amosite or Canadian chrysotile for periods
ranging from [ hr to 22 days. Exposures at 10 mg/m? for 1-3 hr, or for >11 days
at 1 mg/m® suppressed the pulmonary clearance of TiO, particles.

* REVIEW OF BIOLOGICAL EFFECTS OF SIZE-CLASSIFIED FIBERS

The pathological effects produced by fibers depend upon both the characteris-
tics of the fibers and their persistence at sensitive sites. A number of carefully
designed studies have been performed in which the size distributions of fiber
suspensions have been well characterized as well as their persistence and/or ef-
fects.

King et al. (1946) instilled 100 mg of Rhodesian chrysotile into rabbit lungs at
monthly intervals. One group received fibers microtomed to a length of 15 pm,
and another group received fibers cut to 2.5 pm in length. At this huge dosage
level, both groups showed foreign body reactions in the lungs. The long fiber
produced a noduiar reticulinosis, while the short fiber produced a diffuse inter-
stitial reticulinosis.

Wright and Kuschner (1977) used short and long asbestos and manmade mineral
fibers in intratracheal instillation studies in guinea pigs. With suspensions con-
taining an appreciable number of fibers longer than ~10 pm, all of the materials
produced lung fibrosis, although the yields varied with the materials used. How-
ever, with equal masses of short fibers of equivalent fiber diameters, none pro-
duced any fibrosis. The yields were lower for the long glass fibers than for the long
asbestos, and this was attributed to their lesser durability within the lungs.

For fibers injected intraperitoneally (Davis, 1976; Pott er al., 1976; Wagner et
al., 1976) or placed in a pledget against the lung pleura (Stanton and Wrench,
1972), a similar kind of fiber size and composition dependence was observed, The
yield of mesotheliomas varied with both fiber diameter and length, and with dose,
with very little response when long, thin fibers were not included. Asbestos fibers
were more effective than glass in these studies also. At a dose of 2 mg of
chrysotile, crocidolite, or glass fiber, Pott et al. (1976) found only slight degrees
of fibrosis, but tumor yields of from 16 to 38% in rats. When the chrysotile was
milled to the extent that 99.8% of the fibers were shorter than 5 wm, the dose
required to produce a comparable tumor yield (32%) was 50 times greater (100mg).

Various hypotheses have been proposed to account for the pathological effects
sroduced by asbestos. One was the contamination of the surface by trace metal
and/or organic carcinogens. However, the studies of Stanton and Wrench (1972)
found that surface contaminants played no role in mesothelioma yield, and con-
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Fi16. 1. Relationships between fibrosis scale and relative concentrations of fibers per unit weight of
dry lung tissue. The lines connect data points from the same subject. The relative fiber surface area
normalizes the data better than either the relative fiber number concentration or the fiber mass
concentration (illustrations courtesy Dr. Vernon Timbrell).

the chrysotile fibers into fibrils, to give them a ratio of total surface area to mass
resembling that of the particularly fine Wittenoom fibers. The result indicates that
the fibrogenicity of the retained chrysotile per unit of surface area within the lungs
was similar to that of the amphiboles.

Timbrell et al. (1987) also reported that amphibole mineworkers with a given
fiber mass concentration in their lungs showed much higher degrees of fibrosis
than goldminers with roughly the same mass concentration of retained quartz
grains. The amphibole and quartz produced about the same fibrogenicity per unit
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tion, he developed a model for the retention of fibers as a function of length and
diameter (Fig. 2—right panel). As shown in this panel, fiber retention rises rapidly
with fiber lengths between 2 and 5 um, and peaks at ~10 pm. Fiber retention also
rises rapidly with fiber diameters between 0.15 and 0.3 pm, peaks at ~0.5 pm, and
drops rapidiy between 0.8 and 2 pm. The utility of the model was demonstrated
by applying it to predict the lung retention of Cape crocidolite and Transvaal
amosite workers on the basis of the measured length and diameter distributions of
airborne fibers. The predicted lung distribution did, in fact, closely match those
measured in lung samples from a Cape worker (Timbrell, 1984) and, as shown in
Fig. 3, from a Transvaal worker (Timbrell, 1983). Thus, fibrosis is most closely
related to the surface area of fibers with diameters between 0.15 and 2 pm, and
lengths greater than ~2 um. The work of King et al. (1946), showing that
chrysotile with lengths = 2.5 pm produced interstitial fibrosis in rabbits following
multiple intratracheal instillations, is consistent with the retention shown in Fig.
2 and a critical fiber length of ~2 um.

Critical Fiber Parameters for Mesothelioma
A National Research Council study (NRC, 1984) summarized mortality data for
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FiG. 3. Distributions of fiber lengths and diameters of amosite asbestos in the lungs of a Transvaal
worker. The predicted distribution at the left is based on the lengths and diameters of the airborne
fibers, and on the lung retention as a function of length and diameter from the right panel of Fig. 2. This
corresponds closely to the distribution in the right panel, which was measured in samples from
worker’s lung (illustrations courtesy Dr. Vernon Timbrell).
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of fibers in the 0.5- to 3-pm diameter range, should have produced many me-
sotheliomas as well as excesses in fibrosis and lung cancer. As noted earlier, an
average of 38% of the excess lung cancer plus mesothelioma in working popula-
tions exposed to asbestos was expressed as mesothelima. Despite the very high
exposures of the Paakkila population, no mesotheliomas were observed. Tim-
brell’s (1983) examination of the size distributions and mesothelioma incidence at
Paakkila and other asbestos mines world-wide led him to conclude that a good
correlation was obtained if the threshold diameter was reduced to 0.1 wm. The
mesotheliomas which Paakkila fiber has produced in animals were, most likely,
due to the use of excessive doses, 10,000 times that observed in man. Paakkila
asbestos contains only 1% of fibers with diameters below 0.1 pwm, but with such
a large dose this represents an enormotus absolute number. Harington (1981) noted
that the data for the northwest Cape in South Africa, where numerous mesothe-
liomas have been reported, and for the northeastern Transvaal, where mesothe-
liomas are rare, are consistent with a low fiber diameter limit. In the NW Cape,
about 60% of the fibers have diameters <0.1 pm, while for the Transvaal, only
about 1% have diameters < 0.1pm, comparable to Paakkila.

Timbrell (1983) also noted that the length distributions at Paakkila and the NW
Cape point to a need to reduce the 10-pm threshold in Stanton’s criteria. Paakkila
had a high percentage of fibers longer than 10 pm, while the NW Cape had
virtually none. And yet the NW Cape has been the major source of mesothelioma.
Attributing potential carcinogenicity to shorter fibers by lowering the length
threshold brings the estimated levels of significant ftbers into closer line with the
observed mesothelioma rates.

Combining the findings of Timbrell with the results of experiments reported by
Davis et al. (1986b) leads to the conclusion that the critical fibers for mesotheli-
oma induction have lengths between 5 and 10 um. Davis et al. reported that
intraperitoneal injections of short amosite (1.7% > S pum) produced only 1 meso-
thelioma among 24 rats (after 837 days), while UICC amosite (11% > 5 pm, 2.5%
> 10 pm) produced 30 mesotheliomas among 32 rats, and long amosite (30% > 5
pm, 10% > 10 pm} produced 20 mesotheliomas among 21 rats. Thus, fibers
shorter than 5 pm appear to be ineffective, while an appreciable fraction longer
than 10 pm appears to be unnecessary.

Critical Fiber Parameters for Lung Cancer

Excess incidence of lung cancer has been reported for workers exposed to
amphiboles (amosite, anthophyllite, and crocidolite), to chrysotile, and to mix-
tures of these fibers (NRC, 1984), but these studies have been uninformative with
respect to the fiber parameters affecting the incidence. The series of rat inhalation
studies performed by Davis et al. (1978, 1985, 1986, 1987), which have also pro-
duced lung cancers, have provided the most relevant evidence on the importance
of fiber length on carcinogenicity in the lung.

The Wagner et al. (1974) study found that the yield of squamous cell carcinoma
and adenocarcinoma was greatest with Rhodesian chrysotile, with decreasing
yields for Canadian chrysotile, crocidolite, anthopyllite, and amosite, respective-
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7.4% > 10 pm, median diameter of 0.22 um}. The UICC crocidolite produced 1
squamous carcinoma in 28 rats (but no mesotheliomas), while the erionite pro-
duced no carcinomas in 28 rats, but did produce 27 mesotheliomas.

In summary, Table 2 shows that 10 mg/m® of short amosite (~0.1% > 10 pm),
UICC amosite (~2.5% > 10 pm), UICC crocidolite (~3% > 10 pm), and Oregon
erionite (7.4% > 10 pm) failed to produce malignant lung cancers, while 10 mg/m?
of UICC chrysotile, long amosite, and tremolite (afl with = 10% > 10 pum) all
produced malignant lung tumors. While there was no clear-cut influence of fiber
diameter on tumor yield, the results suggest that carcinogenesis incidence in-
creases with both fiber length and diameter. Since Timbrell (1983) has shown that
fiber retention in the lungs peaks between 0.3 and 0.8 wm in diameter, it is likely
that the thinner fibers, which are more readily translocated to the pleura and
peritoneium, play relatively little role in lung carcinogenesis. Therefore, it appears
that the risk of lung cancer is associated with long fibers, especially those with
diameters between ~0.3 and 0.8 pm, and that substantial numbers of fibers =>10
pm in length are needed.

One reason that short fibers may be less damaging could be the fact that they
can be fully ingested by macrophages (Beck ef al., 1971), and can therefore be
more rapidly cleared from the lung. The fibrogenic response to long fibers could
result from the release of tissue digesting enzymes from alveolar macrophages
whose membranes are pierced by the fibers they are attempting to engulf (Allison,
1977). The fibers may also cause direct physical injury to the alveolar membrane.
A positive association between asbestosis and lung tumors has been demonstrated
by Wagner et al. (1974). The induction of fibrosis would impair clearance of
deposited fibers, increasing the persistence of fibers in the lung.

The preceding implies that short fibers will have a low order of toxicity within
the lung, comparable to that of nonfibrous silicate minerals. Within this concept,
the critical fiber length would most likely be on the order of the diameter of an
alveolar macrophage, i.e., about 10 to 15 pm. This line of reasoning leads to the
same conclusion reached on the basis of the incidence of lung cancer in rats
exposed to fibrous aerosols, i.e., that the hazard is related to the pumber of fibers
longer than ~10 pm deposited and retained in the lungs. The Timbrell (1983)
model predicts alveolar retention of deposited fibers approaching 100% for
10-pm-long fibers in the 0.3- to 0.8-pm-diameter range. Airborne fibers longer
than ~100 p.m may be much less harzardous than those in the 10- to 100-pm range
because they do not penetrate deeply into the airways as interception increases
with fiber length.

DISCUSSION

The various hazards associated with the inhalation of mineral fibers, i.e., as-
bestosis, mesothelioma, and lung cancer, are all associated with fibers with
lengths which exceed critical values. However, it now appears that the critical
length is different for each disease, i.e., 2 pm for asbestosis, 5 wm for mesothe-
lioma, and 10 pm for lung cancer. There are also different critical values of fiber
diameter for the different diseases. For asbestosis and lung cancer, which are
related to fibers retained in the lungs, only fibers with diameters >0.15 um need
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is impractical for routine exposure assessments. The only practical surface anal-
ysis method currently available for membrane filter samples is MALS (Timbrell,
1982).

The applicabitity of this new index of asbestosis hazard for chrysotile is less
well established than for the amphibeles. The long amphibole fibers clear very
slowly from the lungs and do not dissolve, so the ratio of inhaled fiber surface area
to lung retained fiber surface area remains relatively constant. The chrysotile
fibers dissolve and clear more rapidly, reducing the ratio of retained fiber surface
to airborne surface. On the other hand, the fibers split longitudinally within the
lung, increasing the surface area of retained fibers. Another factor contributing to
the uncertainty of the applicability of this index for chrysotile is that the calibra-
tion of MALS for chrysotile is less well established than for the amphiboles.
These issues need to be addressed in further experimental studies.

A better index of mesothelioma hazard is the number of fibers longer than 5 um
and thinner than 0.1 pm. Since fibers with diameters less than 0.1 wm cannot be
resolved by optical microscopy, analyses of relevant fiber counts must be done by
electron microscopy or MALS. The differences in fiber retention between
chrysotile and the amphiboles may necessitate different concentration limits for
the different fiber types.

A tentative proposal for a better index of lung cancer hazard is the number of
fibers longer than 10 um which are retained within the lungs. Lung retention rises
rapidly for diameters greater that about 0.15 pwm. Thus, the relevant fibers have
diameters >0.15 um and lengths >10 wm. The current phase-contrast optical
method of analysis of membrane filter samples is recommended for fibers with
diameters between 0.25 and 3 um (WHO, 1986). Since lung retention of fibers with
diameters between 0.15 and 0.25 wm is relatively low (Fig. 2), PCOM analysis may
provide an adequate index of hazard if the length limit is adjusted to 10 pum.
Alternatively, analyses can be done by scanning electron microscope or MALS.
Once again, the differences in fiber retention between chrysotile and the amphi-
boles may necessitate different concentration limits for the different fiber types.

Even if there were convenient and economical methods of sampling and anal-
ysis available for each of the three different asbestos hazards, it would undoubt-
edly be impractical to make three different kinds of exposure assessments at each
potential exposure of concern. One option is to use the MALS analysis method,
since the fiber size distributions data it generates can be used to determine quan-
titative values for each of the three separate indices. Another option is to do a
limited amount of detailed analyses of fiber size distribution initially by electron
microscopy to determine if one or more of the potential hazards can be considered
to be de minimus. For example, if there is negligable potential for exposure to
fibers longer than 5 pm, there would be virtually no risk of either mesothelioma
or lung cancer. For most nonoccupational exposures, there is virtually no risk of
asbestosis, since prolonged exposure to high dust concentrations are needed to
produce evidence of this disease.

If there were appreciable concentrations of fibers >5 pm in length, but with
essentially all having fiber diameters larger than ~0.1 um, there would be virtually
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The Sizes, Shapes, and Mineralogy of Asbestos Structures
that Induce Lung Tumors or Mesothelioma in AF/HAN Rats

Following Inhalation!

D. Wayne Berman,* Kenny S. Crump,® Eric J. Chatfield,' John M.G. Davis,* and Alan D. Jones®

Data from inhalation studies in which AF/HAN rats were exposed to nine different types of asbesios
dusts (in 13 separate experiments) are employed in a statistical analysis to determine if 8 measure
of asbestos exposure (expressed as concentrations of structures with defined sizes, shapes and min-
eralogy) can be identified that satisfactorily predicts the observed lung tumor or mesothelioma inci-
dence in the experiments. Due fo limitations in the characterization of asbestos structures in the
original studies, new exposure measures were developed from samples of the original dusts that were
re-generated and analyzed by transmission clectron microscopy using a direct transfer technique. This
analysis provided detailed information on the mineralogy (ie., chrysotile, amosite, crocidolite or
tremolite), type (i e., fiber, bundle, cluster, or matrix), size (length and width) and complexity (i.e.,
number of identifiable components of 8 cluster or matrix) of each individual structure.

No univariate measure of exposure was found to provide an adequate description of the lung tumor
responses observed among the inhalation studies, although the measure most highly correlated with
tumor incidence is the concentration of structures 220 um in lepgth. Multivariate measures of ex-
posure were identified that do adequately describe the lung tumor responses. Structures contributing
to lung tumor risk appear to be long (25 pum) thin (04 um) fibers and bundles, with a possible
contribution by long and very thick (25 ytm) complex clusters and matrices. Potency appears to
increase with increasing length, with structures longer than 40 1tm being about 500 times more potent
than structures between 5 and 40 pm in length. Structures <5 pm in length do not appear to make
any contribution 1o tung tumor risk. This analysis did not find a difference in the potency of chrysotile
and amphibole toward the induction of lung tumors. However, mineralogy appears to be important
in the induction of mesothelioma with chrysotile being less potent than amphibole.

KEY WORDS: Asbestes; tmosigenicity; lung fumors; mesothelioma; inhalation; dosefresponse; AF/HAN rats.

INTRODUCTION

Inhalation of asbestos dust has been clearly linked
to lung cancer and mescthelioma in a broad range of

! This research was completed under contract to the US Environ-
mental Profection Agency. Such support, however, does not signify
that the contents of this paper necessarily reflect the views and pol-
icies of the U S. Environmental Protection Agency, nor docs the
mention of trade or commercial products constitute endorsement or
recommendation for use.

human exposure settings; more than 50 positive epide-
miology studies have now been published  However,
a quantitative dose-response relationship that applies
across exposure environments has not been established
for either disease; potency estimates derived from dif-
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ferent epidemiological studies differ by up to 600-fold
for lung cancer (Table 6-10 of an HEI-AR report®"’) and
potency estimates reported for mesothelioma induction
are also quite variable.

Although there are many features of epidemiolog-
ical studies that may contribute to the variability ob-
served in dose-response relationships, a major compo-
nent may be the inadequate characterization of the
asbestos dusts to which individuals are exposed in the
epidemiological studies. In most epidemiological stud-
fes, ashestos dust concentrations were measured (if at
all) by phase contrast microscopy (PCM) or by midget
impinger.® The impingers produce a count of total dust
particles that are frequently converted to PCM-equiva-
lent counts when comparison data are available, al-
though the correlations are generafly poor® PCM
measurements may not be useful for distinguishing
among exposure environments that differ in their poten-
tial to induce disease because (1) PCM is not capabie of
distinguishing asbestos from non-asbestos structures®
and (2) existing animal studies suggest that asbestos
structures outside the range of sizes visible by PCM may
contribute to risk®

Because of the limitations in the characterization of
asbestos exposures in epidemiological studies, the best
information regarding the effects of size and mineralogy
on the relative potency of asbestos structures has come
from animal studies. Injection and implantation experi-
ments (in which asbestos or other fibrous material is ei-
ther injected or implanted into the pleura or peritonea of
rats) generally indicate that long, thin fibers exhibit the
greatest tendency to induce mesothelioma 2P However,
injection and implantation experiments bypass the proc-
esses associated with inhalation, retention in the lungs,
and transport from the Jungs, which may be important
in modulating the effects of airbome exposure. Thus,
results obtained from animel inhalation studies are likely
to be more relevant for evaluating human risk than in-
jection and implantation experiments.

A number of inhalation studies have been con-
ducted in which animals (generally rats) have been ex-
posed fo varying concentrations of asbestos dusts of
various types and the incidence of tumors observed in
the animals recorded (™-13:262432-39 I addition to verifying
that different types of asbestos can cause lung cancer
and mesothelioma when inhaled by animals, these stud-
ies generally indicate that longer fibers tend to be more

carcinogenic than shorter ones. However, no measure of

asbestos exposure that satisfactorily predicts tumor in-
cidence is identified in these studies.

In this study, data on tumor incidence in AF/HAN
rats from 13 inhalation experiments reported in a series
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of studies conducted by Davis et al '3 are combined
in a statistical analysis to determine if a measure of ex-
posure can be identified that satisfactorily predicts lung
tumer or mesothelioma incidence. Because of limitations
in the characterization of asbestos exposures in the orig-
inal Davis et al. studies (use of scanning electron mi-
croscopy precluded observation of structures thinner
than 0.2 pm; only SEM visible fibers and bundles were
included in the characterized size distributions while
clusters and matrices may also contribute to tumorige-
nicity in a unique way; and lack of bivariate character-
ization of the size distributions precluded evaluation of
the combined effects of structure length and width), ar-
chived samples of the original stock samples were used
to regenerate asbestos dust clouds that were collected on
filters and characterized in detail by transmission elec-
tron microscopy (TEM). TEM is capable of detecting
and identifying even the thinnest asbestos structures.

DATABASE AND METHODS

The Animal Inhalation Database

The series of animal studies by Davis et al @-1t.19
all employed a common protocol, utilized the same
strain of rat, and were conducted in the same laboratory
by the same group of investigators. In these studies,
groups of 40 male AF/HAN rats, aged 3 months at the
beginning of the experiment, were exposed by inhalation
for 7 hours per day, 5 days per week for 224 days over
one year and then observed for a minimum of an addi-
tional year. These studies involved UICC crocidolite,
Korean tremolite, four types of chrysotile and three types
of amosite (Table 1). Several of the samples were also
studied at two doses or on multiple occasions. Details
of the experimental procedures used in these studies
(along with the sources of the asbestos samples em-
ployed) are reported in the studies cited in Table 1. Due
to the small number of mesotheliomas observed, the
present evaluation was limited primarily to lang tumors.
Benign and malignant lung tumors were pooled for this
evaluation. Also, control groups from the various studies
were combined into a single group.

Regeneration and Analysis of Dusts from the
Animal Studies

To obtain more definitive characterization of the as-
bestos dusts used in the Davis et al. studies, dusts were
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Table 1. Summary Dala for Animal Inhelation Experiments Conducied by Davis and Coworkers*

Mass Number  Number of Tolal
concen- Number of benign  malignant  number of
Abbre-  tration  PCM of  pulmonary pulmonary pulmonary Mesothe-
Fiber type Description vistions (mg/m¥)  fmi animals  tumors wmors tumors liomas Reference
Chrysotile UICC-A uc 2 390 42 6 2 8 1 6]
Chrysotile uicc-a uc 10 1,950 40 7 8 5 0 )]
Chrysotile Long 1C 10 5,510 40 8 12 20 3 (13)
Chrysetile Short SC 10 L170 40 1 6 7 I (13)
Chrysotile UICC-A uc 99 2,560 36 6 8 14 a (12)
Chrysotile UICC-A (Dischargedy DC 9% 2,670 39 4 6 i0 1 (12)
Chrysotile WDC Yam* wC 36 679 41 5 13 18 0 (11)
Amosite ylcc vA 10 550 43 2 0 2 0 0]
Amosite Long LA 10 2,060 40 3 8 11 k1 (t0)
Amosite Short SA 10 70 42 0 0 0 1 (10)
Crocidolite uIcc UR 49 430 43 2 0 2 1 N
Cracidolite UICC UR 10 860 40 1 0 1 0 N
Tremolite Karean KT 10 1,600 39 2 16 18 2 (%)
None Contrel c 0 20 0 0 0 0 0]
None Control (o4 0 36 0 ] [+} 0 ©)
None Control c 0 61 1 1 2 0 (10)
None Control c 0 64 1 1 2 0 an
None Contzo} c 0 47 1 1 2 0 13)

« Exposure occurred for 7 hours a day, 5 doys a week for 1 year

$UICC-A Chrysofile in this experiment was trested with mixed polarity air (produced with 2 source of beta radiation) following generation to

reduce the surface charge on individual purticles within the dust

¢ Chrysotile samples used for dust generation in this experiment were oblained from malerial treated by 2 commercial wet dispersion process

regenerated from samples archived from the original
studies using the same equipment, procedures, and per-
sonnel as in the original studies. For each asbestos sam-
ple type, three or four sets of filters at three different
particle loadings were collected at regular time intervals
over approximately one hour during which the rate of
dust generation was kept constant. The set of optimally-
loaded filters (one from each time interval) was then
prepared and analyzed and the results from the individ-
val filters were combined. A separate set of filters was
also collected for PCM analysis at the same time as the
filters collected for analysis by TEM. A detailed discus-
sion of the preparation and analysis of samples for this
study and a characterization of the samples based on this
analysis is currently in preparation (Berman et al., Jour-
nal article in preparation).

The regenerated dusts were analyzed by TEM using
the counting criteria from the Interim Superfund Method
for the Determination of Asbestos in Air.®? These cri-
teria provide that, in addition to examination of a portion
of each filter in which all asbestos structures present are
identified, a separate examination of a different portion
of each filter is performed at lower magnification, during

which only structures 2 5 pm in length are evaluated.
The stopping rules in the Superfund method were mod-
ified for this study to assure that a minimum of 200
structures derived from total structure examination and,
separately, 200 structures derived from examibation for
long structures (= 5 um in length) would be evaluated
for each sample. By using a separate examination for
leng structures, the present study achieves a level of pre-
cision for the determination of long structures that could
otherwise require the counting of thousands of structures
when all sizes are evaluated simultaneously 5%

In the data base developed from the regenerated
dusts, fibers, bundles, clusters and matrices (as defined
in the literature®) are characterized separately along
with measurements of the length and width of each such
structure. Up to five fibers and bundles that are com-
ponents of clusters or matrices are alsc characterized for
those complex structures (i.e., clusters and matrices)
where individual fibers or bundles can be character-
ized.@® In the analyses reported herein, two methods of
utilizing information on complex structures are applied.
In one set of analyses, only the primary structures enter
the analysis. In a second set of analyses, whenever com-
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ponent fibers or bundies in a cluster or matrix are char-
acterized, these components are included as if they are
independent structures and the parent cluster or matrix
is not included.

Estimatior of Exposure Concentrations

Concentrations of asbestos structures in each regen-
erated dust that exhibit specific characteristics based on
size or type were calculated by multiplying the number
of structures in a particular sample displaying the char-
acteristic(s) of interest by the total area of the filters
exposed during air sample collection and dividing by the
product of the zrea of the portion of the filters examined
during the analysis and the volume of air passed through
the filters during air sample collection. The concentra-
tions of structures in the original dusts to which the an-
imals were exposed were estimated by multiplying the
corresponding concentration in the regenerated dust by
the ratio of the concentration measurad by PCM in the
original dust to the PCM concentration in the regener-
ated dust.

Statistical Methods

Ounce the re-generated dusts were characterized, a
statistical analysis was performed to test for relationships
between the size, shape, and mineral type of an asbestos
structure and its relative potency for inducing lung ta-
mors. In the statistical methods employed, the probabil-
ity of 2 lung tumor (benign or malignant) response in an
animal is assumed to be of the form:

P = J—exp(—a—3+WC) 1)

where o specifies the response probability in unexposed
animals (i.e, the probability of a response in unexposed
animals is | - exp[-ct]), B represents the absolute potency
of a dust for producing a tumor response, and WC is a
weighted sum of the concentrations of structures in dif-
ferent structure categories. A structure category is de-
fined by restrictions on structure sizes (e.g., a defined
range of lengths, widths, and/or aspect ratios) and struc-
ture types (e.g., fibers, bundles, clusters, and/or matri-
ces). The weights in the weighted sum are estimates of
the relative potencies of structures in the different struc-
ture categories. Thus,

WC = qex, tqex, .. +qx, = Zgx,  (2)

where x; is the concentration of airborne asbestos struc-
tures in the jth structure category and g; represents the
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potency of structures in the jth structure category relative
to the potency of structures in other categories.

The g8 are constrained to be non-negative (q; z 0
forj=1,.,k)andto sumtoone (g, + ... + q = |).
The latter constrzint makes each q; a measure of relative
potency rather than absolute potency. The non-negativity
constraint implies that no category of structures is ca-
pable of reducing the probability of a tumor response.

In a few of the analyses the model is expanded to
permit the probability of response to depend upen the
chemical composition (mineralogy) of the structures
(e.g., chrysotile or amphibole). This expanded version of
the model is of the form:

P, = l-exp(-a-B+xWC) 3)

where P, is the probability of tumor response in animals
exposed exclusively to material of type i, and B, a meas-
ure of the absolute potency of this material. Thus, in this
more general model, a different absolute potency is as-
sumed for materials of differing mineralogy but the rel-
ative potencies of structures in different structure
categories are assumed to be independent of mineralogy.

In still other analyses, the tumorigenic potential of
a gtructure js assumed to be embodied in a single quan-
titative measure (e.g., the surface area of the structure).
In these analyses the probability of a tumor response in
an animal is assumed to be of the form:

P = l-exp(-c-B+SM) 4

where SM is the sum of the quantitative measures over
the structures contained in a specified volume of air. For
example, if the quantitative measure is surface area, then
SM is the total surface area of structures per milliliter
of air.

The parameters of these models («, B and g;) are
estimated using maxirmum likelihood methods and like-
lihood ratio tests are used for testing hypotheses.®® Con-
fidence intervals for individual parameters are con-
structed using the *‘profile likelihood method.’®® The
goodness-of-fit of each model to the data is assessed by
applying a chi-square distribution to the deviance statis-
tic.*» The p-valve of the chi-square statistic is approx-
imated using the chi-square distribution with degrees of
freedom equal to the {number of dose groups] — [num-
ber of g;'s estimated as being non-zero] — 1.

The non-negativity constraints imposed on these
models make this approach very different from ordinary
(unconstrained) regression. In ordinary regression, 2 per-
fect fit of a model is guaranteed whenever the number
of parameters equals or exceeds the number of data
points. However, in the constrained model described
above, typically ail but a few of the q's are estimated




Asbestos Structures that Induce Tumers in Rats

185

& 3

]

Peicent of Rats whh Lung Tumors

Vartica! bare indicals 80% confidence intarvals.
Ahbreviafions for dals are axplained in Table .

ﬁﬁ

Mass Concentreion {mgim®)
Fig. 1. Fit of model Tumor incidence versus mass concentration from animal study.

to be zero so that the estimation 1esults are the same as
if these g;'s had not been included in the estimation pro-
cedure. Consequently these models may legitimately in-
clude more categories of asbestos structures than there
are animal exposure groups.

Evaluation of Mesothelioma Incidence

Although there were too few mesotheliomas ob-
served in the animal inhalation studies to perform an
extensive analysis similar to that conducted for lung tu-
mors, a test was conducted of whether the risk of mes-
othelioma was proportional to the risk development of
lung tumors. If this test cannot be rejected, it suggests
that any fiber size distribution that describes the lung
tumor responses also describes the mesothelioma re-
sponses. The specific test conducted was a likelihood
ratio test of whether the probability of mesothelioma
could be expressed as

Preso = CPy

where P, is the probability of developing mesotheli-

oma following exposure; P, is the probability of devel-
oping lung tumors following exposure; and ¢ is the
constant of porpotionality between the probability of de-
veloping a mesothelioma and the probability of devel-
oping a lung tumcr.

This test was applied to the total data set and to the
chrysotile and amphibole studics separately.

RESULTS

Univariate Measures of Exposure

Figure 1 is a plot of the percentage of anirnals with
lung tumors versus the mass concenirations (mg/m?) of
total dust reported in the original Davis et al. studies.
The curve in the figure represents the maximum likeli-
hood fit of the dose-response model represented by
Equation 4, where SM is the measured dust mass for
each experiment reported in Table 1.

It is clear from Figure 1 that mass concentration of
total dust does not provide a consistent dose-response
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Fig. 2. Fit of model. Tumor incidence versus PCM concentration from animal study.

for these studies. Several of the Davis et al. studies em-
ployed a target mass concentration of 10 mg/m® (Table
1) and results of these studies appear grouped together
on the right side of the figure. Despite having been ex-
posed to similar dust mass concentrations, responses in
these animal groups are quite variable, ranging from 0
pet (0/42 animals) for short amosite to 50 pot (20/40
animals) for long chrysotile. Moreover, even though the
experiment involving wet dispersed chrysotile involved
exposure to a total dust mass concentration of only 3.5
mg/n¥, the tumor response was 44 pct (18/41), which is
considerably greater than that of several of the experi-
ments employing a total mass concentration of [0
mg/m’.

Figure 2 is similar to Figure 1, except that the con-
centration of fibers measured by PCM (ffcc) in the orig-
inal study replaces mass concentration &s the measure of
exposure. This figure likewise exhibits no consistent
dose-response pattern. Thus, neither of the two measures
of exposure reported in the original Davis et al. studies
(total dust concentration and PCM fiber concentration)
relate to Jung tumor risk in a consistent manner.

Table 2 is a summary of the tests of goodness-of-
fit for the exposure-response models presented in Fig-

ures 1 and 2 and similar models based on other
unjvariate measures of exposure that are derived from
TEM measurements of the re-generated dusts. For each
univariate measure of exposure, the table contains the
correlation coefficient (R?) for the relationship between
the airborne asbestos concentration {defined by the uni-
variate measure) and the negative logarithm of the prob-
ability of remaining tumor-free [-Ln(1-P)]. The table
also contains the deviance of the maximum likelihood
fit of the univariate dose-response model (defined using
Equation 4) and the p-value for the goodness-of-fit test
associated with that deviance. Large deviances and, cor-
respondingly, small p-values {(i.e, p < 0.05) indicate a
poor description of the lung tumor response by a partie-
ular univariate measure of exposure.

Both total dust mass and PCM concentrations give
very large deviances and corresponding, highly signifi-
cant lack of fit, 138.0 (p < 0.0001) and 56.1 (p <
0.0001), respectively (Table 2), which is consistent with
the visual impressions from Figures 1 and 2. Likewise,
the concentrations of total asbestos structures measured
by TEM, of TEM structures longer than 5 pum, and of
TEM structures longer than 20 pum all give poor fits to
the data, although the deviance statistic decreases as the
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Table I1. Summary of Fits of Univariate Concentrations 1o Lung Tumor Data

Dose measure R Deviance df p-valuer

Total dust mass concentration 005 116.0 12 <0 0001
PCM structure concentration 050 56.1 12 <0 0001
Total TEM structure concentration* 832 1121 i2 <0.0001
Concentration of structure longer than 5 pm* 039 877 12 <0.0001
Concentration of structure longer than 10 pm* 050 514 12 <0 000!
Concentration of structure longer than 20 pm? 0.72 4 12 00017
Concentration of structure longer than 30 pm?® 071 417 12 <0 0001
Concentration of structure longer than 20 pum and thinner than 04 pm* 0.60 3748 12 00002
Concentration of structure longer than 20 ym and thinner than 02 pm® 029 929 12 <0.000!
Concentration of structure longer than 20 itm and thicker than 0 4 pm?® 0.71 380 12 00002
Total structure surface area per air volume* 0.65 384 12 00001
Total structure volume per air volume: 054 502 12 <0 0001
Sum of aspect ratios per air volume* 032 108.8 12 <0 0001
Sum of (aspect ratio)'* per air volume* 035 100.3 12 <0 0091
0.38 79.85 12 <0.0003

Stanton Index®

* P-values <0 05 indicate a significant lack of fit of model to fung tumor dats, based on chi-square distribution for the defiance with 12 deprees of

freedom (14 data sets and two parameters).

® Concentrations derived counting components of less complex structures as individual structures and ignoring the parent structure.

¢ Concentrations derived counting only primary structures.

“ The index proposed by Stanlon ef al* ig the concentration of all fibers 2 8 um in length and < 025 um io width

structures are restricted to increasing lengths in this se-
ries, which indicates an improving fit. However, restrict-
ing the analysis to even longer structures (= 30 um),
restricting the widths of structures longer than 20 pm to
thinner structures (<< 0.4 pm or < 0.2 pun) or to thicker
structures (2 04 pm) all make the fit worse.

Several other measures evaluated in Table 2 are
similar to exposute measures found by other investiga-
tors to be significantly correlated with tumor incidence:
structures longer than 8 tm and thinner than 0.25 pm, ¢
total surface area of the asbestos structures per unit vol-
ume of air {implied by Lippman,®V assuming a relation-
ship between tumor induction and fibrosis as described
by Davis and Cowie®“®); total volume of asbestos per
unit volume of air (which is proportional to the total
mass concentration of asbestos®"), the concentraticn of
aspect ratios (sum of aspect ratios of structures per unit
volume of air™); and the concentration of aspect ratios
raised to the 1.8 power.®"

All measures reported in Table 2 are significantly
correlated (p < 0.05, based on the slope of the regression
line) with lung tumor incidence. Nevertheless, all of
these measures provide 2 poor fit to the Jung tumor data
(p < 0.0017, based on the deviance statistic) despite a
significant correlation coefficient

The results in Table 2 suggest that the tumorigenicity
of the asbestos dusts studied by Davis et al. are more
closely related to the concentration of longer structures
than to the concentration of shorter structures. As previ-

ously suggested by Wylie et al.,®” however, the fact that
none of the exposure measures listed in Table 2 provide
an adequate description of the database supgests that the
features of asbestos that relate to risk are too complex to
be represented by a single univariate exposure measure
and that multivariate measures may be required to ade-
quately describe lung tamor response to asbestos.

Multivarjate Measares of Exposure

To gain an understanding of the combinations of
structure categories that relate best to potency, more than
100 statistical analyses were conducted in which relative
potencies were estimated for various combinations of
length and width categories. The results of these ex-
ploratory analyses are summarized by an analysis that
incorporates a matrix of five length categories (< 5 pm,
5-10 um, 10-20 pm, 20-40 pm, and = 40 pm in length)
in combination with five categories of width (< 0.15
um, 0.15-0.3 pm, 0.3-1.0 pm, 1.0-5.0 pm, and 2 50
im in width), for a total of 25 categories of structures
that potentially contribute independently to potency. In
this analysis, the relationship between exposure and re-
sponse was modeled using Equation 1 with WC con-
sisting of a 25-term function that is the sum of the
product of each size category multiplied by a relative
potency for that size category (Equation 2). Table 3 in-
dicates the maximum likelihood estimates of the relative
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Table I11. Relative Polencies for Inducing Lung Cancer*

Width Length (um)
{(um) <5 5-10 10-20 20-40 > 40 Tetal
A; Analysis based on primery structures < 0.15 0.0055 042 X X 042
0.15-03 0.04¢ 0040
03-1.0 0
F0-5.0 0
>50 X 0.043 0074 042 054
Total 0 0.0055 0.50 0074 042 10
Devisnce = 1333 {7 df}
p=006
B: Less complex clusters and matrices
replaced by components <015 0033 010 X 013
015-03 00018 072 072
03-10 0
1.0-50 0
> 50 b4 002 013 Q15
Total 0 00018 0033 612 0.B5 1.0
Deviance = 1203 (7 df)
p=1010

« Entries represent an estimate of the relative potency assigned to structures in that size category by the model defined by Equation (1). An X"
indicates a category that contains no structures A blank indicates zero potency estimated for that category. P-value is for fit of model to lunp
tumor data in Table 1, based on chi-square distribution for the deviance {small p-values indicate poor fits).

potencies (i.e., the g;'s from the model) of the structures
in each of the 25 size categories.

Table 3A presents results in which only primary
structures are included, whereas Table 3B presents re-
sults in which parent clusters and matrices (for which
component structures were characterized) are replaced
by their components. The statistical analysis in which
complex structures are resolved into components (Table
3B) provides the best fit to the data and the resulting
model provides an cverall adequate description of the
data based on goodness-of-fit (deviance = 12.03 [7 df],
p = 0.10). The fit is also marginally acceptable from the
analysis (Table 3A) that includes only primary structures
(deviance = 13.33 {7 df], p = 0.06). These two analyses
exhibit several common features. Both of the analyses
attribute zero potency to structures shorter than 5 pm.
Positive potencies are confined to structures that are ei-
ther thin (< 0.3 pm) or very thick (= 5 pm). For both
thin and thick structures, potency tends to increase with
increasing length, although the observed relationships
are not entirely monotone.

Resolution of complex structures into component
fibers and bundles significantly increases the precision
with which fibers and bundles can be categorized, since
roughly 50 pct of the fibers and bundles chamcterized
in the re-gencrated dusts are components of complex
structures. Consequently, from this point on, only anal-

yses that resolve clusters and matrices into components
are considered.

Although the statistical analysis reported in Table
3B adequately describes the data, the relative potencies
assigned to the two narrowest categories of structures
seems somewhat unrealistic; one expects dose-response
relationships to vary smoothly with size. Positive poten-
cies are assigned to structures thinner than 0.15 pm in
combination with one long and one short length category
{5-10 pm and 2 40 |um) and to structures between 0.15
and 0.3 pm in width in combination with two interme-
diate length categories (10~20 um and 2040 um). This
suggests that the potencies of structures in these two
width categories cannot be distinguished using this da-
tabase.

To test this hypothesis, these two categories were
combined into a single category (width < 0.3 pm). The
results of this analysis are presented in Table 4A. Com-
bining these width categories only slightly increases the
deviance (from 12.03 to 12.15), so that the hypothesis
that structures in the two width categoties are equally
potent cannot be rejected. Moreover, the fit of the model
actually improves somewhat (the p-value increases from
0.10 to 0.14), due to a reduction in the number of de-
grees of freedom.

Because the pattern of potencies observed among
the length categories of the model presented in Table 4A
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Table IV. Additional Analyses Performed to Obtain an “'Optimum Exposure Index'™

Width Length (m)
(um) <5 5-10 10-20 2040 > 40 Total
A: Intermediate analysis <03 00012 00054 084 0.847
03-1.0 0
10-50 0
>50 X 0012 014 a1s2
Total 0 00012 00054 0012 098 1.0
Deviance = 12.15 (&84}
p=0l14
B: Optimum exposure index < 0.30 00017 0853 0855
>50 0 145 0145
Total 00017 0.938 10

Deviance = 12.66 (10 df)

p=1024

# Entries represent an estimate of the relative potency assigned to structures in that size category by the model defined by Equation (1) An *‘X"
indicates a category that contains no structures. A blank indicates zero potency estimated for that category. P-value is for fit of model 10 lung
tumor data in Table 1, based on chi-squared distribution for the deviance (Small p-values indicate poor fits)

also appear somewhat unrealistic, this model was sim-
plified by reducing the number of length categories in
the same manner that the number of width categories
was reduced for the model described above. Therefore,
structures between 5 um and 40 pm in length were com-
bined into a single length categery. Also, structures
gshorter than 5 pm were removed from the analysis be-
cause, even with the reduced number of length catego-
ries, the short structures were assigned zero potency.
Structures between 0.3 and 5.0 pum in width were also
removed because these too were assigned zero potency
in the reduced model.

The model resulting from the maximum likelihood
fit of the remaining size categories (referred to as the
“‘optimum exposure index"") is shown in Table 4B. The
deviance of 12.66 obtnined from this enalysis is cnly
slightly larger than that of the full model (12.03) and
the goodness-of-fit p-value from the reduced model is
0.24 (10 df), which indicates a better statistical fit than
was obtained using the original model (Table 3B) or the
intermediate mode! (Table 4A).

The “*optimum exposure index’’ assigns a relative
potency of:

& 0.0017 for structures < 0.3 um in width and be-
tween 5 and 40 pm in length;
® 0.853 for structures < 0.3 jum in width and > 40
pm in length; and
® 0.145 for structures = 5.0 um in width and = 40
pim in length.
All other structures are assigned a potency of zeto in the
optimum exposure index. Interestingly, whereas the lat-

ter size category is composed completely of complex
structures, the two categories of thin stmctures are com-
posed almost totally of fibers and bundies (including
many that are components of complex structures).

The fit to the experimental data obtained by the
‘‘optimum exposure index’’ is presented in Figure 3.
The x-axis of this plot is exposure expressed as the
weighted airbome concentration formed by the sum of
the 1elative potencies from this analysis times the con-
centrations of structures in the corresponding categories
(WC in Equation 2). Unlike Figures 1 and 2, this graph
indicates a consistent dose-response relationship.

Table 5 contains 90 pct confidence intervals for the
three structure categories that are assigned positive po-
tency by the optimum exposure index. The fact that none
of these three confidence intervals contains zero potency
implies that none of these three structure categories can
be removed from the model without significantly de-
grading the fit (i.e. the hypothesis that one of these cat-
egories has zero potency can be rejected). Thus, to
obtain adequate fits to the lung tumor incidence data
within the framework of this analysis, it is necessary to
assign positive potencies to all three of the size cate-
pories of structures that contribute to the optimum ex-
posure index.

Table 5 also contains 90 pct confidence intervals
for two categories of structures assigned zero potency in
the optimum exposure index: structures < 5 pm in
length and structures 540 pwm in length and 2 5 pm in
thickness. The upper 95 pet confidence bound for the
relative potency of structures shorter than 5 um is esti-
mated as (.00008. This upper bound is 0.00008/0.0017
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Fig. 3. Fit of madel. Tumor incidence versus structure concentration by TEM.

Table V. Relative Potency Estimates Derived from the **Optimum
Exposure Index™ with 90% Confidence Intervals

Relative
Category potency 90% confidence
(units in pm) estimate interval
fenpth < § 0 {0, 0.00008)
5 < lenpth < 40 0.0017 {0 ¢o10, 0.0032]
width €03
5 € lenpgth < 40 i [0, 0030}
width 2 50
length 2 40 0.85 (067, 0.95)
width < 0.3
fength = 40 0.15 [004, 032}
width 2 5.0

* The size catogory is assigned zero potency in the model derived from
the maximum likelibood fit and therefore does not contribute (o the
*‘optimum exposure index.”

= 1/20 as large as the estimated relative potency of
structures between 5 and 40 fm in length and thinner
than 0.3 |im, and only 0.00008/0.85 = 1/10,000 as large
as the cstimated relative potency of structures longer
than 40 um and thinner than 0.3 um.

Results of various additional hypothesis tests are
presented in Table §. All of the analyses presented in-
dicate a zero potency for all categories of structures
shorter than 5 pm. Since this is the outcome most fa-
vorable to the hypothesis that such structures are non-
potent, p = 1.0 is the p-value associated with a test of
this hypothesis. Although some analyses reported herein
assign a positive potency to structures 5-10 pm in
length, the hypothesis that structures shorter than 10 mi-
crons in length are non-potent cannot be rejected either
(p = 0.09).

Results of hypothesis tests for a difference between
the potency of chrysotile and amphibole, conducted
within the framewortk of the optimum exposure index,
are also presented in Table 6. This test was performed
by estimating different absolute poteacies (i.e., different .
values for §3; in the model) for chrysotile and amphibole,
but assuming that the relative potencies of structures in
different size categories (i, the g;'s) are the same for
chrysotile and amphibole (Equation 3). The resulting p-
value for this test is 0.72 (non-significant), indicating no
detectable difference between the potency of chrysotile
and amphibole. It is also nof possible to reject the com-
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pound hypothesis that chrysotile and amphibole have the
same relative potencies and that the relative contribu-
tions to potency from different size fractions are the
same for chrysotile and amphibole.

The optimum exposure index assigns positive po-
tency to thin (< 0.3 pm) and very thick (> 5 pm) struc-
tures but not te structures of intermediate thickness.
Although a potency for very thick structures could be
due to thin stractures imbedded within complex struc-
tures (see discussion), this result could also be an artifact
caused by limitations in the data base and the specific
cutpoints used to create the optimum exposure index.
Additional analyses taken to further explore this issue
identified a slightly different index that also provides an
adequate fit to the data (p = 0.09) and which does not
result in a positive potency for very thick structures. This
index assigns a relative potency of

& 0.0024 for structures < 0.4 pim in width and be-
tween 5 and 40 um in length; and
® 0.9976 for structwres < 0.4 pum in width and 2

40 pm in length.

Statistical Analyses of Mesothelioma Data

Results in Table 7 indicate that the hypothesis that
mesothelioma incidence is proportional to lung tumor
incidence for all sample types combined can be 1ejected.
However, the hypotheses that mesothelioma incidence is
preportionzl to lung tumor incidence either for chrysotile
sample types or amphibole sample types (considered
separately) cannot be rejected.

The best indication (i.e., maximum likelihood) is
that the probability of a chrysotile (amphibole) exposure
inducing mesothelioma is 0.058 (0.20) times the prob-
ability that the same exposure induces lung tumors.
These two values are significantly different (p = 0.032).
Since the analyses of the lung tumor data indicate that
there is no difference between chrysotile and amphibole
in their ability to induce lung tumors, these results sug-
gest that amphibole is 0.20/0.058 = 3.4 times more po-
tent than chrysotile for causing mesothelioma in rats
(assuming that the relative potencies of structures in dif-
ferent size categories are approximately the same for
mesothelioma and lung tumors.

DISCUSSION

Results from this study indicate that the induction
of lung tumors in mats following inhalation of asbestos
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Table V1. Hypothesis Test Results for Lung Tumor Incidence

P-value
Decrease  of Hypo-
in thesis

deviance test®

Structures shorier than 5 pm are non-

potent 0 | (NS
Structures shorter than 10 pm are

non-potent* 176 009 (NS)
Structures shorter than 40 pm are

non-polent? 146 <00001 (Sy
Structures jonger than 40 pm are

non-potent 731 <00001 (5)
Structures thicker than 5 ym are non-

potent? 100 0007 (8)
Structures thinner than 03 yum are

non-potent¢ 544 <0G 0001 (S)
Amphibole and chrysotile structures

are equally potent’ 012 0.72 (NS)
Fibers and bundies are equaily po-

tentd 0.78 068 (NS

4 A P-value less than 005 indicates that the hypothesis can be rejected.

4 NS - not significant (hypothesis cannot be rejected).

« Based on analysis of dat in Table 5A.

4 Based on analysis of data in Toble 5B.

«§ - significant (hypothesis can be rejected).

/Due 1o a limitation in the computer program used to perform these
calculations, the value of the background parameter, o, was fixed at
the value that provides o perfect 5t to the control data

is a function of the size and shape of asbestos structures
within the inhaled dusts. Structures contributing to lung
fumor risk appear to be long (2 5 pm) thin (< 0.3 or
0.4 pum) fibers and bundles, with a possible contribution
by long and very thick (2 5 um) complex clusters and
matrices. Potency appears to increase with increasing
length, with structures longer than 40 pm being about
500 times more potent than structures between 5 and 40
pm in length. Fibers and bundles of similar dimensions
appear to contribute equally to potency.

For all types of asbestos structures, results of this
study suggest that a minimum length (between 5 and 10
jum) exists such that the best estimate of the potency of
structures shorter than this minimum is zero. This anal-
ysis also indicates that, as a worst case, & 95% upper
fimit to the potency of individual structures shorter 5 am
is no more than about 1/20 of the potency estimated for
individual fibers or bundies between 5 and 4¢ pm in
length and no more than about 1/10,000 of that esti-
mated for individual fibers or bundles 240 pm in length
and <03 pm in width. In contrast, the evidence sug-
gesting a range of widths within which structures can be
considered non-potent is less compelling,
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‘Fable VIL Hypothesis Test Results for Comparing Mesothelioma and Lung Tumor Incidence

Increase in P-value of
Hypothesis tested deviance hypothesis testr
The relative probability of inducing mesotheliomes and lung tumors are the same for all dusts tested (P, =
Py _ 209 0028
The relative probability of inducing mesotheliomas and lung, tumors are the same for all chrysotile dusts tested.
(Proees = P 997 020
The relative probability of inducing mesotheliomas and Jung tumors are the same for all amphibole dusts
tested. (P = &P 630 028
The proportionality constant relating mesothelioma incidence to lunp tumors incidence is the same for chrysatile
4.62 0.032

and the amphiboles. (¢, = ¢;)

* A P-value Jess than 0.05 indicates that P is significant and the hypothesis can be rejected
® The best estimale for the constant of proportionality between mesothelioma and lung tumor incidence is ¢ = 0.094 when all dusts are considered.
¢ The best estimate for the constant of proportionality betwen mesothelioma and fung tumor incidence is ¢, = 0.058 when chrysotile dusts are

considered separately.

“ The best estimate for the constant of proportionality between mesothelioma and Jung tumor incidence is ¢, = 020 when amphibole dusts are

considered separately.

For mesothelioma, it appears that mineralogy is an
important determinant of the relative potency of inhaled
dusts, with chrysotije being less potent toward the induc-
tion of mesotheliomas than the amphiboles in comparison
to their relative potency for inducing lung tumors.

Despite the special emphasis placed on the charac-
terization of long structures, the data base employed in
this study contains only a limited number of very long
structures (e.g., 240 pm in length). This contributes un-
certainty to the specific quantitative estimates of relative
potency for long structures, the most potent structures
identified. Our statistical analysis does not address this
type of uncertainty; fiber concentrations were assumed to
be known with certainty. Additional uncertainties in the
exposure estimates result from the reliance on regenerated
dusts in this study rather than the actual dusts to which
the experimental animals were exposed. This problem
was mitigated by having the dusts regenerated by the
same persotinel using the same stock material, equipment,
and procedures that were employed in the original studies.

Despite the above considerations, we know of no
other set of experimental data that is more suitable for
quantitative determination of relative potencies of as-
bestos structures of different types and dimensions that
are apt to be relevant to conditions of human exposute.
Our study involves inhalation, which is more relevant to
human exposures than injection or implaniation studies.
Qur data base contains data on a variety of different
types of asbestos including crocidolite, tremolite, chrys-
otile, and amosite. It includes four different samples of
chrysotile and three different samples of amosite, which
were chosen to represent a range of asbestos structure
size dimensions. It also involves a more detailed char-

acterization of long structures and complex structures
than those available from other experimental settings.
The only other studies in which the relationship be-
tween structure size and shape and tumor response has
been examined formally (using some type of statistical
analysis) are the studies by Stanton et al®?4 and other
statistical studies employing the database reported by
Stanton et al.#**% or employing a re-analysis of the sam-
ples studied by Stanton and coworkers.*" However,
these studies all incorporate & statistical procedure that
differs radically from that employed in the present study.
While the earlier studies only identify exposure meas-
ures that are significantly correlated with tumor inci-
dence, the present study identifies an exposure measure
that satisfactorily describes the tumor incidence (ie.,
provides an acceptable fit to all of the data).$ In fact, it

¢ The methodology utilized in this study avoids sevaral methodological
problems associated with the analysis by Stanton ¢t al and the others
who re-evaluated their data and conclusions Stanton ct al. computed
a cotrelation between the logarithm of the concentration of fibers in
specific dimensional ranges and the logit of the probability of a tu-
mot. A number of exposure categories for individual fiber types in-
vestipated by Stanton et al. contained no Bbers, which implies that
the logarithm of the fiber concentration for these calegories is un-
defined Stanton et al. assigned a zero in place of the logarithm of
concentration in these cases However, this decision is entirely ar-
bitrazy and the value selected could bave had a large impact upon
the correlation coefficient Similarly, no tumors were detected in sev-
eral experimental groups investigated by Stanton et al and the logit
is undefined whenever no tumors occur. Although it is not clear how
Stanton et al. handled this problem, it scems liksly that such groups
were omitted from their analysis Note that, because of these prob-
lems, the comelation coefficients presented in Teble 2 (which are
calculated based on a linear relationship that is not undefined ot zero)
mey not be dircetly comparable to those calculsted by Stanton et al
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is apparent from Text Figure 2 of Stanton et al.® that
the exposure measure they identify as being most highly
correlated with tumor incidence (fibers longer than 8 um
and thinner than 0.25 pm) does not provide an accept-
able fit to the observed tumor incidence. Similarly, al-
though all of the univariate measures considered in the
present study (Table 2) are highly correlated with tumor
incidence, none of them adequately describe lung tumor
incidence.

In contrast, when asbestos exposure is expressed as
the weighted sum of the concentrations of structures in
the three size categories of structures defined in this
study by the optimum exposure index, this exposure in-
dex provides a statistically adequate fit to the lung turnor
tesponse data reported in the studies by Davis et al. (Ta-
ble 1). Consequently, the hypothesis that the model de-
termined by the optimum exposure index completely
characterizes the potency of asbestos structures in the
induction of lung tumors in AF/HAN rats cannot be re-
jected. This implies that this model can potentially pro-
vide adequate descriptions of risk in a broader range of
exposure settings.

Stanton et al.2% found that fibers longer than 8§ um
appear to conelate best with mesothelioma incidence,
which parallels the findings in this study that structures
longer than some minimum length (between 5 and 10
pm) tend to contribute to the induction of lung tumors
following inhalation and that potency tends to increase
with increasing length. However, our analysis indicates
that the potency of structures increases with length up
to lengths of at least 40 m, whereas Stanton et al. did
not explicitly consider the contribution to potency by
such long structures.

The maximum thickness for potent fibers and bun-
dles found in this study (< 0.3 or 0.4 pm) is comparable
to the maximum thickness reported by Stanton et al.@¢
of 0.25 pum. Stanton et al. did not report information on
complex structures in their data base and, indeed, the
meaning of complex structures in & gel suspension
(which they used for implantation) is not clear. Conse-
quently, their study provided no information on the ef-
fects of thick clusters. Complex asbestos structures do
occur as isolated species in the air, however, and results
in this study indicate that clusters longer than 40 pum and
thicker than 5 yum may contribute to the potency of an
asbestos dust.

That long, thick clusters (structure for structure)
may contribute about one-sixth as much to total potency
as long, thin fibers or bundles (Table 5B) suggests a
mechanism in which some of these may bresk down and
liberate Jong fibers or bundles that may then contribute
to the induction of tumors. The structures longer than
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40 pm and thicker than 5 pm that are evaluated in this
study are open structures with settling velocities that are
likely comparable to their component fibers or bundles.
Thus, it is likely that they are respirable and can pene-
trate the deep lung. Once in the deep lung, however,
when such structures impact a wall, some may liberate
component fibers or bundles and the longest and thinnest
of those may then contribute to the induction of tumors.

Although neither Stanton et al 2% nor Bertrand
and Pezerat® concluded that mesothelioma induction
following injection or implantation is a strong function
of fiber mineralogy, such a conclusion was reached by
Bonneau et al.®® In our study, there is no evidence that
mineralogy is a determinant of potency toward the in-
duction of lung tumors. However, assuming the size
range that induces lung tumors and mesothelioma are
similar, results in this study suggest that for inhaled
dusts that exhibit comparable potency toward lung tumor
induction, amphibole dusts are approximately three
times as likely to induce mesothelioma as chrysotile
dusts.

Implications for Human Exposure

For human exposures, potency estimates obtained
from different epidemiological studies, which are based
upon PCM measurements, have been found to differ by
large factors*! This study likewise demonstrates that
PCM measurements do not provide a consistent dose
response in the animal inhalation studies either. How-
ever, more complex exposure measures based upon
TEM measurements are shown to provide a consistent
dose-response relationship for the animal data. This sug-
gests that the observed lack of a consistent dose response
across epidemiological studies is due at least partially to
the fact that the features of asbestos important to deter-
mining potency are not adequately represented by PCM
measurements.

Regarding mineralogy, human epidemiology stud-
ies (tzken as a whole) suggest that mineralogy is im-
portant at least for determining potency toward the
induction of mesothelioma” Qur results likewise indi-
cate that amphibole dusts are more likely (by a factor of
about three) to induce mescthelioma than chrysotile
dusts whenever their potential to induce Iung tumors are
comparable.

The importance of mineralogy in determining the
relative potency of a dust toward the induction of lung
tumors in human exposure is less clear.! Results from
this study suggest that, when the relative size distribution
of structures in a dust is taken into account, the miner-
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alogy of a structure does not contribute to the determi-
nation of potency toward the induction of lung tumors.
However, this finding may not be applicable to humans
because chrysotile degrades more rapidly than amphi-
bole in vivo. Since humans live much longer than the
animal species typically used in experiments, the relative
persistence of chrysotile and amphibole in vive'® may
have & much larger impact on the induction of lung tu-
mors in bumans while remaining unimportant in ani-
mals.

Implications for Asbestos Measurement

Results from this study indicate strongly that meth-
ods for the measurement of asbestos should be modified
to include better characterization of longer structures and
that such characterization should be performed using
TEM (as opposed to PCM), due to the need to include
thin structures (and the need to distinguish asbestos
structures from non-asbestos structures). Better charac-
terization of longer structures can be achieved, just as in
our reanalysis of the data from the animal experiments,
by examination of grid specimens at lower magnifica-
tions in which oniy structures exceeding some minimum
length are recorded. At a minimum, we recommend that
separate examinations be made for structures 2 5 pm in
length. However, because of the indication in this study
that very long structures (2 40 pm in length) are highly
potent relative to shorter structures, we also recommend
that a separate examination of still Tonger structures
{e.g, structures = 20 pm in length) be included in the
routine analysis of asbestos. Similarly, to obtain expo-
sure measures that relate more closely to risk without
unduly increasing the cost of the analysis, charactetiza-
tion of structures shorter than 5 pm can be deemphasi-
zed.
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ABSTRACT

Timbrell's analyses of fiber burdens in the post-mortem lungs of workers
with long-term inhalation exposures to a variety of amphiboles have shown that
the clearance of fibers is strongly dependent on lung burden and its associated
lung fibrosis, with a small percentage of very heavily exposed workers having
ljttle, if any clearance from parts of the lung. The extent of lung fibrosis is
proportional to the total surface of retained mineral particles for both fibers
and more compact particles. The human data base from the asbestos workers can
provide a scund basis for the development of more generic models describing the
influence of lung burden of mineral dust on particle deposition in, and clearance
from, human lungs. The implications of the results obtained to the pathogenesis
of chronic lung diseases and the evaluation and/or establishment of exposure lim-
its are also discussed, along with some research needs to facilitate interspecies
extrapolation of fiber toxicity data.

INTRODUCTION

Qur assignment for this Symposium paper was to discuss the following The
following issues:

e What evidence, if any, do we have from human epidemiology data that would
tend to validate or argue against the rat data with respect to lung over-
loading?

¢ What are the implications of lung overlcading with respect to environmental

health standards?

With respect to the first issue, we have interpreted epidemiology broadly,
and will include a review of data from a variety of studies of human lung tissue

Key Words
Particle retention
Fiber burdens
Post-mortem human lungs
Lung fibrosis
Occupational & environmental exposure limits
Critical fiber dimensions
Particle surface
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©: occupationally exposed workers by one of us (V.T.) in association witp
nuzerous colleagues (Timbrell, 1982, 1983, Timbrell et.al., 1988, 1990). oQur
review of other human exposure-response literature will be brief, since little of
it provides quantitative information on lung dust retention in relation to expo-
sure duration or intensity.

The human data base, while limited, shows evidence that overloading of
clearance mechanisms is a major determinant of lung fibrosis among workers in the
dusty trades. However, it remains inadequate for valid intercomparisons with the
results of controlled exposure studies in rats and other laboratory animals.
Furthermore, some of the critical determinants of disease potential established
in the human studies have not been measured or reported in the results of the
animal studies, e.g. particle surface areas, and, for fibers, fiber length and
diameter distributions. These critical fiber dimensions differ for the three
different diseases associated with asbestos exposure as discussed previously
(Lippmann, 1988). The critical fiber dimensions are summarized in Table 1. We
will discuss the research needs that we have identified to achieve a more defini-
tive resolution of interspecies differences in response to inhaled mineral dusts.

With respect to the second question, it is already c¢lear that so-called
"inert" or "nuisance" dusts can produce adverse effects when clearance mechanisms
become overloaded, and that the current occupational exposure limits deserve a
careful re-examination. We also review recent evidence that current non-specific
ambient air quality standards may not fully protect the more sensitive segments
of the population from adverse health effects. This suggests the presence of a
threshold for response, analogous to the particle clearance overlocad phenomemon
that has been observed at higher exposure levels in chronic animal exposure stu-
dies, as discussed later in this paper.

TABLE !
‘Summary of Recommendations on Asbestos Exposure Indices*

Disease Relevant exposure index

Asbestosis Surface area of fibers with:
Length > 2 pm; diameter > 0.15 pm

Mesothelioma Number of fibers with:
Length > 5 pm; diameter < 0.1 pm

Lung cancer Number of fibers with:
Length > 10 pm; diameter > 0.15 pm

* Reprinted by permission from Lippmann (1988).

Evidence for Dust Overload in Human Epidemiolopgy

Snipes (1989) has estimated that a2 lung burden of 10 to 20 g in humans
corresponds to 10-20 mg particles per gram of wet lung, which is similar to the
lung byrden of Diesel soot in rats after 24 months of exposure to 3.5 or 7.0 mg
soot/m”. These soot concentrations are clearly "overload" doses in the rat.
Thus, evidence of ¢oal workers pneumoconiosis (CWP) among miners who accumulate
10-40 g in British coal mines (Rossiter et al., 1967, Davis et al., 1983, Ruckley
et al., 1984, Soutar et al., 1986) or 25 to 50 g in German coal miners (Stober et
al., 16967) is quite consistent with the overload hypothesis. The prevalence of
CWP varies with coal rank and other factors for reasons that remain elusive.
Data on other potentially important exposure variables, such as particle size
distribution and specific surface area are not generally available to separate
the effects of mass loading from those associated with surface properties or
chemical-specific interactions with epithelial cells.

For community air data, the enhanced response due to overloading may not be
comparable to that in the dusty trades. There is however, some epidemiologic
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FIGURE 1. The line shown represents a nonparametric fit of the percentage
difference between the observed FVC and the FVC predicted by a regres-
sion controlling for the effects of standing height, sitting height,

age, race, Ssex, body masg index, smoking, and respiratory conditions
smoothed against TSP (pg/m”). Reprinted by permission from Schwartz
(1989).

evidence for a threshold type of response for total suspended particulates (TSP)
in relation to morbidity indices. Schwartz (1989) examined lung function in 4300
representative children and young adults (ages 6-24) in relation to TSP in their
communities, using data collected during the second National Health and Nutrition
Examination Survey (NHANES II) conducted in the period 1976-1980 throughout the
U.S. He found highly significant associations between forced vital capacity (FVC)
and peak flow rates and TSP. As shown in Figure 1, there appeared to be a thres-
hold of response at about 90 pg/m” daily average TSE.

In another use of secondary data sources for studies of the health effects
of air pollutants, Ostro and Rothschild (1989) regressed data on respiratory-
related restricted activity days (RRAD) from the 1976-8] Health Interview Survey
(HIS) against the daily average concentration of fine particulate matter (FP),
i.e., mass concentration of aercsol < 2.5 pm in aerodynamic diameter. The HIS is
a national (U.S.) multistage probability survey of working individuals, aged 18-
65 in S0,000 households. Respondents were asked to report RRAD in the prior 2-
week period, such as days of work loss or bed disability as well as more miner
restrictions associated with an acute respiratory condition. They found the best
estimate for the effect of FP on RRAD to be a 1.58% increase for each | pg/m  of
FE.

Ozkaynak and Thurston (1987) reported on associations between 1980 U.S. mor-
tality rates in 98 Standard Metropolitan Statistical Areas (SMSAs) and four
measures of particulate air pollution. These were total suspended particulate
matter (TSP); inhalable particulate matter, i.e., particulate < 15 pm in aero-
dynamic median diameter (IHP); fine particulate matter,_ i.e., particulate < 2.5
pm in aerodynamic median diamefer (FP); and sulfate (s0“”,), a major component of
FP. They found that FP and SO were most consistently and significantly asso-
ciated with the reported SMSA-specific total annual mortality rates, whereas TSP
and IP were often nonsignificant predictors of mortality.

The analyses of Ostro and Rothschild (1989) and Ozkaynak and Thurston (1987)
did not consider a threshold model. Furthermore, their results suggest that the
FP associated responses are due to the acidic nature of the small particle frac-
tion and not the mineral dust in the coarse particles that dominate the IHP and
TSP measures. Thus, the threshold type of response reported by Schwartz (1989)
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for TSP and lung function may, or may not, apply to RRAD and daily mortality. In
any case, it is uncertain how the community air pollution results relate, if they

do, to the overload hypothesis based on chronic exposures at much higher concen-
trations.

Evidence for Dust Overload in Human lLung Studies

Timbrell (1982) developed a model for fiber deposition in human lungs based
upon his analysis of the bivariate diameter and length distributions found in air
and lung samples collected at an anthophyllite mine at Paakkila in Finland, At
this particular mine, the length and diameter distributions of the airborne dust
were exceptionally broad, and historic exposures were very high. He observed
that, for workers with the highest exposure and most severe lung fibrosis (Ash-
croft et al., 1988), the 1lung fiber distributions in some tissue segments
approached those of the airborne fibers. Adjacent tissue, analyzed for extent of
fibrosis, showed severe fibrotic lesions. He concluded that long-term retention
was essentially equal to deposition in such segments, and that the fibrosis in
the tissue had not affected deposition. His deposition model, illustrated in
Figure .2, is based upon the bivariate size distribution differences between air-
borne dust samples and the dust in the most heavily fibrosed lung tissue. Figure
3 shows a series of retention curves for different degrees of lung fibrosis.
These curves were determined by comparing the fiber size distributions in other

tissue samples from the same lung with the distribution in the sample for which
all fibers deposited were retained.
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FIGURE 2. Bivariate plot of deposition efficiency model for the gas-exchange
region of the human lung as a function of fiber length and fiber diam-
eter. Limits are shown for aspect ratios (A) equal to 1, 3, and 5.
The model is based on differences between airborne fiber distributions
and distributions measured in very severely fibrosed lung tissue.

The deposition model was tested by comparing the fiber retention found in
the 1lungs of much less heavily exposed asbestos workers at Paakkila and other
iocations to that predicted by applying the deposition model to the specific air-
borne dust distributions. Figure 4 shows the bivariate size distributions for
airborne fibers at the Transvaal in South Africa (crocidolite and amosite), at
the Northwest Cape in South Africa (crocidolite) and at Wittenoom in Australia
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FIGURE 3, Effect of lung fibrosis on fiber retention in human lungs as a func-
tion of fiber length. The model is based on retention in lung seg-
ments from the same lung used to develop the model illustrated in Fig-
ure 2, but with various lesser degrees of fibrosis.

(crocidolite). Figure 4 also shows the distributions of fiber lengths for
specific fiber diameter intervals. This is a particularly useful form of presen-
tation for studies of the influence of fiber diameter on mesothelioma. It is
clear that as one goes from Paakkila to the Transvaal, to the NW Cape, to Wit-
tenoom, both the lengths and diameters shift downward substantially.

Figure 5 shows the predicted bivariate size distributions based on combining
the data wused to develop Figure 2 with the data from Figure 4 for workers at
Paakkila and Transvaal, with relatively light occupational exposures, as well as
the observed bivariate lung distribution data from these regions. It is apparent
that the model fits the observations satisfactorily.

Figures 6 and 7 show the influence of fiber size and degree of lung fibrosis
on fiber retention and clearance for the fiber size extremes represented by Paak-
kila and Wittenoom respectively. Paakkila, with virtually no fibers with diame-
ters less than 0.! pm, produced many cases of lung cancer and asbestosis, but no
mesothelioma. Wittenoom, with virtually all of the fibers having diameters less
than O0.lpm and lengths less than Spm, produced a very high yield of mesothelioma
and lung fibrosis, as well as an excess in lung cancer (SMR=1.57) (Hobbs, et al.,
1980). These figures also show the great differences in the fibers retained in
and cleared from the gas exchange region of the lung at Paakkila and Wittenoom.
The cleared fibers represent the longest capable of reaching the pleural surfaces
where mesotheliomas are found. The modal values for both fiber length and diame-
ter are also shown in Figures 6 and 7. The differences between retained and
cleared fibers' modes are much greater for both the minimal and severe ¢fibrosis
cases for the longer, thicker fibers at Paakkila than for the shorter, thinner
fibers at Wittenoom. The data indicate the need to review the critical dimen-
sions of fibers for mesothelium production. Long fibers may be more carcinogenic
than shorter fibers. The fibers at Wittenoom were almest all shorter than five
pm, but were present in enormous numbers. In fact, Rogers (1990) reported on
reanalyses of thermal precipitator slides from Wittencom using currently used
analytical techniques, and reported about 300 fibers/mL greater than 5 um in
length.

Lung fibrosis is associated with increased fiber retention, and fiber reten-
tion is clearly associated with fiber length and diameter. More precise descrip-
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FIGURE 5. The left side shows bivariate fiber length and diameter distributions
calculated for retention in Paakkila and Transvaal miners' lungs based
upon Timbrell's deposition and retention model as applied to measured
airborne fiber distributions. The right side shows the bivariate size
distributions measured in miners' lungs at these locations.

tions of the effect of fiber loading in the lung on fibrosis need to be based on
the wuse of the most appropriate index of fiber loading. Figure 8 clearly shows
that the only fiber concentration index that normalizes the diverse data from the
various asbestos mining regions is the total fiber surface of the aerosol. When
fiber number concentration or total fiber mass concentration is used, each mining
region exhibits a quite different exposure-response relationship.

Timbrell (1989) next asked the question of whether the c¢lear association
between particle surface concentration and lung fibrosis was limited to fibers.
Lung samples were collected from 39 dust exposed workers from a variety of loca-
tions including gold mines, shipyards, etc. and bivarjate size distributions
were analyzed from tissue adjacent to that used to determine the extent of lung
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FIGURE 8. Relationships between fibrosis scale and relative concentrations of
fibers per unit weight of dry lung tissue. The lines connect data
points from the same subject. The relative fiber surface area normal-
izes the data better than either the relative fiber number concentra-

tion or the fiber mass concentration. Reprinted by permission from
Lippmann (1988).

fibrosis. As shown in Figure 9, the correlation between dust surface area and
the degree of fibrosis was much better (r=0.80) than for particle number concen-
tration (r=0.50). He then analyzed whether different components of the dust mix-
tures in these lungs contributed disproportionately to the fibrotic response.
The results are summarized in Table 2 in terms of the asbestos alone, the asbes-
tos plus quartz, and the other constituents generally considered much less fibro-
genic than asbestos or quartz. The fibrogenicity coefficient of 2.38 units for
the category "other then asbestos and quartz" is not substantially different from
those for the more "fibrogenic" dusts, suggesting that its components, including
talc, mica, various other silicates and iron are as fibrogenic as asbestos and
quartz when expressed in terms of particle surface area. The table also shows
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FIGURE 9. The left panel shows the relationship between fibrosis scale and con-
centrations of total particulate surface per unit weight of dry lung
tissue for workers in a variety of dusty trades. The right panel
shows the results for the same tissue samples when expressed as parti-
cle number concentration.

that concentrations expressed as particle volume had correlation coefficients
somewhat Jower than those for particle surface, but much higher than those for
particle number concentration. Thus, respirable mass concentrations, as conven-
tionally measured for dust exposed workers, are better surrogate measures of
fibrogenicity hazard than particle counts for the dusty occupations represented
in this limited study.

TABLE 2
Fibrogenicity (and Correlation) Coefficients for Fibrosis

Score vs. Particle Concentration for 39 Lung Samples of
Workers with Various Mineral Dust Exposures*

Types of particles Concentration index+
included in analysis Surface Volume Number
All measured particles 1.932 (0.80) 1.26° (0.69) 1.47° (0.50)
Asbestos only 2.70% (0.72) 2.07° (0.64) 2,225 (0.49)
Asbestos & quartz 2.03% (0.71) 1.57° (0.65) 1.47% (0.49)
Other thanp asbestos & quartz1l 2,382 (0.43) 1.43b (0.44) 2.65° {0.33)

* Specimens obtained from long-term workers at asbestos mines and factories,
gold mines, a platinum mine, British shipyards and other work.

M Derived from high resolution transmission electron microscopy by
? Finnish Acad. Sci.

a Includes talc, mica, kaolinite, iron, Etcla

p Desree of fibrosis/pmslpg dry tissue X 10_4.

o Degree of fibrosis/pm /pg dry tissue X 10_,.

Degree of fibrosis/no./pg dry tissue X 10 .
Note: Comparison across rows is invalid for fibrogenicity coefficients,
since the fibrogenicity units differ.
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IMPLICATIONS FOR EXPOSURE LIMITS

Overloading of particles in the lung can be operationally defined as a "
marked reduction in lung clearance, and the evidence is clear from both the v
animal and human studies reviewed at this Symposium that such reductions in
clearance are threshold phenomena. If we had definable thresholds it would be
relatively easy to set occupational and environmental exposure limits for air-
borne particles. We would need only define the particle properties to be meas-
ured and the exposure-response relationships for the health endpoints of
interest. It would not be necessary to wait for a full mechanistic understanding
at the cellular and molecular level. In any case, based upon the presentations
and discussions at this Symposium, such an understanding is not likely to be
available in the near future.

Furthermore, for the specific case of "insoluble" particles that deposit in
lung airways and airspaces, .it is not at all clear that the fascinating and com-
plex biochemical events occurring at the cellular and molecular level are as
important as determinants of disease potential as the biophysical processes that
determine deposition patterns, translocation pathways, and retention times at
critical target sites. Perhaps this Symposium needed one more half-day session
devoted to issues such as: 1) the implications of the highly concentrated sur-
face deposition at airway bifurcations in both large and small airways, and the
virtual absence of deposition in the peripheral alveoli; 2) the influence of par-
ticle dimensions on clearance rates and pathways, e.g., the relatively rapid
migration of ultrafine particles and fibers with diameters <0.1 pm into the
interstitium, and the lack of migration of fibers longer than — 10 pm from their
initial deposition sites; 3) the critical role of the total surface area of
retained particles in the formation of fibrotic lesions; and 4) the relative
unimportance of chemical composition in the fibrotic response to durable mineral
particles retained in the lungs.

While we know how, in principle, to approach the setting of exposure
standards for insoluble mineral particles, it does not follow that we have all of
the data we need to set good standards. We will need to more firmly establish
which particle properties are to be measured, and how they are to be analyzed.
We also need to establish and/or verify that we can relate the defined exposure
parameters to the health outcomes measured in the human studies and/or extrapo-
lated from the animal studies. These tasks are formidable, but not impossible.
The critical first step is to get the interested parties in the research commun-

ity and the regulatory authorities to commit the necessary resources to this
undertaking.

RESEARCH NEEDS

The lack of biophysical perspectives has inhibited the effective integratioen
of the results of the fairly extensive data bases from the animal and human stu-
dies. We strongly suspect that the apparent differences in the toxicity rankings
of the various asbestos minerals between the animal and human studies would
disappear if the data were adjusted for the different lengths and diameter dis-
tributions of the inhaled fibers. As demonstrated by the recent work of Davis et
al (1986, 1988) with long and short amosite and chrysotile, the UICC reference
samples were much less toxic than the raw materials that many of the mine and
mill workers exposed to. The grinding and blending processes used to make the
VICC reference materials uniform made them much less suitable for realistic toxi-
city testing.

To the extent that the bivariate fiber size distributions of the test
materials used in the animal toxicity studies can be determined retrospectively,
it may be possible to reanalyze the exposure-response relationships from these
studies and gain valuable new perspectives. It would also be extremely desirable
to do bivariate fiber size distribution analyses on the dust retained in the
lungs of the animals that were chronically exposed to durable fibers, and to com-
pare the retention to the degree of fibrosis. This would permit a valid inter-

species comparison with Timbrell's data on the lungs of chronically exposed
asbestos workers.
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Report of Results - MVA Project No. 6543

Analysis of Water Putty Purchased in May, 2006

INTRODUCTION

This report includes the results of analyses of fourteen containers of Donald
Durham Co. Water Putty delivered to MVA Scientific Consultants on 29 May 2006. The
information with the samples indicated that the cans had been purchased at a local ACE
Hardware store on May 27, 2006. The cans were labeled “Purham’s Rock -Hard Water
Putty” (Figure 1). At the laboratory, the samples were assigned the MVA Numbers R0972
through R0985. Samples R0972 through R0978 are four pound cans; samples R0979
through R0985 are one pound cans. MVA Scientific Consuitants was requested to
analyze the samples for asbestos content. The analyses were conducted during the
period 30 June to 18 July 2006.

METHODS AND EQUIPMENT

The samples were first examined by stereomicroscopy utilizing a Zeiss Stemi 2000
stereomicroscope. They were then analyzed for asbestos by the standard polarized light
microscopy (PLM) method using an Olympus BH-2 polarized light microscope. The
samples were further analyzed by analytical electron microscopy (AEM) using a Philips
420 transmission electron microscope (TEM) and a Philips 120 TEM equipped with
energy dispersive spectroscopy (EDS) x-ray analysis systems.

RESULTS .
_ Sample R0972 is an off-white powder of a fine size that contains approximately /UO% e <
65% hemihydrate gypsum, 20% starch, 8% talc and 7% amphibole fibers. The 1 (5 s rfd‘/‘
amphiboles (tremolite by PLM and TEM) occur in a population of particles with an Moy OSHA
average aspect ratio less than 10:1: While the population of trémolite fibers would ol e Moo

generdlly-be cansidered a tleavage fragment populatwn, many meet the OSHA definition

of an asbestos fiber (fongerthan 5 pm: -3:1 aspect ratio). PLM and TEM analyses s &
showed the amphibole fibers to be conststent with tremolite (Figures 2 through 4). Some o0 v Y
fibers possibly consistent with anthophyllite were also found by TEM. cvileqs “

Sample R0973 is an off-white powder of a fine size that contains approximately «s le Slog
66% hemihydrate gypsum, 25% starch, 5% talc and 5% amphibole fibers. The '
amphiboles (tremolite by PLM and TEM) oc¢cur in a population of particles with an
average aspect ratio less than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragmerit population, many meet the OSHA definition
of an asbestos fiber (longer than 5 yim with a 3:1 aspect ratio). PLM and TEM analyses
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showed the amphibole fibers to be consistent with tremolite (Hgdres 5 through 7). Some
fibers possibly consistent with anthophyllite were also found by TEM.

Sample R0974 is an off-white powder of a fine size that contains approximately
63% hemihydrate gypsum, 25% starch, 5% talc and 6% amphibole fibers. The
amphiboles (fremolite by PLM and TEM) occur in.a population of particles with an
average aspect ratio less than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragment population, many meet the OSHA
definition of an asbestos fiber (loniger than 5 ym with a 3:1 aspect ratio). PLM and TEM
analyses showed the amphibole fibers to. be consistent with tremolite (Figures 8 through
10). Some fibers possibly consistent with anthophyllite were also found by TEM.

_ Sample R0975 is an off-white powder of a fine size that contains approximately
70% hemihydrate gypsum, 20% starch, 5% talc and 5% amptiibole fibers. The
amphiboles (tremolite by P1-M and TEM) occur in a population of particles with an
average aspect ratio less than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragment population, many meet the OSHA
definition of an asbestos fiber (longer than 5 ym with a 3:1 aspect ratio). PLM and TEM
analyses showed the amphibole fibers to be consistent with tremolite (Figures 11
through 13). Some fibers possibly consistent with anthophyfiite were also found by TEM.

Sample R0976 is an off-white powder of a fine size that contains approximately
65% hemihydrate gypsum, 20% starch, 8% talc and 7% amphibole fibers, The
amphiboles (tremolite by PLM and TEM) occur in a population of particles with an
average aspect ratio less than 10:1. While the population of fremolite fibers would
generally be considered a cleavage fragment population, many meet the OSHA
definition of an asbestos fiber (longer than 5 pm with a 3:1 aspect ratio). PLM and TEM
analyses showed the amphibole fibers to be consistent with tremolite (Figures 14
through 16). Some fibers possibly consistent with anthophyllite were also found by TEM.

Sample R0977 is an off-white powder of a fine size that contains approximately
65% hemihydrate gypsum, 20% starch, 10% talc and §% amphibole fibers. The
amphiboles (tremolite by PLM and TEM) occur in a population of patticles with an
average aspect ratio less than 10:1. While the population of fremolite fibers would
geherally be considered a eleavage fragment population, many megt the OSHA
definition of an asbestos fiber (longer than 5 pm with a 3:1 aspect ratio). PLM and TEM
analyses showed the amphibolé fibers fo be consistent with tremolite (Figures 17
through19). Some fibers possibly consistent with anthophyliite were also found by TEM.

Sample R0978 is an off-white powder of a fine size that contains approximately
65% hemihydrate gypsum, 20% starch, 8% talc and 7% amphibole fibers. The
amphiboles (tremolite by PLM and TEM) occur in a population of particles with an
average aspect ratio less than 10:1. While the population of tremolite fibers wouid-
generally be considered a cleavage fragment population, many meet the OSHA |
definition of an asbestos fiber (longer than 5 ym with a 3:1 aspect ratio). PLM and TEM
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analyses showed the amphibole fibers to be consistent with tremolite (Figures 20
through 22). Some fibers possibly consistent with anthophyllite were also found by TEM.

Sample R0979 is an off-white powder of a fine size that contains approximately
65% hemihydrate gypsum, 20% starch, 7% talc and 8% amphibole fibers. The
amphiboles {tremolite by PLM and TEM) occur in a population of particles with an
average aspect ratio less than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragment population, many meet the OSHA
definition of an asbestos fiber (longer than 5 um with a 3:1 aspect ratio). PLM and TEM
analyses showed the amphibole fibers to be consistent with tremolite (Figures 23
through 25). Some fibers possibly consistent with anthophyllite were also found by, TEM.

Sample R0980 is an off-white powder of a fine size that contains approximately
65% hemihydrate gypsum, 23% starch; 6% talc and 6% amphibole fibers. The
amphiboles (tremolite by PLM and TEM) occur in a population of particles with an
average aspect ratio less than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragment population, many meet the OSHA
definition of an asbestos fiber (longer than 5 pm with a 3:1 aspect ratio). PLM-and TEM
analyses showed the amphibole fibers to be consistent with tremolite (Figures 26
through 28). Some fibers possibly consistent with anthophyllite were also found by TEM.

Sample R0981 is an off-white powder of a fine size that contains approximately
65% hemihydrate gypsum, 20% starch, 8% talc and 7% amphibole fibers. The
amphiboles (tremolite by PLM and TEM) occur in a population of particles with an
average aspect ratio less than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragment population, many meet the OSHA
definition of an asbestos fiber (longer than 5 um with a 3:1 aspect ratio). PLM and TEM
analyses showed the amphibole fibers to be consistent with tremolite (Figures 29
through 31). Some fibers possibly consistent with anthophyliite were also found by TEM.

Sample R0982 is an off-white powder of a fine size that contains approximately
62% hemihydrate gypsum, 256% starch, 8% taic and 5% amphibole fibers. The
amphiboles (tremolite by PLM and TEM) occur in a population of particles with an
average aspect ratio less than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragment population, many meét the DSHA
definition of an asbestos fiber (longer than 5 pm with a 3:1 aspect ratio). PLM and TEM
analyses showed the amphibole fibers to be consistent with tremolite (Figures 32
through 34). Some fibers possibly consistent with anthophyliite were also found by TEM.

Sample R0983 is an off-white powder of a fine size that contains approximately
65% hemihydrate gypsurn, 20% starch, 8% talc and 6% amphibole fibers. Thie
amphiboles (tremolite by PLM and TEM) occur in a population of patrticles with an
average aspect ratio less than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragment population, many meet the OSHA
definition of an asbestos fiber (longer than 5 pm with a 3:1 aspect ratio). PLM and TEM
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analyses showed the amphibole fibers to be consistent with tremolite (Figures 35
through 37). Some fibers possibly consistent with anthophyilite were also found by TEM.

Sample R0984 is an off-white powder of a fine size that contains approximately
70% hemihydrate gypsum, 20% starch, 5% talc and 5% amphibole fibers. The
amphiboles (tremolite by PLM and TEM) occur in a population of particles with an
average aspect ratio less than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragment population, many meet the OSHA
definition of an asbestos fiber (longer than 5 pm with a 3:1 aspect ratio). PLM and TEM
analyses showed the amphibole fibers to be consistent with fremolite (Figures 38
through 40). Some fibers. possibly consistent with anthophyllite were also found by TEM.

Sample R0985 is an off-white powder of a fine size that contains approximately
60% hemihydrate gypsum, 20% starch, 9% talc and 6% amphibole fibers. The
amphiboles (tremolite by PLM and TEM) occur in a population of particles with an
average aspect ratio fess than 10:1. While the population of tremolite fibers would
generally be considered a cleavage fragment papulation, many meet the OSHA
definition of an asbestos fiber (fanger than 5 pm with a 3:1 aspect ratic). PLM and TEM
analyses showed the amphibole fibers to be consistent with tremolite (Figures 42 -
through 45). Some fibers possibly consistent with anthophyliite were also found by TEM.
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Figure 2. Polarized light image of a tremolite fiber.
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Figure 3. Transmission electron microscope image of tremolite from Sample R0972.
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Figure 4. X-ray spectrum (TEM) of tremolite from Sample R0972.
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Figure 6. Transmission electron microscope image of tremolite from Sample R0973.
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Figure 7. X-ray spectrum (TEM) of tremolite from Sample R0973.
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Figure 8. Polarized light image of a tremolite fiber.
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Figure 9. Transmission electron microscope image of tremolite from Sample R0974.
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Figure 10. X-ray spectrum (TEM) of tremolite from Sample R0974.
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Figure 11. Polarized light image of a tremolite fiber.
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Figure 12. Transmission electron microscope image of tremolite from Sample R0975.
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Figure 13. X-ray spectrum (TEM) of tremolite from Sample R0975.

MVAB543 R0976_FLMtremolite_976¢€

Figure 14. Polarized light image of a tremolite fiber.
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Figure 15. Transmission electron microscope image of tremolite from Sample R0976. :
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Figure 16. X-ray spectrum (TEM) of tremolite from Sample R0976.
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Figure 18. Transmission electron microscope image of tremolite from
Sample R0977.
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Figure 19. X-ray spectrum {TEM) of tremolite from Sample R0977.
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Figure 20. Polarized light image of a tremolite fiber.
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Figure 21. Transmission electron microscope image-of tremolite from Sample R0978.
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Figure 22, X-ray spectrum (TEM) of tremolite from Sample R0978.
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Figure 23. Polarized light image of a.tremolite fiber.
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Figure 24. Transmission electron microscope image of tremolite from Sample R0979.
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Figure 25. X-ray spectrum (TEM) of tremolite from Sample R0979.
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Figure 26. Polarized light image of a tremolite fiber.
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Figure 27. Transmission electron microscope image of tremolite from Sample R0980.
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Figure 28. X-ray spectrum (TEM) of tremolite from Sample R0980.
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Figure 29. Polarized light image of a tremolite fiber.
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Figure 30. Transmission electron microscope image of tremolite from Sample R0981.
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Figure 31. X-ray spectrum (TEM) of tremolite from Sample R0981.
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Figure 32. Polarized light image of a tremolite fiber.
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Figure 33. Transmission electron microscope itmage of tremolite from Sample R0982.
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Figure 34. X-ray spectrum (TEM) of tremolite from Sample R0982.
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Figure 36. Transmission electron microscope image of tremolite from
Sample R0983.
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Figure 39. Transmission electron microscope image of tremolite from sample R0984.
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Figure 40. X-ray spectrum (TEM) of tremolite from Sample R0984.
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Figure 37. X-ray spectrum (TEM) of tremolite from Sample R0983.
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Figure 38. Polarized light image of a tremolite fiber.
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Figure 42. Transmission electron imicroscopé image of tremolite from Sample R0985.
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Figure 43. X-ray spectrum (TEM) of tremolite from Sample R0985.
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Asbestos is a form of certain serpentine or amphibole minerals that has crystallized in a
particular habit known as asbestiform.”"” Amphibole minerals are often encountered in
metamorphic geological environments, but the majority will not have crystallized in the
asbestiform habit. ") Thus, ore deposits in these environments may include coarsely
crystalline amphiboles that can produce cleavage fragments when the rocks are crushed.
These fragments may meet morphological criteria that cause them to be designated as
fibers, but without them being asbestiform per se. In an attempt to distinguish cleavage
fragments from asbestiform fibers, the American Society for Testing and Materials
(ASTM) International Standard D7200-06'” includes a procedure for determining
whether the particles observable under the phase contrast microscope which meet a
morphological definition of a fiber are likely to be asbestiform fibers or cleavage
fragments. (The morphological definition of a fiber is that in the National Institute for
Occupational Safety and Health (NIOSH) Method 7400%’ “A” counting rules, i.e., > 5
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pum in length, and with aspect ratio (length:width) > 3:1). Under the ASTM D7200, any
particle meeting the definition of a fiber that is curved, or has any morphology that
suggests that it is a bundle of fibrils, is automatically assigned to a class of particles
(“Class 1”) defined as potentially asbestiform, whatever its actual dimensions. In
addition, particies meeting the definition of a fiber and > 10 pm in length or < than 1 pm
in width are also assumed to be potential asbestiform fibers, and are assigned to “Class 2”
(see Sections 4.2, 13.13.2, and A4.3 of ASTM D7200). Thus the potentially asbestiform
population is considered the sum of Classes | and 2. All other particles that meet the
definition of a fiber, including possible cleavage fragments, are assigned to Class 3. An
alternative definition for Class 2 of length > 10 pm and width < 1 pm is being proposed
in an upcoming ASTM member ballot. It is important to assess the impact of both the

current and proposed criteria.

Taconite is an iron ore that can contain amphiboles in the tremolite-actinolite and
cummingtonite-grunerite amphibole series.” We have recently analyzed 77 air samples
from a taconite mine ore-processing mill. The mine samples have an average of §3.8
fibers (NIOSH 7400 “A” rules) per 85.6 fields, or approximately one fiber per field area.
28% of these fibers met the ASTM International D7200-06 definition of Class 1, and a
further 18.6% met the dimensional characteristics of the current criteria for Class 2 (the
remainder being Class 3). However, under the microscope, many of these Class 2 fibers
have other morphological features (e.g., aspect ratios at the low end of the range, and
non-parallel sides) which indicate that they might be mineral cleavage fragments (see
Figure 1). Therefore, we hypothesized that the rule used in the current ASTM Standard
to classify fibers appears to underestimate proportion of fibers (defined by NIOSH A
rules) that are actually cleavage fragments, with many obvious cleavage fragments being

placed in Class 2 (potentially asbestiform).

Many experienced microscopists believe they can distinguish cleavage fragments from
asbestiform fibers by visual clues, although there is no established reference procedure;
the ASTM criteria are the first attempt to establish criteria acceptable by consensus.

Given that there is no prior procedure against which the ASTM criteria can be tested, we




decided to test the criteria by examining the results of their application to crushed
fragments from samples of massive or coarsely crystalline amphibole minerals that do not
have the finely fibrous nature associated with the asbestiform habit. One sample of
actinolite was obtained from a mineral dealer who stated it was from near Wrightwood,
San Bemardino Co., CA (Figure 2); the mineralogical identification was verified by X-
ray diffraction (XRD) analysis. The actinolite was crushed at the RTI International
laboratory in a sequential operation using a hydraulic press and a mortar and pestle, in an
attempt to maximize the percentage of particles that would meet the definition of a fiber
under phase contrast microscopic analysis. In addition, RTI has a stockpile of a
previously-crushed tremolite acquired from the National Institute of Environmental
Health Sciences (NIEHS), whose provenance is currently unknown. The identity as
tremolite was also verified by XRD. A weighed portion of each material was suspended
in water, stirred, and aliquots were taken at various time intervals to determine the
optimum loading and particle sizing. Approximately 300 particles from each material
were examined according to the procedures in ASTM Intemational D7200-06. That is to
say, the particles that met the NIOSH 7400 “A” rules definition of a fiber were further
classified as to whether they met the definition of D7200-06 Class 2 (potential
asbestiform fibers). The results are shown in Table 1. While the presence of a small
amount of asbestiform fiber contamination in the mineral specimens used cannot be ruled
out, it is unlikely to be more than a few percent at most. As expected, almost none of the
particles had the characteristics of Class 1, therefore, it is likely that the large proportions
of fibers considered as asbestiform according to the current definition of Class 2 are
actually mineral cleavage fragments (along with the remaining fibers which fall into
Class 3).

Also shown in Table 1 is the effect of using the alternative definition for Class 2 of length
> 10 pm and width < 1 pm. This alternative definition removes the majority of fibers
from Class 2 and moves them into Class 3 (I.e. non-asbestiform). When applied to the
mine samples, a similar result is obtained; while the proportion of Class 1 fibers is
unchanged, the proportion of Class 2 fibers using the proposed alternative definition for
Class 2 falls to about 0.8%, i.e. nearly all of the Class 2 fibers are re-classified as Class 3.




We have shown that the current definition of Class 2 applied to the non-asbestiform
actinolite and tremolite in Table 1 causes many cleavage fragments to be considered as
asbestiform fibers. We have further shown that this is likely also to be true for the mixed
actinolite-tremolite and cummingtonite-grunerite (non-asbestiform versions of amosite)
of the taconite mine samples. We have also shown that this is not the case if the
proposed new ASTM International definition of Class 2 1s used. However, the question
remains as to whether this proposed alternative definition will also cause some actual
asbestiform fibers to be classified as non-asbestiform. For example, this may occur when
thick bundles of asbestiform fibrils do not show the asbestiform characteristics (curvature

or splayed ends) necessary to be included Class 1.

Many of the cleavage fragments with length > 10 um have quite low aspect ratios and
widths > 3 pm. For a fiber of the density of a silicate mineral up to at least 100 pm in
length, applying a maximum width of 3 pm should have the same effect as applying the
International Organization for Standardisation (ISO) curve for thoracic respirability.” It is
interesting to examine the effect of using a 3 pm width cut-off as is done in the World
Health Organization (WHO) rules.* (Note that this is also the case in the NIOSH 7400
“B” rules, but there is a difference in that these rules also include a > 5:1 aspect ratio).
For the actinolite sample, the number of particles classiﬁéd as fibers is reduced from 58%
to 48% of the total, while the percentage of those in D7200-06 Class 2 drops even further,
from 25% to 14%, or just 7% of the total particles. For the tremolite sample the number
of particles classified as fibers is reduced from 63% to 43% of the total, while the
percentage of those in Class 2 again drops even further, from 47% to 29%, or just over
12% of the total particles. Thus using the 3 pm upper width limit (or a sampler with a
size-selective inlet that performs in an equivalent fashion®) may be an alternative to the
proposed change in the ASTM International D7200-06 Standard. However, applying this
criterion to the taconite mine samples did not produce as much of a reduction in Class 2
particles as with the crushed amphiboles, reducing the average from 18.6% of 83.8 fibers
to 15.2% of 80.4 fibers.




In conclusion, the current classification system for fibers in the ASTM International
Standard D7200-06 was tested using materials that were expected to contain a large
proportion of particles meeting the current NIOSH definition of a fiber, but where those
particles would be predominantly cleavage fragments of amphibole minerals rather than
asbestiform fibers: crushed samples of coarsely crystalline amphibole minerals, and air
samples from a taconite ore-mill. The current classification rules designate many
cleavage fragments as Class 2 (i.e. potentially asbestiform), while a proposed change to.
the definition of Class 2 would place these particles almost exclusively in Class 3 (i.e.
non-asbestiform). However, the extent to which asbestiform fibers might also be

designated as Class 3 under the proposed change has not been addressed.

Note: Counting rules are often given in terms of less than or greater than a measured
value. The precision of measurements under the microscope requires assumptions about
rounding errors. The crushed amphibole measurements were made by eye and rounded
to the nearest micrometer, except that widths obviously less than 1 um were assigned a
value of 0.5 um. The analysis provided here assumes all measurements to be greater than
the nominal values. For the mine sample data, computer-aided measurements on
photomicrographs were made to one-tenth of a micrometer, so that x.0 micrometers was

assumed to be not greater than x.
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FIGURE LEGENDS

Figure |

Typical taconite mine ore-mill air sample under phase contrast microscopy (450X)
showing a particle very likely to be a mineral cleavage fragment. The area bounded by
the darker arcs is 100 pm across.

Figure 2

Coarsely crystalline (non-asbestiform) actinolite (Scale indicated by 25¢ piece).









Table 1. Percentage of particles from crushed non-asbestiforrn amphibole minerals that
meet the NIOSH Method 7400 “A” counting rules for a fiber, the percentage of those
particles that meet the definition of a potentially asbestiform fiber according to ASTM
International Standard D7200-06', and the percentage that would meet that definition
after a proposed change.

Mineral % particles meeting % of 7400 fibersin % of 7400 fibers in
7400 fiber definition D7200-06 class 2 proposed class 2

Actinolite 58.3 25.1 ' 0.6

Tremolite 62.7 46.8 1.6
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8. MINERALOGICAL CHARACTERISTICS OF ASBESTOS

E. Steel and A. Wylie
US Department of Commerce, Washington, DC,

The asbestiform habit is most commonly de-
veloped in certain amphiboles and chrysotile,
but other minerals also may crystallize with this
unusual habit. The habit may be characterized
by (1) a fibril structure, single or twinned crys-
tals of very small widths (generally less than 0.5
pmj, which have grown with a common fiber
axis direction, but are disoriented in the other
crystallographic directions; (2) anomalous op-
tical properties, primarily parallel extinction;
{3} unusual tensile strength; (4) high aspect
ratio: and (5) {lexibility. In addition, there is
evidence to indicate that some amphibole as-
bestos may have unusual surface properties.

ASBESTOS AND THE ASBESTIFORM HABIT

Asbestos is defined as a group of highly fi-
brous silicate mineralsthat readily separate into
long. thin, strang fibers of sufficient flexibility
to be woven, are heat resistant and chemically
inert. and possess a high electric insulation,
and therefore are suitable for uses where in-
combustible, nonconducting, or chemically re-
sistant material is required (Gary. et al., 1974).
The most common minerals that may occur
with the asbestiform habit are chrysotile, gru-
nerite (amosite). riebeckite (crocidolite), actin-
olite, anthophyllite, and tremolite; although
the development of this habit among these
minerals is rare. Other minerals, most notably
other amphiboles, can occur in this habit, but
no others have been mined commercially as
asbestos.

All asbestos is confined to metamorphic
rocks. even though other habits of the am-
phiboles are common in igneous rocks. Slip
fiber veins are the most common deposits
(South African amosite, Canadian chrysotile,
etc.), but mass fiber deposits also may occur
such as California chrysotile or mountain
leather. Field relations and experimental data
support the hypothesis that metasomatism is

93

the dominant process in the formation of asbes-
tos fibers, amphibole as well as serpentine.

The crystal habit of a mineral is the shape or
form a crystal or aggregate of crystals take on
during crystallization. The asbestiform habit
has a number of characteristics that differen-
tiate it from other habits. Chief among these is
the fibril structure A fibrilis asingle ortwinned
crystal with a very small width, generally less
than 0.5 pm, and an extremely high aspect ra-
tio; bundles of fibrils may have lengths reach-
ing into the cm. Fibrils share a common crystal
growth direction along the long axis of the fiber.
but appear to be disoriented with respect to one
another in the other crystallographic direc-
tions. The structure of the individual fibrils,
and the organization of fibrils within a fiber
may differ among the various types of asbestos.

The fibril structure of asbestos is probably a
factor in controlling a number of secondary
properties that include high tensile strength,
flexibility sufficient for weaving, and anomal-
ous optical properties. The high tensile
strength of asbestos is quite remarkable, ex-
ceeding that of the ordinary varieties by a
thousand fold (Zoltai, 1978). [n part, this may be
attributed to the lack of defect on the fibril sur-
faces (Zoltai, 1978), but some contribution also
must come from the existance of bundles and
the nature of the ordering of and forces among
the fibrils. The flexibility is not only enhanced
by the fact that the fibrils may slip past one
another, but by their small widths and extreme
aspect ratios. However, structural defects paral-
lel to the fiber axis also may contribute to this
property. Among the common commercial as-
bestos types, the greatest flexibility is found in
chrysotile and the least in grunerite asbestos
(amosite), varying inversely with fibril thick-
ness. In addition, at least for chrysotile, compo-
sition also may affect the flexibility of the fibers.
Finally, most asbestos minerals are mono-
clinic, but optically display parallel extinction
(Heinrich, 1965, and Wylie, 1978). This also
must be due, in part, to the ordering or lack of
ordering of the fibrils.

The fibril structure is probably a random
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orientation of fibrils about a common fiber axis.
This is definitely the case for chrysotile, which
has a tubular structure. A single crystal X-ray
photograph, Fig. 1, of an amphibole asbestos
fiber shows a pattern of lines thatindicates mul-
tiple orientations of the diffracting lattices in
twao directions perpendicular to the fiber axis.

The work of Franco, et al., suggests these
orientations are random. This would be cansis-

- tent with the optical properties. However, some
amphibole asbestos fibrils appear to have a rec-
tangular cross section, a shape that suggests a
more orderly arrangement of growth. Twinning
is known to be common (Hutchison, et al., 1975,
and Lee 1978), and has shown platelike stacking
of grunerite asbestos fibrils. It is possible that
some ordering of fibrils, other than random,
could produce the same X-ray fiber photograph
and parallel extinction. Although unlikely, an
orderly arrangement of fibrils spiraling around
the fiber axis is one such arrangement and there
may be others.

Fibrils vary in size among the asbestos types.
Chrysotile fibrils range from 200 to 500.2 in
diam. Amphibole fibers tend to be more vari-
able in width and are larger in general. They
range from close to the size of chrysotile to ap-
proximately 0.5 um. No precise upper limit of
thickness is practical because the amphiboles
form in a continuum of habits from granular
through fibrous to the extremely fibrous and
thin asbestiform habit. There is no exact line
that can be drawn between the nonasbestiform

AR e
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Fig. 1, X-ray photograph showing ordering in the
direction and lines indicating disorder in the other
crystallographic directions.

acicular habits and the asbestiform habits, but
above approximately 0.5 um in thickness the
grains start to lose the properties characteristic
of asbestos. There is extensive intradeposit as
well as interdeposit variation in size. This is
especially true for fiber length that varies from
about a microcentimeter to many centimeters
among all types of asbestos.

As fiber bundles are broken up during min-
ing, milling, manufacturing, and fabrication,
etc., the individual fibrils are liberated. A popu-
lation of these particles is quite distinct from a
similarly sized population of cleavage frag-
ments produced by the mechanical disintegra-
tion of nonfibrous materials, These differences
easily can be seen from sizing studies done on
several types of asbestos and two nonfibrous
amphiboles (Siegrist and Wylie, 1979). Fig. 2
shows that the widths of asbestos particles are
approximately the same and are independent of
length. On the other hand, the widths of the
cleavage fragments of the nonfibrous am-
phiboles, tremolite, and riebeckite are depen-
dent on lengths that increase as the lengths
increase.

While much remains to be learned about the
true nature of fibrils and fibril structure, thereis
no doubt that they are fundamental to the de-
velopment of asbestos and a necessary charac-
teristic of the asbestiform habit. While there
may be many fibrous varieties of silicates be-
sides the amphiboles and serpentine minerals,
they are not asbestiform unless the fibril struc-
ture is present,

THE SERPENTINE GROUP

The serpentine minerals are a group of sheet
silicates that have the same general composi-
tion of MgsSis010(OH)s. Only a few percent
weight of iron or nickel substitute into the mag-
nesium site, and a small amount of aluminum
can substitute into the silicon site. The serpen-
tine minerals are approximately polymorphic
with the possible exception that the aluminum
content may control which phase is most stable
(Faust and Fehey, 1962).

The serpentine minerals are composed of
polymerlike sheets of S$iO. tetrahedra, the tet-
rahedral layer is bonded to layers of Mg(OH}z
octahedra, which is the octahedral or brucite
layer, There is an apparent mismatch in size
tween the two layers that puts a stress on }hﬂ
whole structure. The octahedral layer, being
somewhat larger than the tetrahedral layen
tends to force the apical oxygens of the tet:
radedra further apart than they would be if the
two layers matched in size. The ways in whi
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Talc-Serpentine

- Tremaelite

g Risbeckite

~Amesite
_Crocidolite
= = 7 _TSF Chrysotile (TEM)
- = = 7 'SF Chrysotile
— —LF Chryseotile

2 3

lo;l Length ( xm)

Fig. 2. A graph of the size distributions of a variety of mechanically pulverized
mineral samples. The talc serpentine. tremolite. and riebeckite had nonasbes-
tiform habits and, after grinding, the particle width was found to vary as a func-
tion of the particle length. For the asbestiform samples amosite, crocidolite,
shert fiber (SF) chrysotile, and long fiber (LF) chrysotile, the width was found to
be very small and approximately constant, showing no or very little relation.
ship to the particle tength.

this stress is relieved leads to the three types of
serpentine: antigarite, lizardite, and chrysotiie
[Deer, et al., 19682).

Chrysotile is the only serpentine mineral to
exhibit an asbestoform habit. Because of the
mismatch of the octahedral and tetrahedral
layers, the chrysotile sheet bends so that the
smallertetrahedral layer is on the concave side
as shown in Fig. 3.

This bending allows the serpentine sheet to
roll up and form concentric cylinders. The coil-

/7 - 3rucite
Layer
— SlD‘ Layer

Fig. 3. A schematic of the chrysotile structure show-
ing the way the SiQ. tetrahedral sheet and the
Mg(OH): octahedral layer bend in order to compen-
sate for the mismatch in size between the two [ayers.

ing effectively relieves the stress between the
layers and explains the fibrous nature of
chrysotile and its hollow tube appearance on
the electron microscope as shown in Fig. 4
{Whittaker, 1956, and Yada, 1967).

The individual fibers or fibrils of chrysotile
are approximately 20010 500A wide with a hol-
low tube approximately 50A wide down the
center of the rolled street structure (Zussman,
1978). Chrysotile is found in three forms (1)
clinochrysotile, (2) orthochrysotile, and (3)
parachrysotile. Clinochrysotile and orthoc-
hrysotile differ in their crystal symmetry due to
a slight difference in the positioning of the suc-
cessive brucite and tetrahedral layers, causing
clinochrysotile to have monoclinic symmetry,
while orthochrysotile has orthorhombic sym-
metry. Both types have the fiber coiled about the
A crystallographic axis, while parachrysotile
has the sheet coiled around the B axis.

THE AMPHIBOLE GROUP

The other major asbestos forming group of
minerals is called the amphibole group. The
amphiboles are a set of minerals based on a
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Fig. 4. Electron micrograph showing the characteris-
tic hollow canals seen in chrysotile fibrils. The hol-
low tubes form in the middle of the coiled sheet struc-
ture, Note also the very small uniform width of the
fibrils.

double chain of silicon-oxygen tetrahedra as
shown in Fig. 5. Hauy applied the name am-
phibole from the Greek word for ambiguous to
the group because of its large variation in ap-
pearance and composition (Dana and Ford.
1832).

(a) . (b)

Fig. 5. Schematic top view (a) of the double chain
structure of the amphiboles and a side view (b) show-
ing the two sets of double chains of 5i0s bonded to-
gether by the octahedrally coordinated cations, The
a.b, and c axes are marked on the tigure.

The amphiboles are usually first classified by
their general crystal symmetry, and are then
separated by chemical compositioninto over 30
different minerals (Leake, 1978).

The amphiboles are divided into two groups
(1) those with orthorhombic symmetry (such as
anthophyllite and gedrite) that are called or-
thoamphiboles and (2) those with monoclinic
symmetry {such as tremolite, riebeckite, and
grunerite) that are called clinoamphiboles. In-
dividuals within each group are further
classified by their chemical composition.

In general, the amphibole composition may
be defined by the expression: Asy B2 Csvi Talv 022
(OHz, F, C1)2. The A position is filled by Na
and/or K, the B by Fe?, Mg?, Ca2, Na, Li, andfor
Ma, and the C position by Mn?, Fe?, Fe3, Mg?,
and/or A1%. The T position is filled by Si and/or
A1l and represents the tetrahedral sites of the
double chain structure (Ernst, 1962, and
Hurlbut and Klein, 1977).

Table 1 lists some of the more common am-
phiboles and their compositions.

Not all the amphiboles are known to crystal-
lize in the asbestiform habit. Asbestos seems to
be characterized by a low eluminum content.
For example, no hornblende asbestos has been
reported. The most common amphiboles that
have asbestiform varieties are grunerite (asbes-
tiform variety called amosite), riebeckite
{crocidolite), tremolite, actinolie, and an-
thophyllite. Other amphiboles, notably arfed-
sonite.eckermannite, and winchite also crystal-
lize occasionally in the asbestiform habit.

The structure of the amphiboles is based on
double chains of SiO tetrahedra about which
other cations are arranged as shown in Fig. 5.
Fig. 6 is a view of the structure looking down
the double chains of the amphiboles showing
the way the double chains are held together b_y
bonding with the cations in the A, B, and C posi-
tions. The double chain structure is fundamen-
tal to the morphology of the amphiboles and
helps to explain the reason cleavage fragments
from the amphiboles are generally elongate.
Fig. 6 also shows a schemaltic view of the way
the cleavage forms. The cleavage is parzllel to
(110). It runs parallel to the c-axis and betweefi
the long double chains to form elongate frag-
ments. Even though these fragments generally
average approximately 7:1 to 9:1 in aspect ratio.
they do not possess an asbestiform habit.

In basic structure there doesn't appear (0 be
any difference between the habits of a give?
amphibole. However. there may be other mare
subtle differences. For example, the work ©
Chisolm and Hutchison suggests that am-
phibole asbestos may be characterized by a hig
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Table 1. Chemical Composition and Cation Distribution

of Several Amphiboles.
Group—Mineral A B C T 0::(0H);
Orthorhombic Symmetry
Fe-Mg group:
Anthopyllite —_ Mg, Mg: . Sis "
Gedrite — Mg: Mg:Al: SisAlz "
Monoclinic Symmetry
. Fe-Mg group:
Cummingtonite —_ Mg: Mgs Sis "
Grunerite — Fe: Fes Sis "
Calcic Group:
Tremolite —_ Ca; Mgs Sis "
Ferro-actinolite — Ca: Fes Sia "
Hornblende:
Edenite Na Ca: Mgs SirAl "
Hastingsite Na Ca; Fes2+ Fea+ SisAl: ”
Na-Ca Group:
Winchite —_ NaCa (Mg,Fe,Al)s Sis "
Richerite Na NaCa Fes Sis "
Katophorite Na NaCa (Mg, Fe)sAl SizAl "
Sedic Group:
Glaucophane Na Na; MzaAl: Sis "
Riebeckite Na Na: FesAl: Sis "

degree of structural defects. primarily involv-
ing changes in the positions of the double
chains with respect to one another, and defects
in chain widths. The two double chains are
staggered or slightly shifted in a specific direc-
tion. and this stacking sequence is schemati-
cally shown in Fig. 7.

The monoclinic amphiboles can be well or-
dered with all the shifts being in one direction,
or it can be twinned exhibiting a symmetrical

(
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Fig. 6. Schematic view of the way the cleavage forms

in the amphiboles. Looking down the c-axis two sets

of double tetrahedral chains are strongly bonded to-
gether by the octahedral cations as shown in the

blowup to form *1 beams.” named by their simplified
shape. The weaker bonds between the I beams,

shown by a dashed line, allow for easy breakage and

yield the characteristic angles of 56° and 124° of the

amphibole cleavage.

change in the stacking direction. There also can
be wide-spread disorder on the (100} surface as
depicted in Fig. 7c where random changes in
the direction of stacking accur.

The other type of defect structure can be seen
as variations in the chain widths of the am-
phibole structure. These imperfections include
single, triple, and larger SiOs chains where
there are supposed to be double chains. These
defects are sometimes referred to as \Wadsley
defects and are paralle] to the (010) plane. The
fibrous amphiboles have been shown to contain
numerous triple chain Wadsley defects ran-
domly distributed among the double chains
(Hutchison, et al., 1975, and Chisolm, 1975).

e)"ll I Wi

[

Fig. 7. Schematic of stacking faults in amphiboles.
An ordered structure for the monoclinic amphiboles
is shown in (a), while (b) shows a single twin plane,
and (c) depicts disorder due to the numerous stack-
ing faults parallel to the (100).
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The stacking faults appear to be much less
common in the nonasbestiform amphiboles
than in amphibole asbestos (Ross, 1978). There
is not enough available data to draw similar
conclusions on the chain width defects.

These imperfections may play an important
role as fibril makers. The imperfections lie on
the (100} and {010) surfaces parallel to the dou-
ble chain axis. They act as very weak parting
planes that contribute to the ease that fibrils
break apart laterally,

Experimental evidence suggests that the sur-
face charge on some amphibole asbestos parti-
cles may be systematically different than the
characteristic of amphibole cleavage fragments
of the same composition (Zoltai and Burney,
1978). In part, this may be due to different crys-
tallographic surfaces. Amphibole fibrils are
commonly bounded by (100} and (010) surfaces,
while cleavage fragments are generally
bounded by the (110) faces. The apparent lack of
surface defects on fibrils also may contribute to
this property. However, much remains to be
learned about the surface charges of small par-
ticles. It is not yet known if the reports of
anomalous surface charge are characteristic of
ali amphibole asbestos.

RELATED MINERALS

A large number of minerals have fibrous va-
rieties, but few have crystal habits that ap-
proach the fibril dimensions and other proper-
ties characteristic of asbestos. However, some
minerals do have similar habits and therefore
may be called asbestiform.

Some of the asbestiform sheet silicates. other
than chrysotile, are fibrous talc and the clays
palygorskite, sepiolite, and halloysite. The lat-
ter is a member of the kaolinite group. Halloy-
site contains an A1 (OH)s that replaces the bru-
cite layer found in the serpentine structure. The
sheet coils to yield a fibril in the same way as
chrysotile (Bates, et al., 1950, and Kohyama, et
al., 1978). The method of fibril development is
not clearly known for the other asbestiform
sheet silicates.

Among the chain silicates, only the am-
phiboles have been described as having asbes-
tiform varieties. Some single chain pyroxenes
and pyroxenoids have been described as fi-
brous, and a few new minerals that are based on
triple and alternating double-triple chains have
been related to asbestos (Veblen, etal., 1977-78).
but have not been shown te have an asbestiform
habit.

Other classes of minerals also may occur in
fibrous and perhaps even asbestiform habits.
For example, individual fibrils of certain zeo-

lites are similar in size to amphibole asbestos,
Nemalite or fibrous brucite is another example
of a mineral that may be described as asbes-
tiform because of its well developed fibril struc-
ture that is probably derived as a pseudomorph
after chrysotile.
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