National Personal Protective Technology Laboratory

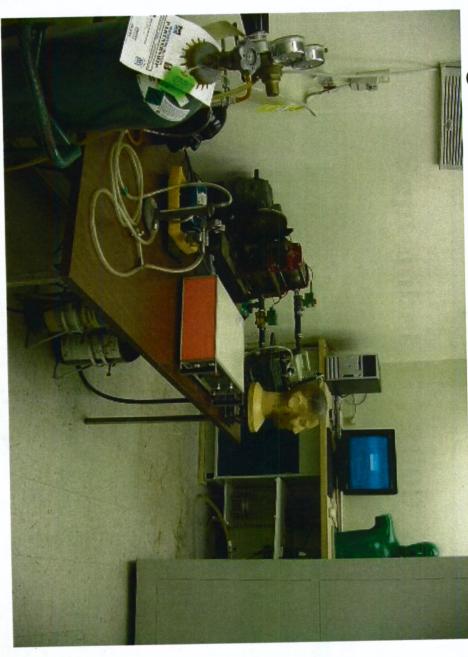
New CO₂ Dead Space Test System **Final Correlation Test Results**

Policy and Standards Development Branch

Gary Walbert

September 17, 2009

- 2006 Manufacturer's Meetings Previous updates at December, 2005 and October,
- Why upgrade the CO₂ Dead Space Test System?
- Improve accuracy in setting test conditions and performing data analysis
- Reduce variability from test to test
- Allow manufacturers to duplicate the test system using commercially available components for direct correlation



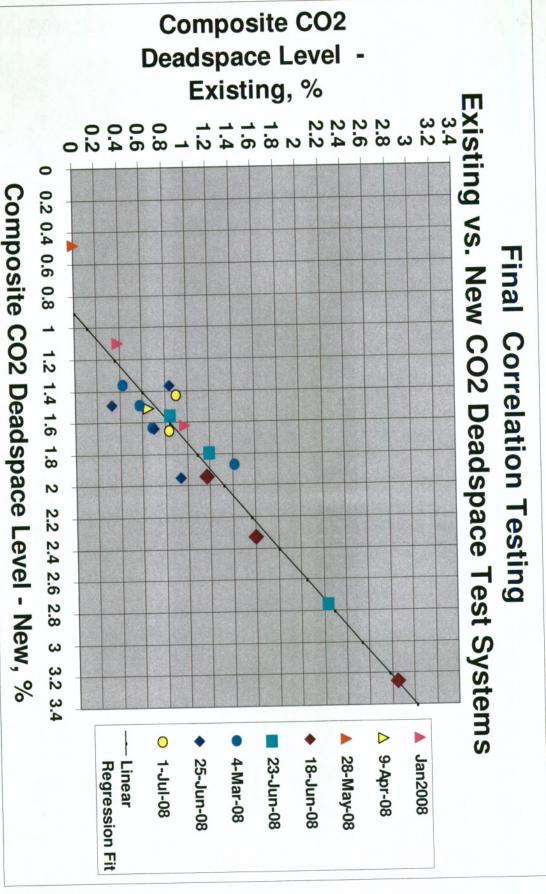
- Project Timeline
- Completed installation June, 2006
- Completed shakedown testing December 2006
- Completed efforts to equate new system with existing system – December, 2007
- Completed correlation testing July, 2008
- Completed statistical modelling of test results May, 2009

Existing and New Test Systems

- Features of New CO₂ Deadspace Test System
- Sheffield Head headform and half-torso
- Face width, 146 mm; face length, 122 mm
- Places in cell #7 of the new NIOSH Bivariate fit test panel, representing a medium-sized face
- Data monitoring/recording system powered by custom LabVIEW software application
- Data recording interval is 25 milliseconds or 4 times more frequent than existing test system
- Mass flow controllers for breathing gas control

- Features of New CO₂ Deadspace Test System
- Revised sedentary cam design provides breathing Silverman human subject sedentary breathing cycle component durations consistent with Leslie
- Solenoid valve state change data file stamping
- Excel spreadsheet-based data analysis routine

- Performance of new CO₂ Deadspace Test System
- Control peak breathing gas CO₂ concentration at 5.00
- Control sample gas extracted from the breathing zone for analysis at 450 ± 0.7 sccm
- Consistent blank CO₂ levels generally ranging from 0.39% to 0.44%
- Precise determination of the start and end of corroborated with facepiece resistance inhalation phase from solenoid valve actuation times



- New vs. Existing Correlation Test Data Analysis
- Tested 20 respirators at both the existing and new test systems
- A simple linear regression was subsequently fit to this data to predict CO2 Deadspace Levels for the existing test system as a function of CO2 Deadspace Levels measured at the new system
- Using the R statistical software package, the optimal y-intercept and slope were calculated to be -1.097 and 1.209, respectively, and the linear regression took the
- $CO_{2 \text{ (Existing)}} = -1.097 + 1.209 \times CO_{2 \text{ (New)}}$

- New vs. Existing Correlation Test Data Analysis
- Both the intercept and slope of the model were highly statistically significant (p < 0.001 for each coefficient)
- Using this equation to predict the CO₂ level of the existing system (as a function of the new) gives an can be explained by the variability in the the variability in the new system's measurements R² value of 0.909, meaning that approximately 91% of measurements of the existing system

New vs. Existing Correlation Test Data Results

2.85	2.24	1.60	1.17	0.93	1.41	1.20	0.83	0.68	0.97	0.85	0.70	0.33	0.65	0.57	16.0	0.04	0.84	0.42	0.38	0.00	Existing		INCM AS.
3.25	2.75	2.33	1.94	1.95	1.87	1.79	1.65	1.63	1.62	1.55	1.64	1.49	1.51	1.49	1.43	4 43	1.37	1.36	1.10	0.48	New	6	LX1001119
2.83	2.23	1.72	1.25	1.26	1.16	1.07	0.90	0.87	0.86	0.78	0.89	0.70	0.73	0.70	2.00	0.63	0.56	0.55	0.23	0.00	Existing Predicted	Level, %	
-m	7	7	7	, ,		ד	T	7	7	7	7	7	,	,	0	0	ъ	P	ס	τ	Existing		
7	7	1 7	1	1	n	7	ר וח	7	7			0			0	P	Ъ	P	7	7	Existing Fledicted	Passir - Fall	

- New vs. Existing Correlation Test Data Results
- 19 of 20 respirators that passed or failed at the fail, respectively, at the new system using the model existing system, were correctly predicted to pass or

- Test Procedure for Determining New Test System CO₂ Deadspace Level
- Respirators previously approved
- Measure CO₂ Deadspace Level at new test system
- Using linear regression model, determine existing test system equivalent CO₂ Deadspace Level
- If existing test system equivalent CO₂ Deadspace to the respirator tested Level is less than 1.0%, a passing grade is assigned

- Test Procedure for Determining New Test System CO₂ Deadspace Level
- New respirators
- Use new test system

Questions?

