DRAFT

November 22, 2005

NIOSH CURRENT INTELLIGENCE BULLETIN:
Evaluation of Health Hazard and Recommendations for

Occupational Exposure to Titanium Dioxide

“This information is distributed solely for the purpose of pre dissemination peer review under applicable i
information quality guidelines. It has not been formally disseminated by the National Institute for Occupational
Safety and Health. It does not represent and should not be construed to represent any agency determination or
policy.”




11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

DRAFT

EXECUTIVE SUMMARY

Titanium dioxide (TiO,), an insoluble white powder, is used extensively in many commercial
products, including paint, cosmetics, plastics, paper, and food as an anti-caking or whitening
agent. Production in the United States was an estimated 1.43 million metric tons per year in 2004
[DOI 2005]. TiO; is a poorly soluble, low toxicity (PSLT) dust, which has been used as a
negative control in experimental studies investigating particle toxicity. TiO; is produced and
used in the workplace in varying particle size fractions including fine (approximately <2.5 pm
diameter) and ultrafine (<0.1 pm diameter, primary particles, with larger agglomerates) [Aitken

et al. 2004].

Current occupational exposure limits for TiO; are based on the airborne mass fractions of either
respirable or total dust fractions. These exposure limits may be the same for TiO; and particles
not otherwise regulated or classified (PNOR/C), with limits ranging from 1.5 mg/m? for
respirable dust, the Federal Republic of Germany maximum concentration value in the
workplace (MAK), to 15 mg/m? for total dust (Occupational Safety and Health Administration
[OSHA] ) (Chapter 1). NIOSH currently has no recommended exposure limit (REL) for TiO; and
classifies it as a potential occupational carcinogen. This recommendation was based on the
observation of lung tumors (nonmalignant) in a chronic inhalation study in rats at 250 mg/m® of

fine TiO; [Lee et al. 1985, 1986a] (Chapter 3).

In 1988, the International Agency for Research on Cancer (IARC) reviewed TiO, and concluded
that there was limited evidence of carcinogenicity in experimental animals and inadequate

evidence of carcinogenicity in humans (Group 3) [IARC 1989]. Later, a 2-year inhalation study
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showed a statistically significant increase in lung cancer in rats exposed to ultrafine TiO; at an
average concentration of 10 mg/m? [Heinrich et al. 1995]. Two recent epidemiologic studies
have not found a relationship between exposure to total or respirable TiO; and lung cancer
[Fryzek et al. 2003; Boffetta et al. 2004], although an elevation in lung cance;' mortality was
observed among male TiO, workers in the latter study when compared to the general population
(standardized mortality ratio [SMR] 1.23; 95% confidence interval [CI] 1.10-1.38) (Chapter 2).
However, there was no indication of an exposure-response relationship in that study.
Nonmalignant respiratory disease mortality was not increased significantly (i.e., P <0.05) in any
of the epidemiologic studies, although some studies may have lacked the statistical power to

detect an effect.

The National Institute for Occupational Safety and Health (NTOSH) has reviewed the relevant
animal and human data for assessing the carcinogenicity of TiO, and has reached the following
conclusions. First, the tumorigenic effects of TiO, exposure in rats appear not to be chemical-
specific or a direct action of the chemical substance itself. Rather, these effects appear to be a
function of particle size and surface area acting through a secondary genotoxic mechanism
associated with persistent inflammation. Second, current evidence indicates that occupational

exposures to low concentrations of TiO, produce a negligible risk of lung cancer in workers.

On the basis of these findings, NIOSH has determined that insufficient evidence exists to
designate TiO; as a “potential occupational carcinogen” at this time. NIOSH will reconsider this
determination if further relevant evidence is obtained. However, evidence of tumorigenicity in

rats at high exposure concentrations warrants the use of prudent health-protective measures for

“This information is distributed solely for the purpose of pre dissemination peer review under applicable  iii
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workers until we have a more complete understanding of the possible health risks. Therefore,
NIOSH recommends exposure limits for fine and ultrafine TiO, to minimize any risks that might

be associated with the development of pulmonary inflammation and cancer.

In this document, NIOSH reviews the human, animal, and in vitro studies on TiO, (Chapters 2
and 3) and provides a quantitative risk assessment (Chapter 4), using dose-response data in rats
for both cancer (lung tumors) and noncancer (pulmonary inflammation) responses and
extrapolation to humans with lung dosimetry modeling. TiO- and other PSLT particles show a
consistent dose-response relationship for pulmonary responses in rats, including persistent
pulmonary inflammation and lung tumors—when dose is expressed as particle surface area. The
higher mass-based potency of ultrafine TiO2 compared to fine TiO; is associated with the greater
surface area of ultrafine particles for a given mass. The NIOSH REL:s for fine and ultrafine TiO,

reflect this mass-based difference in potency (Chapter 5).

NIOSH recommends exposure limits of 1.5 mg/m? for fine TiO, and 0.1 mg/m’ for ultrafine
TiO,, as time-weighted average concentrations (TWA) for up to 10 hr/day during a 40-hour work
week. These recommendations represent levels that over a working lifetime should reduce risks
of lung cancer to below 1 in 1000. These exposure limits were established using the international
definitions of respirable dust [CEN 1993; ISO 1995] and the NIOSH Method 0600 for sampling

airborne respirable particles [NIOSH 1998].

"Respirable" is defined as particles of acrodynamic size that, when inhaled, are capable of

depositing in the gas-exchange (alveolar) region of the lungs [ICRP 1994]. Sampling methods
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have been developed to estimate the airborne mass concentration of respirable particles [CEN
1993; ISO 1995; NIOSH 1998]. “Fine” is defined in this document as all particle sizes that are
collected by respirable particle sampling (i.e., 50% collection efficiency for particles of 4 pm,
with some collection of particles up to10 pm) [CEN 1993; ISO 1995; NIOSH 1998]. "Ultrafine"
is defined as the fraction of respirable particles with primary particle diameter <0.1 pm.
Additional methods are needed to determine if an airborne respirable particle sample includes

ultrafine TiO; (Chapter 6).

While the potential cancer potency of fine TiO, appears to be relatively low at current
occupational exposures, NIOSH is concerned about the potential carcinogenicity of ultrafine
TiO, if workers are exposed at the current mass-based exposure limits for respirable or total
mass fractions of TiO,. NIOSH recommends controlling exposures as low as feasible below the
RELs. Interim sampling recommendations based on current methodology are provided (Chapter

6).

A critical research need (discussed in Chapter 7) is measurement of workplace airborne
exposures to ultrafine TiO; in facilities producing or using TiO». Other research needs include
evaluation of the (1) exposure-response relationship between ultrafine PSLT particles and human
health effects, (2) fate of ultrafine particles (e.g., TiO;) in the lungs and the associated pulmonary
responses, and (3) effectiveness of engineering controls for controlling exposures to fine and

ultrafine TiO;
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1. INTRODUCTION

1.1 COMPOSITION

Titanium dioxide (TiO;) Chemical Abstract Service [CAS] (CAS Number 13463-67-7) is a
noncombustible, white, crystalline, solid, odorless powder [NIOSH 2002; ACGIH 2001a]. TiO,
is insoluble in water, hydrochloric acid, nitric acid, or alcohol, and it is soluble in hot
concentrated sulfuric acid, hydrogen fluoride, or alkali [ACGIH 2001a). TiO, has several
naturally occurring mineral forms, or polymorphs, which have the same chemical formula and
different crystalline structure. Common TiO; polymorphs include rutile (CAS Number 1317-80-
2) and anatase (CAS Number 1317-70-0). While both rutile and anatase belong to the tetragonal

crystal system, rutile has a denser arrangement of atoms (Figure 1-1).

At temperatures greater than 915 °C, anatase reverts to the rutile structure

[http://mineral.galleries.com/minerals/oxides/anatase/anatase.htm]. The luster and hardness of

anatase and rutile are also similar, but the cleavage differs. The density (specific gravity) of rutile

is 4.25 g/ml [http://webmineral.com/data/Rutile.shtml], and that of anatase is 3.9 g/ml

[http://webmineral.com/data/Anatase.shtml]). Common impurities in rutile include iron, tantalum,

niobium, chromium, vanadium, and tin [http://www.mindat.org/min-3486.html], while those in

anatase include iron, tin, vanadium, and niobium [http://www.mindat.org/min-213.html].

The sulfate process and the chloride process are two main industrial processes that produce TiO,
pigment [TARC 1989; Boffetta et al. 2004]. In the sulfate process, anatase or rutile TiO; is
produced by digesting ilmenite (iron titanate) or titanium slag with sulfuric acid. In the chloride
process, natural or synthetic rutile is chlorinated at temperatures of 850 to 1000 °C [IARC 1989]

and the titanium tetrachloride is converted to the rutile form by vapor-phase oxidation [Lewis

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 1
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1993]. Both anatase and rutile are used as white pigment. Rutile TiO; is the most commonly used
white pigment because of its high refractive index and relatively low absorption of light [Wicks
1993]. Anatase is used for specialized applications (e.g., in paper and fibers). TiO, does not
absorb visible light, but it strongly absorbs ultraviolet (UV) radiation. Commercial rutile TiO; is
prepared with an average particle size of 0.22 pm to 0.25 pm [Wicks 1993]. Pigment-grade TiO;
refers to anatase and rutile pigments with a median particle size that usually ranges from 0.2 pm
to 0.3 pm [Aitken et al. 2004]. Particle size is an important determinant of the properties of

pigments and other final products [Wicks 1993].

1.2 USES

TiO; is used mainly in paints, varnishes, lacquer, paper, plastic, ceramics, rubber, and printing
ink. TiO, is also used in welding rod coatings, floor coverings, catalysts, coated fabrics and
textiles, cosmetics, food colorants, glassware, pharmaceuticals, roofing granules, rubber tire
manufacturing, and in the production of electronic components and dental impressions [Lewis
1993; ACGIH 2001a; IARC 1989; DOI 2005]. Both the anatase and rutile forms of TiO; are
semiconductors [Egerton 1997]. TiO, white pigment is widely used due to its high refractive
index. Since the 1960s, TiO, has been coated with other materials (e.g., silica, alumina) for

commercial applications [Lee et al. 1985].

1.3 PRODUCTION AND NUMBER OF WORKERS POTENTIALLY EXPOSED
An estimate of the number of workers currently exposed to TiO, dust is not available. The
National Occupational Exposure Survey (NOES), conducted from 1981—1983, estimated that

2.7 million workers (2.2 million male, 0.5 million female) are potentially exposed to TiO, (CAS

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 2
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Number 13463-67-7) in 42 standard industrial classifications (SICs) and 246 occupational
groups [NIOSH 1983]. The SICs with the most workers potentially exposed include special trade
contractors (0.36 million; SIC 17), machinery, except electrical (0.19 million; SIC 35), fabricated
metal products (0.16 million; SIC 34), transportation equipment (0.16 million; SIC 37), and

rubber and miscellaneous plastics products (0.15 million; SIC 30).

In 2004, an estimated 1.43 million metric tons of TiO, pigment were produced by four U.S.
companies at eight facilities in seven states [DOI 2005]. The paint (includes varnishes and
lacquers), plastic and rubber, and paper industries accounted for an estimated 95% of TiO,
pigment used in the United States in 2004 [DOI 2005]. In 2003, the U.S. Bureau of Labor
Statistics (BLS) estimated that there were about 70,000 U.S. workers in all occupations in paint,
coating, and adhesive manufacturing (North American Industry Classification System [NAICS]
code 325500), 829,000 in plastics and rubber products manufacturing (NAICS code 326000),
and about 155,000 employed in pulp, paper, and paperboard mills [BLS 2003]. In 1991, TiO,

was the 43rd highest-volume chemical produced in the United States [Lewis 1993].

1.4 CURRENT EXPOSURE LIMITS AND PARTICLE SIZE DEFINITIONS
Occupational exposure to TiO; is regulated by OSHA under the permissible exposure limit
(PEL) of 15 mg/m® for TiO; as total dust (8-hr time-weighted average [TWA] concentration) [29
CFR" 1910.1000; Table Z-1]. The Occupational Safety and Health Administration (OSHA) PEL
for particles not otherwise regulated (PNOR) is 5 mg/m3 as respirable dust [29 CFR* 1910.1000;

Table Z-1]. These and other exposure limits for TiO, and PNOR or PNOC (particles not

* See CFR in references.
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otherwise classified) are listed in Table 1-1. PNOR/C are defined as all inert or nuisance dusts,
whether mineral, inorganic or organic, not regulated specifically by substance name by OSHA
(PNOR) or classified by ACGIH (PNOC). The same exposure limits are often given for TiO; and
PNOR/PNOC (Table 1-1), and the Federal Republic of Germany maximum ;:oncentration value
in the workplace (MAK) value for respirable TiO; specifically refers to the MAK general
threshold value for dust [DFG 2000]. OSHA definitions for the total and respirable particle size
fractions refer to specific sampling methods and devices [OSHA 2002], while the MAK and
American Conference of Governmental Industrial Hygienists (ACGIH) definitions for respirable
and inhalable are based on the internationally-developed definitions of particle size selection
sampling [CEN 1993; ISO 1995; ACGIH 1984, 1994]. NIOSH also recommends the use of the

international definitions [NIOSH 1995].

Aerodynamic diameter refers to how a particle behaves in air and determines the probability of
deposition at locations within the respiratory tract. Aerodynamic diameter is defined as the
diameter of a spherical particle that has the same settling velocity as a particle with a density of 1

g/cm3 (the density of a water droplet) [Hinds 1999].

"Respirable" is defined as particles of aerodynamic size that, when inhaled, are capable of
depositing in the gas-exchange (alveolar) region of the lungs [ICRP 1994]. Sampling methods
have been developed to estimate the airborne mass concentration of respirable particles [CEN

1993; ISO 1995; ACGIH 1994; NIOSH 1998].
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“Fine” is defined in this document as all particle sizes that are collected by respirable particle
sampling (i.e., 50% collection efficiency for particles of 4 pm, with some collection of particles
up to10 um). “Fine" is also a common term that has been used in various ways. Fine is
sometimes used to refer to the particle fraction between 0.1 pm and approximately 3 pm [Aitken
et al 2004], and to refer to pigment-grade TiO; [e.g., Lee et al. 1985]. The term "fine" has been
replaced by "respirable" by some organizations, e.g., MAK [DFG 2000], which is consistent with

international sampling conventions [CEN 1993; ISO 1995].

"Ultrafine" is defined as the fraction of respirable particles with primary particle diameter <0.1
um, which is a widely used definition. A primary particle is defined as the smallest identifiable
subdivision of a particulate system [BSI 2005]. Additional methods are needed to determine if
an airborne respirable particle sample includes ultrafine TiO; (Chapter 6). In this document, the
terms fine and respirable are used interchangeably to retain both the common terminology and

the international sampling convention.

In 1988, NIOSH classified TiO; as a potential occupational carcinogen and did not establish a
recommended exposure limit (REL) for TiO; [NIOSH 2002]. This classification was based on
the observation that TiO, caused lung tumors in rats in a long-term, high-dose bioassay [Lee et
al. 1985]. NIOSH concluded that the results from this study met the criteria set forth in the
OSHA cancer policy (29 CFR Part 1990, Identification, Classification, and Regulation of
Carcinogens) by producing tumors in a long-term mammalian bioassay. The International

Agency for Research on Cancer (IARC) classifies TiO, in Group 3, with limited evidence of
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animal carcinogenicity and inadequate evidence for human carcinogenicity [TARC 1989]. The
scientific evidence pertaining to hazard classification and exposure limits for TiO; is reviewed

and evaluated in this document.
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Table 1-1. Occupational exposure limits and guidelines for TiO; and PNOS/R
TiO, PNOS/R
Single-shift TWA Single-shift TWA
Agency (mg/m’) Comments (mg/m*) Comments
NIOSH [2002]" — Potential human — —
carcinogen
OSHA 15 Total ¥ 15 Total
5 Respirable
ACGIH 10 Category A4 (not 10 Inhalable
[2001a, 2001b, classifiable as a 38 Respirable
2005] human carcinogen)
MAK'M 1.5 Respirable 4 Inhalable
[DFG 2000] 1.5 Respirable
*Abbreviations: ACGIH = American Conference of Governmental Industrial Hygienists; MAK = Federal Republic
of Germany Maximum Concentration Values in the Workplace; NIOSH = National Institute for Occupational
Safety and Health; OSHA = Occupational Safety and Health Administration; PNOS/R = Particles not otherwise
specified or regulated; TiO, = titanium dioxide; TWA = time-weighted average. TLV® = threshold limit value.
*Recommendations in effect before publication of this document.
*Total, inhalable, and respirable refer to the particulate size fraction, as defined by the respective agencies.
$ PNOS guideline (too little evidence to assign TLV®). Applies to particles without applicable TLV, insoluble or
poorly soluble, and low toxicity [ACGIH 2005]. Inorganic only; and for particulate matter containing no asbestos
and <1% crystalline silica [ACGIH 2001b).
HMAK values are long-term averages. Single shift excursions are permitted within a factor of 2 of the MAK value.
436
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438

439 Rutile Anatase

440  Figure 1-1. Rutile and anatase TiO; crystal structure. (Courtesy: Cynthia Striley, NIOSH)
441
442
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443 2. HUMAN STUDIES

444 2.1 CASE REPORTS

445 A few case reports described adverse health effects in workers with potential TiO, exposure.
446  These effects included adenocarcinoma of the lung and TiO,-associated pneumoconiosis in a
447  male TiO; packer with 13 years of potential dust exposure and a 40-year history of smoking
448  [Yamadori et al. 1986]. Pulmonary fibrosis or fibrotic changes and alveolar macrophage

449  responses were identified by thoracotomy or autopsy tissue sampling in three workers with 6 to 9
450  years of dusty work in a TiO; factory. No workplace exposure data were reported. Two workers
451  were “moderate” or “heavy” smokers (pack-years not reported) and smoking habits were not
452 reported for the other worker [Elo et al. 1972]. Small amounts of silica were present in all three
453  lung samples and significant nickel was present in the lung tissue of the autopsied case.

454  Exposure was confirmed using sputum samples that contained macrophages with high

455  concentrations of titanium two to three years after their last exposure [Maétta and Arstila 1975].
456  Titanium particles were identified in the lymph nodes of the autopsied case. The lung

457  concentrations of titanium were higher than the lung concentration range of control autopsy
458  specimens from patients not exposed to TiO; (statistical testing and number of controls not

459  reported).

460

461  Moran et al. [1991] presented cases of TiO; exposure in four males and two females. However,
462  occupation was unknown for one male and one female, and the lung tissue of one worker

463  (artist/painter) was not examined (skin biopsy of arm lesions was performed). Smoking habits
464  were not reported. Diffuse fibrosing interstitial pneumonia, bronchopneumonia, and alveolar

465  metaplasia were reported in three male patients (a titanium dioxide worker, a painter, and a paper
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mill worker) with lung-deposited TiO; (rutile) and smaller amounts of tissue-deposited silica
[Moran et al. 1991]. Titanium was also identified in the liver, spleen, and one peribronchial
lymph node of the TiO, worker, and talc was identified in the lungs of that patient and the paper

mill worker.

A case of pulmonary alveolar proteinosis (i.e., deposition of proteinaceous and lipid material
within the airspaces of the lung) was reported in a worker employed for more than 25 years as a
painter, with 8 years of spray painting experience. He smoked two packs of cigarettes per day
until he was hospitalized. Titanium was the major type of metallic particle found in his lung

tissues [Keller et al. 1995].

Death occurred suddenly in a 26-year-old worker while pressure-cleaning inside a tank
containing TiO,; death was attributed to inhalation of the particulate [Litovitz et al. 2002;

Litovitz 2004]. Further information about the role of TiO, was not provided.

In pathology studies of titanium dioxide workers, tissue-deposited titanium was often used to
confirm exposure. In many cases, titanium rather than TiO,, was identified in lung tissues; the
presence of TiO, was inferred when a TiO»-exposed worker had pulmonary deposition of
titanium (e.g., Ophus et al. [1979]; Rode et al. [1981]; Maatta and Arstila [1975]; Elo et al.
[1972]); Humble et al. [2003]). In other case reports, X-ray crystallography identified TiO; (i.e.,
anatase) in tissue digests [Moran et al. 1991] and X-ray diffraction distinguished rutile from
anatase [Rode et al. 1981]. Similarly, with the exception of one individual in whom talc was

identified [Moran et al. 1991], pathology studies (i.e., Elo et al. [1972]; Moran et al. [1991])
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identified the silica as “Si0,” (silicon dioxide) or “silica” in tissue and did not indicate whether it

was crystalline or amorphous.

In summary, few TiO»-related health effects were identified in case reports. None of the case
reports provided quantitative industrial hygiene information about workers’ TiO, dust exposure.
Lung particle analyses indicated that workers exposed to respirable TiO; can accumulate
particles in their lungs that may persist for years after cessation of exposure. TiO, deposited in
the lungs of workers was often contaminated with other agents, most commonly silica (form not
specified), at much lower concentrations than titanium particles. The chronic tissue reaction to
lung-deposited titanium is distinct from chronic silicosis. Most cases of tissue-deposited titanium
presented with a local macrophage response with associated fibrosis that was generally mild, but
of variable severity, at the site of deposition. More severe reactions were observed in a few
cases. The prevalence of similar histopathologic responses in other TiO,-exposed populations is
not known. The effects of concurrent or sequential exposure to carcinogenic particles, such as

crystalline silica, nickel, and tobacco smoke, were not determined.

2.2 EPIDEMIOLOGIC STUDIES

A few epidemiologic studies have evaluated the carcinogenicity of TiO; in humans; they are
described here and in Table 2-1. Epidemiologic studies of workers exposed to related
compounds, such as titanium tetrachloride (TiCls) or titanium metal dust (i.e., Fayerweather et al.
[1992] and Garabrant et al. [1987] ) were not included because those compounds may have
properties and effects that differ from those of TiO; and discussion of those differences is

beyond the scope of this document.
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2.2.1 Chen and Fayerweather [1988]

Chen and Fayerweather [1988] conducted a mortality, morbidity, and nested case-control study
of 2,477 male wage-grade workers employed for more than 1 year before Jan.uary 1, 1984 in two
TiO, production plants in the United States. The objectives of the study were to determine if
workers potentially exposed to TiO, had higher risks of lung cancer, chronic respiratory disease,

pleural thickening/plaques, or pulmonary fibrosis than referent groups.

Of the 2,477 male workers, 1,576 were potentially exposed to TiO,. Other exposures included
TiCls, pigmentary potassium titinate (PKT), and asbestos. (The TiCls-exposed workers were
evaluated in Fayerweather et al. [1992]). Quantitative results from exposure monitoring or
sampling performed after 1975 may have been included in the study; however, it was unclear
what exposure measurements, if any, were available after 1975 and how they were used.
Committees (not described) were established at the plants to estimate TiO, exposures for all jobs.
A cumulative exposure index, duration, and TWA exposure were derived and used in the

analyses (details not provided).

Chest radiographic examination was used to detect fibrosis and pleural abnormalities and the

most recent chest X-ray of active employees (on 1/1/1984) was read blindly by two B-readers.

Observed numbers of cancer morbidity cases (i.e., incident cases) compared to expected numbers
were based on company rates. Observed numbers of deaths were compared to expected numbers

from company rates and national rates. Ninety percent (90%) acceptance ranges were calculated
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for the expected numbers of cases or deaths. The nested case-control study investigated decedent
lung cancer and chronic respiratory disease, incident lung cancer and chronic respiratory disease
(not described), and radiographic chest abnormalities. Incidence data from the company’s
insurance registry were available from 1956 to 1985 for cancer and chronic respiratory disease.
Mortality data from 1957 to 1983 were obtained from the company mortality registry. The study
reported the number of observed deaths for the period 1935-1983; the source for deaths prior to

1957 is not clear.

Mortality from all cancers was lower than expected compared with U.S. mortality rates;
however, mortality from all causes was greater than expected when compared with company
rates (194 deaths observed; 175.5 expected; 90% acceptance range for the expected number of
deaths=154-198). Lung cancer deaths were lower than expected based on national rates (9 deaths
observed/17.3 expected=0.52; 90% acceptance range for the expected number of deaths=11-24)
and company rates (9 deaths observed/15.3 deaths expected=0.59; 90% acceptance range for the
expected number of deaths= 9—22). Lung cancer morbidity was not greater than expected
(company rates; 8 cases observed; 7.7 expected; 90% acceptance range for the expected number

of cases=3—-13).

Nested case-control analyses found no association between TiO, exposure and lung cancer
morbidity after adjusting for age, and exposure to TiCly, PKT, and asbestos (16 lung cancer
cases; 898 controls; TiO; odds ratio [OR]=0.6). The OR did not increase with increasing average
exposure, duration of exposure, or cumulative exposure index. No statistically significant

positive relationships were found between TiO, exposure and cases of chronic respiratory
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disease (88 cases; 898 noncancer, nonrespiratory disease controls; TiO, OR=0.8). Chest X-ray
findings from 398 films showed few abnormalities—there were four subjects with “questionable
nodules” but none with fibrosis. Pleural thickening or plaques were present in 5.6% (n=19) of the
workers potentially exposed to TiO; compared with 4.8% (n=3) in the unexposed group. Case-
control analyses of 22 cases and 372 controls with pleural abnormalities found a nonstatistically
significant OR of 1.4 for those potentially exposed and no consistent exposure-response

relationship.

Although this study did not report statistically significant increased mortality from lung cancer,
chronic respiratory disease, or fibrosis associated with titanium exposure, serious limitations of
the study precluded any conclusions: (1) it is unclear whether quantitative exposure data for
respirable TiO; existed after 1975 and if so, whether those measurements were used in the
analyses; (2) type of measurement (e.g., total, respirable, or submicrometer), type of sample (e.g.,
area or personal), number of samples, sampling location and times, and nature of samples (e.g.,
epidemiologic study or compliance survey), and breathing zone particle sizes were not reported;
(3) duration of exposure was not described; (4) the presence of other chemicals and asbestos
could have acted as confounders; (5) incidence and mortality data were not described in detail
and could have been affected by the healthy worker effect; (6) chest X-ray films were not
available for retired and terminated workers; and (7) company registries were the only apparent
source for some information (e.g., company records may have been based on those workers

eligible for pensions, and thus not typical of the general workforce.)
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2.2.2 Fryzek et al. [2003]
Fryzek et al. [2003] conducted a retrospective cohort mortality study of 4,241 workers with
potential exposure to TiO, employed on or after 1/1/1960 for at least 6 months at four TiO,

production plants in the United States.

Plants used either a sulfate process or a chloride process to produce TiO, from the original ore.
Nearly 2,400 records of air sampling measurements of sulfuric acid mist, sulfur dioxide,
hydrogen sulfide, hydrogen chloride, chiorine, TiCls, and TiO, were obtained from the four
plants. Most were area samples and many were of short duration. Full-shift or near full-shift
personal samples (n=914; time-weighted averaging not reported) for total TiO, dust were used to
estimate relative exposure concentrations between jobs over time. Total mean TiO, dust levels
declined from 13.7 mg/m’® in 1976-1980 to 3.1 mg/m’ during 1996-2000. Packers, micronizers,
and addbacks had about 3 to 6 times higher exposure concentrations than other jobs. Exposure
categories, defined by plant, job title, and calendar years in the job, were created to examine

mortality patterns in those jobs where the potential for TiO, exposure was greatest.

Mortality of 409 female workers and 3,832 male workers was followed until 12/31/2000
(average followup time=21 years; standard deviation=11 years). The number of expected deaths
was based on mortality rates by sex, age, race, time period, and the state where the plant was
located and standardized mortality ratios (SMRs) and confidence intervals (CIs) were calculated.
Cox proportional hazards (PH) models that adjusted for effects of age, sex, geographic area, and

date of hire were used to estimate relative risks (RR) of TiO, exposure (i.e., average intensity,
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duration, and cumulative exposure) in medium or high exposure groups versus the lowest

exposure group.

Of the 4,241 workers (58% white; 90% male), 958 did not have adequate work history
information and were omitted from some plant analyses. Thirty-five percent of workers had been
employed in jobs with the highest potential for TiO, exposure. Workers experienced a
significantly low overall mortality (533 deaths; SMR=0.8; 95% CI=0.8-0.9). No significantly
increased SMRs were found for any specific cause of death, and there were no trends with
exposure. The number of deaths from trachea, bronchus, or lung cancer was not greater than
expected (i.e., 61 deaths; SMR=1.0; 95% CI=0.8-1.3), and SMRs for this cancer did not increase
with increasing TiO concentrations. Workers in jobs with greatest TiO, exposure had
significantly fewer than expected total deaths (112 deaths; SMR=0.7; 95% CI=0.6-0.9) and
mortality from cancers of trachea, bronchus, or lung was not greater than expected (11 deaths;
SMR=1.0; 95% CI 0.5-1.7). Internal analyses (i.e., Cox PH models) revealed no significant
trends or exposure-response associations for total cancers, lung cancer, or other causes of death.
No association between TiO, exposure and increased risk of cancer death was observed in this

study (i.e., Fryzek et al. [2003]).

Limitations of this study include (1) company records from the early period were destroyed or
lost, (2) about half the cohort was born after 1940; lung cancer in these younger people would be
less frequent, and the latency from first exposure to TiO short, (3) duration of employment was
often quite short, (4) no information about ultrafine exposures, and (5) limited data on

nonoccupational factors (e.g., smoking). Smoking information abstracted from medical records
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from 1960 forward of 2,503 workers from the four plants showed no imbalance across job
groups. In all job groups, the prevalence of smoking was about 55% and it declined over time by
decade of hire. However, the information was inadequate for individual adjustments for smoking

[Fryzek et al. 2003].

In addition, the RRs may have been artificially low, especially in the highest category of
cumulative exposure, because of the statistical methods used [Beaumont et al. 2004]. Further
data analyses by the authors found no significant exposure-response relationships for lung cancer
mortality and cumulative TiO; exposure (i.e., “low”, “medium”, “high”) with either a time-
independent exposure variable or a time-dependent exposure variable and a 15-year exposure lag
(adjusted for age, sex, geographic area, and date of hire) [Fryzek et al. 2004a,b]. However, the
hazard ratio for trachea, bronchus, and lung cancer from “medium” cumulative TiO, exposure
(15-year lag) was greater than 1.0 (hazard ratio for medium cumulative exposure, time-

dependent exposure variable and 15-year lag=1.3; 95% CI 0.6-2.8) [Fryzek 2004a,b].

2.2.3 Boffetta et al. [2001]
Boffetta et al. [2001] reevaluated lung cancer risk from exposure to TiO, in a subset of a
population-based case-control study of 293 substances including TiO; (i.e., Siemiatycki et al.

[1991]; see Table 2-1 for description of Siemiatycki et al. [1991]).

Histologically confirmed lung cancer cases (n=857) from hospitals and noncancer referents were

randomly selected from the population of Montreal, Canada. Cases were male, aged 35 to 70,
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diagnosed from 1979 to 1985, and controls were 533 randomly selected healthy residents and

533 persons with cancer in other organs.

Job information was translated into a list of potential exposures, including ali Ti compounds and
TiO; as dust, mist, or fumes. Using professional judgment, industrial hygienists assigned
qualitative exposure estimates to industry and job combinations worked by study subjects, based
on information provided in interviews with subjects, proxies, and trained interviewers and
recorded on a detailed questionnaire. The exposure assessment was conducted blindly (i.e., case
or referent status not known). Duration, likelihood (possible, probable, definite), frequency
(<5%, 5-30%, >30%), and extent (low, medium, high) of exposure were assessed. Those with
probable or definite exposure for at least 5 years before the interview were classified as
“exposed”. Boffetta et al. [2001] classified exposure as “substantial” if it occurred for more than
5 years at a medium or high frequency and level. (Siemiatycki et al. [1991] used a different
definition and included five workers exposed to titanium slag that were excluded by Boffetta et
al. [2001]; see Table 2-1). Only 33 cases and 43 controls were classified as ever exposed to TiO,
(OR= 0.9; 95% CI 0.5-1.5). Results of unconditional logistic models were adjusted for age,
socioeconomic status, ethnicity, respondent status (i.e., self or proxy), tobacco smoking,
asbestos, and benzo(a)pyrene (BAP) exposure. No trend was apparent for estimated frequency,
level, or duration of exposure. The OR was 1.0 (95% CI= 0.3-2.7) for medium or high exposure
for at least 5 years. Results did not depend on choice of referent group and no significant

associations were found with TiO; exposure and histologic type of lung cancer.
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The likelihood of finding a small increase in lung cancer risk was limited by the small number of
cases assessed. However, the study did find an excess risk for lung cancer associated with both
asbestos and BAP, indicating that the study was able to detect risks associated with potent
carcinogens. The study had a power of 86% to detect an OR of 2 at the 5% level, and 65% power

for an OR of 1.5.

Limitations of this study include (1) self-reporting or proxy reporting of exposure information,
(2) use of surrogate indices for exposure, (3) absence of particle size characterization, and (4) the
nonstatistically significant lung cancer OR for exposure to TiO, fumes was based on a small
group of subjects and most were also exposed to nickel and chromium (5 cases; 1 referent;
OR=9.1; 95% CI=0.7-118). In addition, exposures were limited mainly to those processes, jobs,
and industries in the Montreal area. For example, the study probably included few, if any,
workers that manufactured TiO,. Most workers classified as TiO,-exposed were painters and
motor vehicle mechanics and repairers with painting experience; the highly exposed cases mixed

raw materials for the manufacture of TiO,-containing paints and plastics.

2.2.4 Boffetta et al. [2004]

Boffetta et al. [2004] conducted a retrospective cohort mortality study of lung cancer in 15,017
workers (14,331 men, 686 women) employed at least 1 month in 11 TiO, production facilities in
six European countries. The factories produced mainly pigment-grade TiO,. Estimated
cumulative occupational exposure to respirable TiO, dust was derived from job title and work
history. Observed numbers of deaths were compared with expected numbers based on national

rates; exposure-response relationships within the cohort were evaluated using the Cox PH model.
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Few deaths occurred in female workers (n=33); therefore, most analyses did not include female
deaths. The followup period ranged from 1950~1972 until 1997-2001; 2,619 male and 33 female
workers were reported as deceased. (The followup periods probably have a range of years
because the followup procedures varied with the participating countries.) The cause of death was
not known for 5.9% of deceased cohort members. Male lung cancer was the only cause of death
with a statistically significant SMR (SMR=1.23; 95% CI= 1.10-1.38; 306.5 deaths (not a whole
number because of correction factors for missing deaths). However, the Cox regression analysis
of male lung cancer mortality found no evidence of increased risk with increasing cumulative
respirable TiO, dust exposure (P-value for test of linear trend=0.5). There was no evidence of an
exposure-response relationship for nonmalignant respiratory disease mortality. The authors
suggested that lack of exposure-response relationships may have been related to a lack of (1)
statistical power or (2) workers employed before the beginning of the followup period when
exposure concentrations tended to be high. The authors also suggested that the statistically
significant SMR for male lung cancer could represent (1) heterogeneity by country, (2)
differences in the effects of potential confounders, such as smoking or occupational exposure to

lung carcinogens, or (3) use of national reference rates instead of local rates.

2.3 SUMMARY OF EPIDEMIOLOGIC STUDIES

In general, the four epidemiologic studies of TiO,-exposed workers represent a range of
environments, from industry to population-based, and appear to be reasonably representative of
worker exposures over several decades. One major deficiency is the absence of any cohort

studies of workers who handle or use TiO; (rather than production workers).
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Overall, these studies provide no clear evidence of elevated risks of lung cancer mortality or

morbidity among those workers exposed to TiO, dust.

Two of the three retrospective cohort mortality studies found small numbers of deaths from
respiratory diseases other than lung cancer and the number of pneumoconiosis deaths within that
category was not reported, indicating that these studies may have lacked the statistical power to
detect an increased risk of mortality from TiO-associated pneumoconiosis (i.€., Chen and
Fayerweather [1988]: 11 deaths from nonmalignant diseases of the respiratory system; Fryzek et

al. [2003]: 31 nonmalignant respiratory disease deaths).

In addition to the methodologic and epidemiologic limitations of the studies, they were not
designed to investigate the relationship between TiO; particle size and lung cancer risk, an

important question for assessing the potential occupational carcinogenicity of TiO,,
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3. EXPERIMENTAL STUDIES IN ANIMALS AND COMPARISON TO
HUMANS

3.1 IN VITRO STUDIES

3.1.1 Genotoxicity and Mutagenicity

TiO; (particle size not specified) did not show genotoxic activity in several standard assays: cell-
killing in deoxyribonucleic acid (DNA)-repair deficient Bacillus subtilis; mutagenesis in
Salmonella typhimurium or E. coli; or transformation of Syrian hamster embryo cells [[ARC
1989]. However, more recent studies have shown that TiO; can induce micronuclei in Chinese
hamster ovary cells, particularly when a cytokinesis-block technique is employed; TiO; can also
induce sister chromatid exchanges [Lu et al. 1998]. In addition, ultrafine TiO, (approx. 20 nm
particle size) can induce apoptosis in Syrian hamster embryo cells [Rahman et al. 2002]. TiO,
has demonstrated genotoxic activity following photoactivation [Nakagawa et al. 1997], which
may have some relevance to dermal exposures. Overall, these studies suggest that TiO, may have

some genotoxic potential, under some conditions.

3.1.2 Effects on Phagocytosis

Renwick et al. [2001] reported that both fine and ultrafine TiO; particles (250 and 29 nm mean
diameter, respectively) reduced the ability of J774.2 mouse macrophages to phagocytose 2 pm
latex beads, in vitro. Ultrafine TiO, impaired macrophage phagocytosis at a lower mass dose
than fine TiO,. Moller et al. [2002] found that ultrafine TiO, (20 nm diameter), but not fine TiO,
(220 nm diameter), caused impaired phagosomal transport and increased cytoskeletal stiffness in

both J774A.1 mouse macrophages and alveolar macrophages isolated from beagle dogs.

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 27
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However, this study was not able to replicate the Renwick et al. [2001] finding that phagocytosis
was more strongly inhibited by ultrafine TiO; than by fine TiO,. The reason for this discrepancy

is unknown.

3.2 SUBCHRONIC STUDIES

3.2.1 Intratracheal Instillation

Studies with male Fischer 344 rats instilled with 0.5 mg of TiO, of four different particle sizes
(12 to 250 nm) indicate that ultrafine TiO; patticles are interstitialized to a greater extent and
cleared from the lung more slowly than larger TiO; particles [Ferin et al. 1992]. Other
intratracheal instillation studies conducted by the same laboratory suggest that ultrafine TiO,
particles produce a greater acute (24-hr) pulmonary inflammation response than larger TiO,
particles, and that the increased toxicity of the ultrafine particles appears to be related to their

surface area and to their increased interstitialization [Oberddrster et al. 1992].

Rehn et al. [2003] also observed an acute (3-day) inflammatory response to instillation of
ultrafine TiO; and found that the response from a single instillation decreased over time,
returning to control levels by 90 days after the instillation. The reversibility of the inflammatory
response to ultrafine TiO; contrasted with the progressive increase in inflammation over 90 days
that was seen with crystalline silica (quartz) in the same study. This study also compared a
silanized hydrophobic preparation of ultrafine TiO; to an untreated hydrophilic form, and
concluded that alteration of surface properties by silanization does not greatly alter the biological

response of the lung to ultrafine TiO,.

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 28
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In another study, type II alveolar cells were isolated, 15 months after dosing, from rats dosed by
intratracheal instillation with either 10 or 100 mg/kg of fine TiO; [Driscoll et al. 1997]. Type II
cells isolated from rats dosed with 100 mg/kg fine TiO, exhibited an increased hypoxanthine-
guanine phosphoribosyl transferase (hprf) mutation frequency, but type II cells isolated from rats
treated with 10 mg/kg fine TiO; did not. Neutrophil counts were significantly elevated in the
bronchoalveolar lavage fluid (BALF) isolated from rats instilled 15 months earlier with 100
mg/kg fine TiO,, as well as by 10 or 100 mg/kg of a-quartz or carbon black. Hprt mutations
could be induced in RLE-6TN cells in vitro by cells from the BALF isolated from the 100 mg/kg
fine TiO,-treated rats. The authors concluded that the results supported a role for particle-elicited
macrophages and neutrophils in the in vivo mutagenic effects of particle exposure, possibly

mediated by cell-derived oxidants.

Mice instilled with 1 mg fine TiO, showed no evidence of inflammation at 4, 24, or 72 hr after
instillation as assessed by inflammatory cells in bronchoalveolar lavage (BAL) and expression of

a variety of inflammatory cytokines in lung tissue [Hubbard et al. 2002].

An intratracheal instillation study in hamsters suggested that fine TiO, may act as a co-
carcinogen [Stenbick et al. 1976]. When BAP and fine TiO, were administered intratracheally
to 48 hamsters, 16 laryngeal, 18 tracheal, and 18 lung tumors developed, compared to only 2

laryngeal tumors found in the BAP-treated controls.

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 29
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3.2.2 Short-Term Inhalation

Short-term exposure to respirable fine TiO; resulted in particle accumulation in the lungs of
exposed rats. The pulmonary retention of these particles increased as exposure concentrations
increased. Thus, after 4 weeks of exposure to 5 mg/m3, 50 mg/m3, and 250 ﬁgm3, the fine TiO,
retention half-life in the lung was ~68 days, ~110 days, and ~330 days, respectively [Warheit et

al. 1997], which is indicative of lung clearance overload.

In multiple studies, the most frequently noted change after 1 to 4 weeks of fine TiO; inhalation
was the appearance of macrophages laden with particles, which were principally localized to the
alveoli, bronchus-associated lymphoid tissue, and lung-associated lymph nodes [Driscoll et al.
1991; Warheit et al. 1997; Huang et al. 2001]. Particle-laden macrophages increased in number
with increasing exposure intensity and decreased in number after cessation of exposure [Warheit
et al. 1997]. Alveolar macrophages from rats inhaling 250 mg/m® fine TiO; for 4 weeks also
appeared to be functionally impaired as demonstrated by persistently diminished chemotactic

and phagocytic capacity [Warheit et al. 1997].

Inflammation in the lungs of fine TiO»-exposed rats was dependent upon exposure concentration
and duration. Rats exposed to 250 mg/m’ fine TiO, 6 hr/day, 5 days/week for 4 weeks had
markedly increased numbers of granulocytes in BALF [Warheit et al. 1997]. The granulocytic
response was muted after recovery, but numbers did not approach control values until 6 months
after exposures ceased. Rats exposed to 50 mg/m’ fine TiO, 6 hr/day, 5 days/wk for 4 weeks had
a small but significantly increased number of granulocytes in the bronchoalveolar fluid that
returned to control levels at 3 months after exposures ceased [Warheit et al. 1997].

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 30
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Another study reported that the inflammatory lesions in Fischer 344 rats produced by 3-month
exposures to either 22.3 mg/m’ of ultrafine TiO,, or 23.5 mg/m’ of pigment-grade TiO;
“regressed during a 1-year period following cessation of exposure” [Baggs et al. 1997]. This
observation suggests that the inflammatory response from short-term exposures to TiO, may be

reversible to some degree, if there is a cessation of exposure.

In a separate study, rats exposed to inhalation concentrations of 50 mg/m? fine TiO, 7 hr/day,

5 days/week for 75 days had significantly elevated neutrophil numbers, lactate dehydrogenase (a
measure of cell injury) concentration, and r-acetylglucosaminidase (a measure of inflammation)
concentration in BALF [Donaldson et al. 1990]. However, in that study the BALF of rats
inhaling 10 mg/m’ or 50 mg/m® fine TiO,, 7 hr/day, 5 days/week for 2 to 52 days had
polymorphonuclear leukocyte numbers, macrophage numbers, and lactate dehydrogenase

concentrations that were indistinguishable from control values [Donaldson et al. 1990].

Rats exposed to airborne concentrations of 50 mg/m’ fine TiO, 6 hr/day for 5 days had no
significant changes in BALF neutrophil number, macrophage number, lymphocyte number,
lactate dehydrogenase concentration, n-acetylglucosaminidase concentration, or measures of
macrophage activation 1 to 9 weeks after exposure [Driscoll et al. 1991]. Similarly, rats exposed
to 0.1, 1, or 10 mg/m3 , 6 h/day, 5 days/week for 4 weeks or intratracheally instilled with up to
750 ng TiO; had no evidence of lung injury as assessed by BAL 1 week to 6 months after

exposure or histopathology at 6 months after exposure [Henderson et al. 1995].

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 31
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Rats exposed to very high concentrations (1130-1310 mg/m3) of 6 different formulations of fine
TiO, for 30 days (6 hr/day, 5 days/week), or intratracheally instilled with 2 or 10 mg/kg of the
same formulations, showed varying degrees of pulmonary inflammation, depending on the
surface coating applied to the TiO,. The greatest inflammatory responses were induced by TiO,

coated with both alumina and amorphous silica [Warheit et al. 2005].

3.2.3 Subchronic Inhalation

Several studies have investigated the rat lung responses, including pulmonary inflammation, to
subchronic inhalation (up to 6 months) of fine and ultrafine TiO, [Oberdérster et al. 1994, 1992;
Ferin et al. 1992], other low toxicity dust (barium sulfate [BaSO4]) [Tran et al. 1999] or high
toxicity dust (crystalline silica, SiO;) [Porter et al. 2001]. Figures 3-1 and 3-2 show the
relationship between particle dose (as mass or surface area) of these various particles and
pulmonary inflammation. When particle lung dose is expressed as mass, the data fall on different
dose-response curves for the different particles (Figure 3-1). However, when dose is converted to
particle surface area (Figure 3-2), both of the poorly soluble, low toxicity (PSLT) particles fit the
same dose-response curve, with crystalline silica (considered a higher-toxicity particle)
demonstrating more inflammogenic response when compared to PSLT particles of a given

surface area dose.

Subchronic (13-week) inhalation exposure of rats, mice and hamsters to 10, 50, or 250 mg/m3
concentrations of fine TiO; resulted in alveolar epithelial changes, cell damage and inflammation

at high exposure concentrations in all three species [Everitt et al. 2000; Bermudez et al. 2002].
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Inhaling 50 or 250 mg/m? fine TiO, for 13 weeks caused histopathologic changes consistent with
alveolar epithelial cell hypertrophy and hyperplasia in all species [Everitt et al. 2000]. Foci of
alveolar epithelial cell hypertrophy and hyperplasia were often associated with aggregates of
particle-laden alveolar macrophages in rats, mice, and hamsters [Bermudez et al. 2002]. In rats,
but not mice and hamsters, these foci of alveolar epithelial hypertrophy became increasingly
more prominent with time, even after cessation of exposure, and in high dose rats progressed to
bronchiolization of alveoli (metaplasia) and fibrotic changes with focal interstitialization of TiO,
particles [Bermudez et al. 2002]. Alveolar lipoproteinosis and cholesterol clefts were also
observed in subchronically exposed rats after cessation of exposure [Bermudez et al. 2002]. In
addition, in rats, alveolar cell turnover was increased in alveoli not associated with inflammatory
foci [Bermudez et al. 2002]. In the BALF of rats, mice and hamsters exposed to 250 mg/m” fine
TiO, the numbers of macrophages, the percentage of neutrophils in BALF, lactate
dehydrogenase (a measure of cell damage) and total protein significantly increased. While these
changes were reversible in hamsters by 13 to 26 weeks after exposure cessation, they persisted in
rats and mice through 52 weeks after cessation of the 250 mg/m> exposure. These effects also
persisted in rats and mice inhaling 50 mg/m’ fine TiO; for at least 13 weeks after exposure

cessation [Bermudez et al. 2002].

3.3 CHRONIC STUDIES

3.3.1 Rat Lung Tumor Response

TiO; has been investigated in three chronic inhalation studies in rats, including fine TiO; in Lee
et al. [1985] and Muhle et al. [1991] and ultrafine TiO, in Heinrich et al. [1995]. These studies

were also reported in other publications, including Lee et al. [1986a], Muhle et al. [1989, 1994],
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and Bellmann et al. [1991]. In another 2-year rat inhalation study, an increase in lung
carcinomas was found in rats exposed to titanium tetrachloride [Lee et al. 1986b]; however,
titanium tetrachloride is a different compound with different properties than TiO,, and will not

be discussed further in this document.

In Lee et al. [1985], groups of 100 male and 100 female rats (CD, Sprague-Dawley derived;
strain not specified) were exposed by whole body inhalation to fine, rutile TiO, (pigment grade)
for 6 hr/day, 5 days/week, for 2 years, to 10, 50, or 250 mg/m’ (84% respirable). A fourth group
(control) was exposed to air. The particle size of the TiO; was 1.5 to 1.7 um mass median
aerodynamic diameter (MMAD) diameter. No increase in lung tumors was observed at 10 or 50
mg/m’. At 250 mg/m’, bronchioalveolar adenomas were observed in 12/77 male rats and 13/74
female rats. In addition, squamous cell carcinomas were reported in 1 male and 13 females at
250 mg/m’. The squamous cell carcinomas were noted as being dermoid, cyst-like squamous cell
carcinomas [Lee et al. 1985], and were later reclassified as proliferative keratin cysts [Carlton
1994], and later still as a continuum ranging from pulmonary keratinizing cysts through
pulmonary keratinizing eptheliomas to frank pulmonary squamous carcinomas [Boorman et al.

1996].

In both the Muhle et al. [1991] and Heinrich et al. [1995] studies, TiO, was used as a negative
control in 2-year chronic inhalation studies of toner and diesel exhaust, respectively. In Muhle et
al. [1991], the airborne concentration of TiO; (rutile) was 5 mg/m3 (77% respirable). Male and
female Fischer 344 rats were exposed for up to 24 months by whole body inhalation, and
sacrificed beginning at 25.5 months. No increase in lung tumors was observed in TiO,-exposed
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animals; the lung tumor incidence was 2/100 in TiO;-exposed animals versus 3/100 in

nonexposed controls.

In the Heinrich et al. [1995] study, 100 female Wistar rats were exposed to ultrafine TiO,
(anatase) at an average of approximately 10 mg/m3 for 2 years (actual concentrations were 7.2
mg/m’ for 4 months, followed by 14.8 mg/m® for 4 months, and 9.4 mg/m’ for 16 months).
Following the 2-year exposure, the rats were held without TiO; exposure for 6 months [Heinrich
et al. 1995]. The primary particle size range was 15 to 40 nm, and the MMAD patrticle size was
0.8 um, which consisted of agglomerates of individual ultrafine particles. A statistically
significant increase in adenocarcinomas was observed (13 adenocarcinomas, 3 squamous cell
carcinomas, and 4 adenomas in 100 rats). In addition, 20 rats had benign keratinizing cystic
squamous-cell tumors. Only 1 adenocarcinoma, and no other lung tumors, was observed in 217

nonexposed control rats.

In Heinrich et al. [1995], mice were also exposed to ultrafine TiO,. The lifespan of NMRI mice
was significantly decreased by inhaling approximately 10 mg/m® ultrafine TiO, 18 hr/day for
13.5 months [Heinrich et al. 1995]. This exposure did not produce tumors in NMRI mice, but a
30% lung tumor prevalence in controls may have decreased the sensitivity of this strain for

detecting carcinogenic effects.

3.3.2 Chronic Oral
The National Cancer Institute (NCI) conducted a bioassay of TiO, for possible carcinogenicity
by the oral route. TiO; was administered in feed to Fischer 344 rats and B6C3F; mice. Groups of
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50 rats and 50 mice of each sex were fed either 25,000 or 50,000 parts per million (ppm) TiO,
for 103 weeks and then observed for 1 additional week. In the female rats, C-cell adenomas or
carcinomas of the thyroid occurred at incidences that were dose related (P=0.013), but were not
elevated enough (P=0.043 for direct comparison of the high-dose group with' the control group)
to attain statistical significance at the level of P=0.025 required by the Bonferroni criterion
[Piegorsch and Bailer 1997]. The tumor incidence was 1/48 in the controls, 0/47 in the low-dose
group, and 6/44 in the high-dose group. It should also be noted that a similar incidence of C-cell
adenomas or carcinomas of the thyroid as observed in the high-dose group of the TiO; feeding
study has been seen in control female Fischer 344 rats used in other studies. No significant
excess tumors occutred in male or female mice or in male rats. It was concluded that under the
conditions of this bioassay, TiO; is not carcinogenic by the oral route for Fischer 344 rats or

B6C3F; mice [NCI 1979].

3.4 RAT AS A MODEL FOR HUMAN INHALATION RISKS

3.4.1 Rodent Lung Responses to Fine and Ultrafine TiO;

Both fine and ultrafine TiO, are capable of eliciting pulmonary inflammation in the rat.
Ultrafine TiO, was more damaging to the rodent lung than fine TiO,. For example, 24 hr after
intratracheal instillation of 500 pg of ultrafine or fine TiO,, only the rats instilled with ultrafine
TiO; had elevations in the neutrophil percentage, y-glutamyl transpeptidase concentration (a
measure of cell damage), and protein concentration in fluid (BALF) [Renwick et al. 2004].
Subchronic inhalation of ultrafine TiO; was also more inflammatory and more fibrogenic than
inhalation of fine TiO,. Rats inhaling 23.5 mg/m® ultrafine TiO,, 6 hr/day, 5 days/week, for 12
weeks developed more pulmonary fibrosis than rats inhaling fine TiO, under comparable
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exposure concentrations [Baggs et al. 1997]. Rats and mice inhaling 10 mg/m3 ultrafine TiO,
have impaired particle clearance after approximately 3 months of exposure, which persists with
or without exposure cessation [Heinrich et al. 1995; Bermudez et al. 2004]. In contrast, no
impaired particle clearance was seen in hamsters inhaling 10 mg/m? ultrafine TiO», 6 hr/day, for
13 weeks. Rats and mice inhaling 10 mg/m’ ultrafine TiO, for 13 weeks have significantly
elevated numbers of neutrophils, macrophages, and lymphocytes in BALF [Bermudez et al.
2004]. Numbers of macrophages and neutrophils in the BALF of ultrafine TiO»-exposed rats
returned to control levels at 13 and 26 weeks after exposure cessation, respectively. Conversely,
in ultrafine TiO2-exposed mice, numbers of macrophages and neutrophils in the BALF persisted

throughout the maximum study recovery period of 52 weeks [Bermudez et al. 2004].

Altered proliferation of alveolar epithelium was observed in both rats and mice inhaling 10
mg/m’ ultrafine TiO,, although rats were affected at earlier timepoints. After inhaling 10 mg/m®
fine TiO, for 13 weeks, the alveolar cell replication index of mice was significantly increased at
13 and 26 weeks after exposure cessation [Bermudez et al. 2004]. Rats exposed to 2 or 10 mg/m®
ultrafine TiO, for 13 weeks showed an increase in the alveolar replication index immediately
after exposure; in rats exposed to 10 mg/m’ ultrafine TiO; the increased replication index
persisted at 4 and 13 weeks after exposure cessation [Bermudez et al. 2004]. The major
histopathologic alterations observed in the lungs of rats exposed to approximately 10 mg/m’
ultrafine TiO; for up to 2 years were bronchioloalveolar hyperplasia and mild interstitial fibrosis

[Heinrich et al. 1995].
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Both fine and ultrafine TiO, are fibrogenic and carcinogenic in the lungs of chronically exposed
rats. Pulmonary interstitial fibrosis developed in rats exposed to 50 or 250 mg/m3 fine TiO, 6
hr/day for 2 years [Lee et al. 1985, 1986a]. Rats inhaling approximately 10 mg/m3 ultrafine TiO;
18 hr/day for 2 years had pulmonary interstitial fibrosis [Heinrich et al. 1995]. Exposure to
approximately 10 mg/m’ ultrafine TiO, 18 hr/day for 18 or 24 months also caused a significantly
increased number of lung tumors in rats [Heinrich et al. 1995]. Similarly, rats inhaling 250

mg/m® fine TiO; 6 hr/day for 2 years developed lung tumors [Lee et al. 1985, 1986a].

Lung tumors in rats exposed to TiO, have been described as benign squamous cysts,
bronchoalveolar adenomas, squamous cell carcinomas, and adenocarcinomas [Lee et al. 1985;
Heinrich et al. 1995]. The significance of the rodent benign squamous cysts (proliferative keratin
cysts, cystic keratinizing squamous lesions of the rat lung) for human risk assessment has been
debated [Carlton 1994; Boorman et al. 1996]. In fact, many pathologists consider the rat lung
squamous cell keratinizing tumor to be irrelevant to human lung pathology. However, the
pulmonary adenomas and adenocarcinomas seen in TiO;-exposed rats are similar to pulmonary
neoplasms in humans [Maronpot et al. 2004]. For purposes of conducting a quantitative risk
assessment, NIOSH analyzed the risks both with and excluding the keratinizing cysts (see
Appendix D) whenever it was possible to do so; i.e., whenever the available data provided

sufficient information to separate keratinizing cysts from other pulmonary tumors.

3.4.2 Lung Overload
It has been argued that inhalation dose-response data from rats exposed to PSLT particles should
not be used in extrapolating cancer risks to humans because the lung tumors in rats have been
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attributed to a rat-specific response to the overloading of particle clearance from the lungs
[Watson and Valberg 1996; Hext et al. 2005]. However, the dose-response relationship for lung
tumors in rats has been shown to be statistically significantly associated with the total particle
surface area at all doses (Figures 3-3 and 3-4), which indicates that the lung tumor response of
PSLT can be predicted by the particle surface area dose without the need to account for
overloading. In addition, lung clearance of particles is slower in humans than in rats, by
approximately an order of magnitude [Hseih and Yu 1998], and some humans (e.g., coal miners)
may be exposed to concentrations resulting in doses that would be considered overloaded in rats.
Thus, the doses that cause overloading in the rat may be relevant to estimating disease risk in

workers with high dust exposures.

Studies have shown that rats are more sensitive than mice or hamsters to developing lung tumors
from exposure to PSLT particles [Bermudez et al. 2002, 2004]; however, hamsters have more
rapid lung clearance and did not retain comparable amounts of dust in the lungs. Also, mice and
hamsters are known to give false negatives in bioassays for some human carcinogens [Mauderly
1997]. The more relevant question is how sensitive is the rat to developing lung cancer from
exposure to TiO, when compared quantitatively with humans. No direct evidence sheds light on
the relative sensitivity of rats and humans to the carcinogenic effects of TiO, but evidence from
known human carcinogens, such as asbestos and crystalline silica, suggests that rats are no more

sensitive to these effects than are humans.
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3.4.3 Dose Metric

Pulmonary response to TiO; in the rat is correlated better to particle surface area than to mass,
for both cancer and noncancer response, including pulmonary inflammation. This relationship
between particle surface area and noncancer responses has been shown by Oberdorster et al.
[1992] for rats exposed to fine or ultrafine TiO, by intratracheal instillation and in rats exposed
by inhalation of fine TiO, or BaSOy4 for up to 7 months [Tran et al. 1999]. Hohr et al. [2002]
observed that, for the same surface area, the inflammatory response (as measured by
bronchoalveolar lavage fluid markers of inflammation) of uncoated TiO; particles covered with
surface hydroxyl groups (hydrophilic surface) was similar to that of TiO, particles with surface
OCHj;-groups (hydrophobic surface) replacing OH-groups. The relationship between particle
surface area and lung tumors, first shown by Oberdorster and Yu [1990], was extended by
Driscoll [1996] to include results from subsequent chronic inhalation studies in rats exposed to
PSLT particles and by Miller [1999] who refit these data using a logistic regression model.
Although these various types of PSLT particles showed separate dose-response relationships on a
mass basis, a single dose-response relationship fit all particle types when dose was expressed as

total particle surface area (Figure 3-4).

The dose-response data for the three chronic inhalation studies of TiO; are shown in Figures 3-5
and 3-3. In these figures, the tumor response data are shown separately for male and female rats
at 24 months in Lee et al. [1985] and for female rats at 24 or 30 months, including either all
tumors or tumors without keratinizing cystic tumors [Heinrich et al 1995] (all data available from
the paper are plotted). The data are plotted per gram of lung to adjust for differences in the lung
mass in the two strains of rats (Sprague-Dawley and Wistar). Figure 3-5 shows that when TiO; is
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expressed as mass dose, the lung tumor response to ultrafine TiO; is much greater than that for
fine TiO,; yet when TiO; is expressed as particle surface area dose, both fine and ultrafine TiO,
data fit the same dose-response curve (Figure 3-3). Therefore, a sufficient particle surface area
dose of fine TiO, would be expected to be carcinogenic; however, this would require a much

higher mass dose of fine particles than ultrafine particles.

3.5 COMPARISON OF RODENT AND HUMAN LUNG RESPONSES TO INHALED
PARTICLES

3.5.1 Lung Tissue Responses

Comparing the effects of fine TiO, inhalation in humans and laboratory animals reveals a
number of similarities. In both human and animal studies, respirable TiO, persisted in the lung.
The extensive pulmonary deposition seen in some workers years after ceasing TiO, exposure
[Maéittd and Arstila 1975; Rode et al. 1981] appears to be more consistent with the slow TiO;
clearance observed in heavily exposed rats and mice than the rapid clearance pattern observed in

hamsters [Everitt et al. 2000; Bermudez et al. 2002].

Inflammation, observed in lung tissue at pathological examination, was associated with
deposited titanium in the majority of human cases with heavy TiO, deposition in the lung [Elo et
al. 1972; Rode et al. 1981; Yamadori et al. 1986; Moran et al. 1991]. Pulmonary inflammation
has also been observed in studies in rats, mice and hamsters exposed to TiO, [Lee et al. 1985,
1986a; Everitt et al. 2000; Bermudez et al. 2002]. Continued pulmonary inflammation in the

lung of some exposed workers after exposure cessation [Méittid and Arstila 1975; Rode et al.
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1981] is more consistent with the findings in rats and mice than in hamsters, where inflammation

gradually resolved with cessation of exposure.

The one case of life-threatening lipoproteinosis seen in a worker with high pllxlmonary deposition
of TiO, [Keller et al. 1995] was more severe than seen in any exposed laboratory animals,
although alveolar lipoproteinosis was also observed in TiO,-exposed rats [Lee et al. 1985, 1986a;
Bermudez et al. 2002]. Similarly, mild fibrosis reported in the lungs of workers exposed to TiO,
[Elo et al. 1972; Moran et al. 1991; Yamadori et al. 1986] was reported in rats with chronic
inhalation exposure to TiO, [Heinrich et al. 1995; Lee et al. 1985, 1986a]. Alveolar metaplasia
has been briefly described in three human patients whose major common exposure was TiO,
[Moran et al. 1991]. In laboratory animals, alveolar metaplasia was only described in the rats
[Lee et al. 1985; Everitt et al. 2000; Bermudez et al. 2004]. However, similarities and
differences between the alveolar metaplastic changes of the rat and human have not been

clarified.

3.5.2 Role of Chronic Inflammation in Lung Disease

Studies in animals and humans have shown associations between chronic pulmonary
inflammation and lung disease [Castranova 1998, 2000; Marx 2004; Katabami et al. 2000].
Chronic inflammation is characterized by persistent elevation of the number of
polymorphonuclear leukocytes (PMNs) (measured in BALF) or by an increased number of

inflammatory cells in interstitial lung tissue (observed by histopathology).
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In rats exposed by inhalation to various types of particles, elevation in PMNss is associated with
the overloading of alveolar macrophage-mediated clearance [Donaldson et al. 1988; Morrow
1998; Tran et al. 1999, 2000] and with fibrosis and lung tumors [Oberdorster and Yu 1990;
Driscoll 1996; Oberdorster 1996]. In addition, interstitial inflammation (i.e., inflammatory cells
in lung tissue) has been related to increased tumor incidence in rats exposed by instillation to
various types of particles [Borm et al. 2000]. Particle surface area dose was shown in those
studies to be a better predictor of these effects than was mass dose for various types of PSLT

respirable particles.

In humans, chronic inflammation has been associated with non-neoplastic lung diseases in
workers with dusty jobs. Rom [1991] found a statistically significant increase in the percentage
of PMNs in BALF of workers with respiratory impairment who had been exposed to asbestos,
coal, or silica (4.5% PMN in cases versus 1.5% PMNss in controls). Elevated levels of PMNs
have been observed in the BALF of miners with simple coal workers’ pneumoconiosis (31% of
total BAL cells versus 3% in controls) [Vallyathan et al. 2000] and in patients with acute

silicosis (also a 10-fold increase over controls) [Lapp and Castranova 1993; Goodman et al.
1992]. Humans with lung diseases that are characterized by chronic inflammation and epithelial
cell proliferation (e.g., idiopathic pulmonary fibrosis; diffuse interstitial fibrosis associated with
pneumoconiosis) have an increased risk of lung cancer [Katabami et al. 2000]. Dose-related
increases in lung cancer have been observed in workers exposed to respirable crystalline silica
[Rice et al. 2001; Attfield and Costello 2004], which can cause inflammation and oxidative tissue
damage [Castranova 2000]. Chronic inflammation appears to be important in the etiology of
dust-related lung disease, not only in rats, but also in humans with dusty jobs [Castranova 1998,
2000]. Studies of nonmalignant lung disease in TiO, workers have been limited, although some
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case studies have reported lung responses indicative of inflammation, including alveolar
proteinosis [Keller et al. 1995] and interstitial fibrosis [Yamadori et al. 1986; Moran et al. 1991;

Elo et al. 1972] in workers (in which the lungs contained TiO, and other minerals).
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Figure 3-3. TiO; surface area dose in the lungs of rats exposed by inhalation for two years
and tumor proportion (either all tumors, or tumors excluding keratinizing squamous cell
cysts). Data from Heinrich et al. [1995], Lee et al. [1985, 1986a], and Mubhle et al. [1991].
Spline model fits to Lee data. (Heinrich dose data are jittered, i.e., staggered).
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Figure 3-4. Relationship between particle surface area dose in the lungs of rats after
chronic inhalation to various types of poorly soluble low toxicity (PSLT) particles and
tumor proportion (all tumors including keratinizing squamous cell cysts). Data from:
Toner [Muhle et al. 1991]; coal dust [Martin et al. 1977]; diesel exhaust particulate
[Mauderly et al. 1987; Lewis et al. 1989; Nikula et al. 1995; and Heinrich et al. 1995];
Titanium dioxide (TiO;) [Muhle et al. 1991; Heinrich et al. 1995; Lee et al. 1985, 1986a];
Carbon black [Nikula et al. 1995; Heinrich et al. 1995]; talc [NTP 1993].
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Figure 3-5. TiO, mass dose in the lungs of rats exposed by inhalation for two years and
tumor proportion (either all tumors, or tumors excluding keratinizing squamous cell cysts).
Data from Heinrich et al. [1995], Lee et al. [1985, 1986a], and Muhle et al. [1991]. Spline
model fits to Lee data. (Heinrich dose data are jitfered, i.e., staggered).
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4. QUANTITATIVE RISK ASSESSMENT

4.1 INTRODUCTION
4.1.1 Data and Approach

For quantitative risk assessment, dose-response data are needed, either from human studies or
extrapolated to humans from animal studies. The epidemiologic studies on lung cancer have not
shown a dose-response relationship in TiO; workers [Fryzek et al. 2003; Boffetta et al. 2004].
However, dose-response data are available in rats, for both cancer (lung tumors) and early,
noncancer (pulmonary inflammation) endpoints. The lung tumor data were from chronic
inhalation studies and included three dose groups for fine TiO; and one dose group (in addition
to controls) for ultrafine TiO,. The pulmonary inflammation data were from subchronic
inhalation studies of fine particles, and included one or two dose groups of fine TiO, [Tran et al.
1999; Cullen et al. 2002]. Various modeling approaches were used to fit these data and to

estimate the risk of disease in workers exposed to TiO, for up to a 45-year working lifetime.

The modeling results from the rat dose-response data provide the quantitative basis for
developing the recommended exposure limits (RELs) for TiO,, while the mechanistic data from
rodent and human studies (Chapter 3) provide scientific information on selecting the risk
assessment models and methods. The practical aspects of mass-based aerosol sampling and
analysis were also considered in the overall approach (i.e., the conversion between particle
surface area for the rat dose-response relationships and mass for the human dose estimates and

recommended exposure limits). Figure 4-1 illustrates the risk assessment approach.
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4.1.2 Methods

Statistical dose-response modeling was used to estimate the retained particle burden in the lungs
associated with lung tumors or pulmonary inflammation. Both maximum likelihood and 95%
lower CI estimates of the internal lung doses in rats were computed. Particle surface area was
the dose metric used in these models because it has been shown to be a better predictor than
particle mass of both cancer and noncancer responses in rats (Chapter 3). In the absence of
quantitative data comparing rat and human lung responses to TiO;, rat and human lung tissue
were assumed to have equal sensitivity to an equivalent particle surface area dose. Human lung
dosimetry models [CIIT and RIVM 2002; Kuempel et al. 2001a,b; Tran and Buchanan 2000]
were used to estimate the working lifetime airborne mass concentrations associated with the
critical doses in the lungs, as identified from the rat dose-response data. The term “critical dose”
is defined as the retained particle dose in the rat lung (MLE or 95% LCL) associated with a
specified response, including either initiation of inflammation or a given excess risk of lung

cancer.

One measure of critical dose for lung cancer is the benchmark dose, which has been defined as .
. . a statistical lower confidence limit on the dose corresponding to a small increase in effect over
the background level” [Crump 1984]. This is typically at 5% or 10% excess risk, within the
range of the data, where various models all predict similar risks. In current practice, and as used
in this document, the benchmark dose (BMD) refers to the maximum likelihood estimate (MLE)
from the model; and the benchmark dose low (BMDL) is the 95% lower confidence limit of the
BMD [Gaylor et al. 1998], which is equivalent to the BMD as originally defined by Crump
[1984]. Another measure of critical dose was the estimated threshold dose derived from a
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piecewise linear model fit to the noncancer data (pulmonary inflammation data) (Appendix B).
A final approach to estimating critical lung doses was to determine the doses associated with
specified levels of excess risk (e.g., 0.001, or 1 excess case per 1,000 workers exposed over a 45-
year working lifetime), either estimated directly from a selected model or by linear extrapolation

from the BMD.

The critical doses were derived using particle surface area, which was estimated from the mass
lung burden data and from measurements or estimates of specific surface area (i.e., particle
surface area per mass). These critical particle surface area doses were converted back to particle
mass dose when extrapolating to humans because the current human lung dosimetry models
(used to estimate airborne concentration leading to the critical lung doses) are all mass-based,
and because the current occupational exposure limits for most airborne particulates including

TiO; are also mass-based.

In summary, the dose-response data in rats were used to determine the critical dose, as particle
surface area in the lungs, associated with pulmonary inflammation or lung tumors; and the
excess risks associated with those critical doses were estimated from statistical modeling of the
rat data. The working lifetime airborne mass concentrations associated with the human-
equivalent critical lung burdens were estimated using human lung dosimetry models. The results
of these quantitative analyses, and the derivation of the RELs for fine and ultrafine TiO,, are

provided in the remainder of this chapter.
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4.2 DOSE-RESPONSE MODELING OF RAT DATA AND EXTRAPOLATION TO
HUMANS

4.2.1 Pulmonary Inflammation

4.2.1.1 Rat data

Data from two different subchronic inhalation studies in rats were used to investigate the
relationship between particle surface area dose and pulmonary inflammation response: (1) TiO;
used as a control in a study of the toxicity of volcanic ash [Cullen et al. 2002] and (2) fine TiO,
and BaSOy in a study of the particle surface area as dose metric [Tran et al. 1999]. Details of
these studies are provided in Table 4-1. Since only male Wistar rats were used in these studies,
no adjustment for lung weight differences across rat strain and sex was necessary. Individual rat
data were obtained for PMN count in the lungs in each study. In the Tran et al. [1999] study, a
different group of rats was used to estimate lung burden, while in the Cullen et al. [2002] study,
the same rats were used for both measures (i.e., PMN and lung burden data obtained for each

individual rat).

4.2.1.2 Critical dose estimation in rats

The data of TiO, lung dose and pulmonary inflammation from the Tran et al. [1999] and Cullen
et al. [2002] studies were not homogeneous in that a single dose-response curve would not
adequately fit both sets of data. Although the shape of the dose-response relationship was
similar (i.e., nonlinear, with no detectable elevation in response at low doses, followed by
increasing inflammation response at doses greater than a certain “critical” dose), the doses

associated with the beginning of inflammation were significantly different. Therefore, the data
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from these two studies were fit separately by a piecewise linear model, and the threshold

parameter was estimated separately.

Continuous models in the BMDS suite [EPA 2003] were also fit to these pul;nonary
inflammation data, but these models either did not converge or failed to provide an adequate fit
to either set of TiO; data (i.e., P-values <0.05 in lack of fit tests). In those models (including
linear, quadratic, and power models with nonconstant variance), the critical dose or BMD was
defined as the particle surface area dose in the lungs associated with a mean inflammatory
response corresponding to the upper 5th percentile of the distribution of PMN counts in control

rat lungs.

In contrast, a piecewise linear model that included a threshold parameter did fit the data; and this
threshold parameter was significant at a 95% confidence level.” In this model, the threshold dose
(maximum likelihood and CI estimates) was considered the critical dose. This critical dose is not
analogous to the BMD defined above since the piecewise linear model assumes no excess risk
below the critical (threshold) dose, while the BMD models assume a specified level of excess
risk at the critical dose. Excess risk is the risk that is attributable to the exposure, or the
additional risk above the background risk from other causes. The piecewise linear model is

described in more detail in Appendix B.

* The significance of the threshold parameters was validated using bootstrap methods; however, it should be noted
that the parameter is significant under the model assumption of linearity in the dose-response. Thus, one cannot
generalize this statement beyond linearity and assume that the threshold is significant among a larger class of
models.
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Figure 4-2 shows a piecewise linear model fit to the TiO, particle surface area dose and the PMN
count [Tran et al. 1999]. For comparison, it also shows a linear model fit to the data. Figure 4-3

shows the same model fit to another TiO, data set [Cullen et al. 2002] (note that the x-axis scales
differ in Figures 4-2 and 4-3). The probability that these thresholds would be observed if the true

relationship was linear was less than 0.01.

Using the piecewise linear model fit to the data shown in Figures 4-2 and 4-3, critical dose
estimates were derived for the particle surface area dose of TiO,. Table 4-2 shows these
estimates. The MLE of the threshold dose was 0.0134 m? for TiO; alone (0.0109 m® 95% LCL)
based on data from Tran et al. [1999]. A higher MLE threshold dose of 0.0409 was estimated
from the TiO; data in Cullen et al. [2002]. The reason for the difference in the estimated critical
dose for pulmonary inflammation (i.e., rise in PMN count) in these two data sets is not known,
although there were differences in study design (Table 4-1), including using the same versus
different rats for measuring lung burden and response, as mentioned above. The difference in
inhalation exposure method (whole body vs. nose only) seems unlikely to have influenced the
dose-response relationship because the retained lung burden data were used for each, unless the
different techniques resulted in different rates or patterns of dose that may have influenced tissue

response.

4.2.1.3 Estimating human equivalent exposure
The critical dose estimates from Table 4-3 were converted to mass dose and extrapolated to
humans by adjusting for species differences in lung mass. This is explained further in the context

of the rat lung tumor data (Section 4.2.2.3). Also, as described in that section, human lung
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dosimetry models were used to estimate the airborne concentrations of either fine or ultrafine
TiO; over a 45-year working lifetime that would be associated with an increase in pulmonary

inflammation, derived from the rat data.

4.2.2 Lung Tumors

4.2.2.1 Rat data

Dose-response data from chronic inhalation studies in rats exposed to TiO, were used to estimate
working lifetime exposures and lung cancer risks in humans. These studies are described in more
detail in Table 4-4, and include fine (pigment-grade) rutile TiO; [Lee et al. 1985; Muhle et al.
1991] and ultrafine anatase TiO, [Heinrich et al. 1995]. The doses for fine TiO; include: 5 mg/m’
(74% respirable) [Muhle et al. 1991]; and 10, 50, and 250 mg/m3 [Lee et al. 1985]. For ultrafine
TiO,, there was a single dose of approximately 10 mg/m® TiO,. Each of these studies reported
the retained particle mass lung burdens in the rats. The internal dose measure of particle burden
at 24 months of exposure was used in the dose-response models, either as particle mass or

particle surface area (calculated from the reported or estimated particle surface area).

Only the Heinrich et al. [1995] study reported a specific surface area (48 + 2 m2/g ultrafine TiOy)
for the airborne particulate, as measured by the Brunaeur, Emmett, and Teller (BET) N
adsorption method. For the Lee et al. [1985] study, the specific surface area (4.99 m?/g fine
TiO;) reported by Driscoll [1996] was used; that value was based on measurement of the specific
surface area of a rutile TiO, sample similar to that used in the Lee study [Driscoll 2002]. This

specific surface area was also assumed for the fine TiO; in the Muhle et al. [1991] study.
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The relationship between particle surface area dose of either fine or ultrafine TiO, and lung
tumor response (including all tumors or tumors excluding the squamous cell keratinizing cysts)
in male and female rats was shown in Chapter 3. Statistically significant increases in lung
tumors were observed at the highest dose of fine TiO, (250 mg/m®) or ultrafine TiO,
(approximately 10 mg/m®), whether or not the squamous cell keratinizing cysts were included in

the tumor counts.

Different strain and sex of rats were used in each of these three TiO; studies. The Lee et al.
[1985] study used male and female Sprague-Dawley rats (ctl:CD strain). The Heinrich study
used female Wistar rats [crl:(WI)BR strain]. The Muhle et al. [1991] study used male and female
Fischer-344 rats but reported only the average of the male and female lung tumor proportions.
The body weights and lung weights differed by rat strain and sex (Table 4-4). These lung mass
differences were taken into account when calculating the internal doses, either as mass (mg

TiOy/g lung tissue) or surface area (m” TiO,/g lung tissue).

4.2.2.2 Critical dose estimation in rats

Statistical models for quantal response were fit to the rat tumor data, including the suite of
models in the BMDS [EPA 2003]. The response variable used was either all lung tumors or
tumors excluding squamous cell keratinizing cystic tumors. Figure 4-4 shows the fit of the
various BMD models [EPA 2003] to the lung tumor response data (without squamous cell
keratinizing cysts) in male and female rats chronically exposed to fine or ultrafine TiO, [Lee et

al. 1985; Heinrich et al. 1995].
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The lung tumor response in male and female rats was significantly different for “all tumors” but
not when squamous cell keratinizing cystic tumors were removed from the analysis (Appendix
C, Table C-2). In other words, the male and female rat lung tumor responses were equivalent
except for the squamous cell keratinizing cystic tumor response, which was elevated only in the
female rats. To account for the heterogeneity in the “all tumor” response among male and
female rats [Lee et al. 1985; Heinrich et al. 1995], a modified logistic regression model was
developed (Appendix A); this model also adjusted for the combined mean tumor response for
male and female rats reported by Muhle et al. [1991]. As discussed in Chapter 3, many
pathologists consider the rat lung squamous cell keratinizing cystic tumor to be irrelevant to
human lung pathology. Excess risk estimates of lung tumors were estimated both ways — either
with or without the squamous cell keratinizing cystic tumor data. The full results of the analyses
including squamous cell keratinizing cystic tumors can be found in Appendix D. Inclusion of the
keratinizing cystic tumors in the analyses resulted in slightly higher excess risk estimates in

females, but not males.

The estimated particle surface area dose associated with either a 1/10 or 1/1000 excess risk of
lung tumors is shown in Table 4-5 for lung tumors excluding squamous cell keratinizing cystic
lesions. The 1/1000 excess risk BMD and BMDL estimates were derived using two approaches:
(1) linear extrapolation from the 1/10 excess risk BMD and BMDL estimates (where all models
provided similar estimates) [Crump 1984], and (2) estimates for 1/1000 excess risk derived
directly from each model; these different model estimates were then summarized using a
Bayesian model averaging approach [Bailer et al. 2005]. The linearized multistage model was
used as an example of an individual model.
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These various models were also fit to the all tumor rat data. The results were similar and are
provided in Appendix D. The male and female rat data could be combined for the models of lung
tumors without the keratinzing cystic tumors; however, due to heterogeneity by rat sex for the all
lung tumor response, the BMDS models [EPA 2003] were fit separately to the male and female
rat data (Appendix D). In addition, a logistic model was developed to account for the differences
in response for males and females (Appendix A), which allowed all of the data to be used in one
overall model. The estimates from that logistic model were also similar (Appendix D). The 95%
Cls were based on a profile likelihood method [Crump 1984]. The lower confidence limits on
dose and the upper confidence limits on excess risk are reported because these are of primary

interest for risk assessment.

The highest estimates for particle surface area dose associated with 1/1000 excess risk of lung
cancer were derived from the direct model estimates (Table 4-5), which shows that the BMD and
BMDL vary considerably depending on the shape of the model in the low dose region. When
these model-based estimates were summarized using Bayesian model averaging (BMA), the
BMA estimate was also higher than estimates derived from linear extrapolation from the 1/10
BMD and BMDL, reflecting the curvature of the best-fitting models. BMA provides an approach
for summarizing the risk estimates from the various models, which differ in the low-dose region
of interest for human health risk estimation. BMA also provides an approach for addressing the
uncertainty in choice of model in the BMD approach. Because the best-fitting models in this case

contained significant curvature and the models are used directly to estimate excess risk, the
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associated doses tend to be higher than those that would be estimated from a low-dose linear

model, or from a benchmark dose with linear extrapolation.

4.2.2.3 Estimating human equivalent exposure

Table 4-6 provides estimates of the airborne concentrations of either fine or ultrafine TiO, over a
45-year working lifetime that are associated with a 1/1000 excess risk of lung cancer. As
expected, the mass airborne concentrations associated with a given surface area dose in the lungs
is lower for ultrafine TiO, than for fine TiO,. The differences in fine and ultrafine mass
concentration estimates are nearly proportional to the differences in specific surface area. In
addition, slight differences in the lung deposition fraction for inhaled fine TiO, and ultrafine
TiO, (as agglomerates) contribute; however, the major factor influencing the mass concentration

estimates is the difference in surface area of fine versus ultrafine TiO; for a given mass.

The published BET-measured specific surface area data for fine and ultrafine TiO, were used to
convert from particle mass to surface area dose when extrapolating the rat-based critical dose
estimates to humans. These measured values were 6.68 m%g for fine (Tran et al. [1999]) and 48
m?/g for ultrafine TiO, (Heinrich et al. [1995]). Data were not available on the airborne TiO,
particle size distributions in the workplace. In the absence of workplace exposure data, these
published measured values were used to represent the fine and ultrafine particle size fractions

and to estimate the working lifetime exposures associated with critical doses (i.e., those

associated with initiation of pulmonary inflammation or a specified excess risk of lung tumors—
based on rat data extrapolated to humans). The excess risk estimates will vary for other particle
sizes and surface areas. The observed particle surface area dose-response relationship indicates
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that within either the fine or ultrafine size categories, if workers inhale particles with greater
specific surface areas than those used to develop the RELS, then the excess risks would be
expected to be higher. Similarly, if workers inhale particles with lower specific surface areas
than those used to develop the RELs, then the excess risks would be expected to be lower.
Characterizing the airborne TiO, particle sizes to which workers may be exposed is a critical

research need (Chapter 7).

The choice of dosimetry model also influences the estimates of the mean airborne concentration.
A major difference between the multi-path model of particle deposition (MPPD) model of CIIT
and RIVM [2002] and the interstitialization/sequestration model [Kuempel et al. 2001a,b; Tran
and Buchanan 2000] is that the latter includes a biologically-based structure to specifically
account for the retention of particles in the lungs, as observed in coal miners, while the former
uses the International Commission on Radiological Protection (ICRP) [1994] alveolar clearance
model that has three separate first-order clearance compartments to approximate particle
retention. Yet, in a comparison of several different human lung dosimetry models, the ICRP
[1994] alveolar clearance model was reasonably close to the interstitial/sequestration model in
predicting the lung burdens in coal miners [Kuempel and Tran 2002]. The MPPD model [CIIT
and RIVM 2002] provides a choice of several deposition models, and the default selection of
Yeh/Schum Symmetric was used for these calculations. The MPPD deposition model [CIIT and
RIVM 2002] account for variability in the particle size distribution, while the
interstitialization/sequestration model uses the deposition fractions from the ICRP [1994] model
for the mean particle diameter. The interstitial/sequestration model was developed and calibrated

using data of U.S. coal miners [Kuempel et al. 2001a,b] and later validated using data of U.K.
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coal miners [Tran and Buchanan et al. 2000]. The ICRP [1994] model was developed using data

on the clearance of radiolabeled tracer particles in humans, and it has been in use for many years.

More data are needed to evaluate the model structures and determine how well each model
would describe the retained doses associated with low particle exposures in humans. In addition,
the extent to which these models adequately describe the clearance and retention of ultrafine
particles is needed (although particle deposition specifically considers particle size, the clearance
of respirable particles, whether fine or ultrafine size, is mass-based in each of these models).
Furthermore, none of these models specifically accounts for variability in the deposition and
clearance of inhaled particles in humans (Kuempel et al. [2001b] provides an approach, given

limited data).

Finally, the approach for extrapolating between rats and humans also influences the estimates of
mean concentration in Table 4-6. To extrapolate the critical particle surface area dose in the
lungs of rats to whole lungs in humans, either the relative mass or surface area of the lungs in
each species was used. The results in Table 4-3 and 4-6 are based on the relative lung mass
(assuming 1g for rat lung and 1000 g for human lungs). Alternatively, extrapolation could be
based on relative lung surface area (e.g., 0.388 m” rat, 143 m® human [Parent 1992]), and in that
case, the estimates of the working lifetime mean airborne concentrations in Tables 4-6 and 4-3
would be lower by a factor of approximately 1/3. The mass-based approach was used for the
main analyses because data on lung mass was available in all rat strains used in the dose-
response data, and these differences could be accounted for; in contrast, data on lung surface area
by rat strain were not available. The lung mass of the Sprague-Dawley rats (used in the Lee et
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al. [1985] study) was approximately twice that of the Wistar or Fisher 344 rats (used in the
Heinrich et al. [1995] and Muhle et al. [1991] studies). Additional estimates of excess risk are
provided using lung surface area adjustment to show how the excess risk estimates may vary

based on alternative measures of scaling between rat and human lungs.

The critical dose estimates in Table 4-6 vary depending on the model used, including the dose-
response models of the rat data and the human dosimetry lung models. Little difference was
observed, however, between the MLE and the 95% lower confidence limit (LCL) estimates of
the working lifetime mean concentrations because the BMD and BMDL estimates from the rat
dose-response models were generally similar (except for the linearized multistage model, which
has a much higher MLE due to that model form). It is likely that the 95% LCL values based on

the rat data underestimate the true variability in the human population.

4.3 MECHANISTIC CONSIDERATIONS

The mechanism of action of TiO; is relevant to a consideration of the associated risks because, as
discussed earlier, the weight of evidence suggests that the tumor response observed in rats
exposed to fine and ultrafine TiO; results from a secondary genotoxic mechanism involving
chronic inflammation and cell proliferation, rather than via genotoxicity of TiO, itself. This
effect appears related to the physical form of the inhaled particle (i.e., particle surface area)
rather than the chemical compound itself. In this way, TiO, behaves in a similar manner to other

PSLT particles, such as barium sulfate, carbon black, toner, and coal dust (Figures 3-2 and 3-4).
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Studies supporting this mechanism include empirical studies of the pulmonary inflammatory
response of rats exposed to TiO and other PSLT (including a piecewise linear model with a
threshold parameter fit of the TiO, data) (Sections 3.2.3 and 4.2.1); the tumor response of TiOz
and other PSLT, which have consistent dose-response relationships (Section 3.4.3); and in vitro
studies, which show that inflammatory cells isolated from BALF from rats exposed to TiO,
released reactive oxygen species that could induce mutations in naive cells (Section 3.2.1). There
is some evidence, though limited, that inflammation may be a factor in human lung cancer, as

well (Section 3.5.2).

In considering all the data, NIOSH has determined that a plausible mechanism of action for TiO,
in rats can be described as the accumulation of TiO; in the lungs, overloading of lung clearance
mechanisms, followed by increased pulmonary inflammation and oxidative stress, cellular
proliferation, and, at higher doses, tumorigenesis. These effects are better described by particle
surface area than mass dose (Section 3.4.3). The observed inflammatory response is consistent
with a threshold mechanism (Section 4.2.1.2). The best-fitting dose-response curves for the
tumorigenicity of TiO, are nonlinear (e.g., multistage model is cubic with no linear term) (Table
4-5), which would be consistent with a secondary genotoxic mechanism. This suggests that the
carcinogenic potency of TiO, would decrease more than proportionately with decreasing surface

area dose as described in the best-fitting risk assessment models.

4.4 RISK ESTIMATES
As discussed, the scientific evidence in rats suggests that the lung tumor mechanism associated
with PSLT particles such as TiO; is a secondary, nongenotoxic mechanism involving chronic
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inflammation and cell proliferation. In the absence of data in humans, a primary genotoxic
mechanism cannot be ruled out, and the epidemiologic studies lacked the power to detect an
excess risk of 1/1000. Furthermore, the threshold doses detected in the rat pulmonary
inflammation data were in the same range as risk estimates derived from cancer risk modeling
approaches for working lifetime exposures (Tables 4-3 and 4-6). This lends additional support to
the selection of risks in the range of 1/1000 as critical risks. For these reasons, representative
lung tumor modeling approaches were selected for further evaluation: linearized multistage

modeling; BMD modeling with linear extrapolation; and BMA of all model estimates.

The linearized multistage model is a common approach that has been used frequently in cancer
risk assessment.The BMD method targets a response probability that is within the range of the
data, so that the estimate of the BMD is not sensitive to the choice of the model. In the case of
TiO,, this was a 10% tumor response. The lower bound on this dose is calculated and a straight
line is drawn from the response at this lower bound for dose through zero to estimate risks at any
dose of interest. This method ignores any curvature in the model-predicted dose-response

relationship below the BMD.

An alternative to linear extrapolation from the BMD is to estimate the risks at doses of interest
directly from the dose-response curve. Since the targeted excess risks are substantially smaller
than 10%, the ex&apolation of the dose-response curve to well below the range of the data is
sensitive to the choice of model. When there is no clear mechanistically-based preference for one
model over another, a way around this dilemma is to use model averaging techniques. These
methods use all the information from the dose-response models, weighing each model by its
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posterior probability of being the true model. The result is a weighted average of the fitted dose-
response models. The question remains whether this is a better representation of the true model
or whether it simply illustrates the impact of model uncertainty on the derived risk estimate
summaries, but it gives the risk assessor the ability to summarize the dose-résponse behavior of

the BMD Software Suite at low doses.

Each of these approaches was used to assess the excess risk of lung cancer at various working
lifetime exposure concentrations of fine or ultrafine TiO; (Tables 4-7 and 4-8). As shown in
Tables 4-7 and 4-8, selection of the model for estimating risks has a significant impact on the
risk estimates. NIOSH believes that the three methods shown are all reasonable and supportable

interpretations of the cancer exposure-response data.

As shown in Tables 4-7 and 4-8, the working lifetime mean concentration of fine TiO, associated
with a <1/1000 excess risk of lung cancer is 1 to 5 mg/m3 , depending on the model used to fit the
rat lung tumor data (based on either the 95% UCL or the Bayesian model average estimate). For
ultrafine TiO,, the working lifetime mean concentration associated with <1/1000 excess risk of
lung cancer is <0.05 to 0.5 mg/m’, depending on the rat model. The estimates in Tables 4-7 and
4-8 are based on modeling of the rat lung tumors excluding the squamous cell keratinizing cystic

lesions.

The working lifetime mean concentrations shown in Tables 4-7 and 4-8 and estimated internal
lung doses were also evaluated using the rat dose-response data on fine or ultrafine TiO; and
pulmonary inflammation (Tables 4-9 and 4-10). The retained particle mass burden in human

lungs after a 45-year working lifetime exposure to various airborne mean concentrations of TiO,

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 66
information quality guidelines. It has not been formally disseminated by the National Institute for Occupational
Safety and Health. It does not represent and should not be construed to represent any agency determination or
policy.”




1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

DRAFT

were extrapolated to equivalent particle surface area dose in rat lungs. These rat-equivalent doses
were then visually compared to the estimated 95% LCL on the threshold parameter for
pulmonary inflammation in the rat (using a piecewise linear model and verified with
bootstrapping, Appendix B). The bottom two rows in Tables 4-9 and 4-10 indicate whether the
estimated lung burden associated with a given working lifetime mean concentration exceeds the
95% LCL estimate of the threshold dose from two different rat data sets [Tran et al. 1999; Cullen

et al. 2002].

To compute the mean airborne concentration estimates in Tables 4-7 through 4-10, the MPPD
human lung dosimetry model [CIIT and RIVM 2002] was used to estimate human lung doses
associated with working lifetime exposures to a given mean concentration. The MPPD model
[CIIT and RIVM 2002] includes the ICRP (1994) alveolar clearance model. These dose
estimates were lower by a factor of approximately two compared to a model that includes
interstitialization/sequestration of particles in the lungs [Kuempel et al. 2001a; Tran and
Buchanan 2000]. The rat lung dose was extrapolated from the dosimetry model-estimated human
lung dose, by adjusting for species differences in lung mass (assuming 1000g for humans and 1g
for rats). Extrapolation by lung surface area differences (e.g., 143 m* human; 0.39 m? rat) would
provide higher dose estimates by a factor of approximately three. Other factors influencing
variability and uncertainty in the dose estimates were not evaluated. Thus, there may be

additional sources of uncertainty that are not accounted for in the estimated LCLs.

Table 4-11 compares the lung cancer risk estimates with thresholds (for no effect) extrapolated
from the rat pulmonary inflammation data. No uncertainty factors have been applied to these
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threshold estimates. NIOSH is presenting these data here as additional support for selection of

critical risk estimates.

For fine TiO,, the BMD model (with linear extrapolation) and the linearized multistage model
(i.e., dose predicted directly from the model without linear extrapolation), predict a 1/1000
excess risk of lung cancer at concentrations in the range of 1 to 2 mg/m? over a 45-year working
lifetime. For ultrafine TiO,, the BMD and linearized multistage models predict a 1/1000 excess
risk of lung cancer in the range of 0.05 to 0.2 mg/m? over a 45-year working lifetime. Given the
uncertainty in model form and rat data indicating nonlinear dose-response, these linear models
may overestimate the risk of lung cancer in humans. The estimated working lifetime exposure
concentrations associated with 1/1000 excess risk of lung cancer from the BMA approach (which
considers the fit of both linear and nonlinear models to the data) were higher —approximately 5
mg/m3 (fine TiO,) and 0.5 mg/m3 (ultrafine TiO;). While the BMA approach provides a
capability to use all of the information on the various model fits to the data, it is a relatively new

approach that has had limited evaluation to date.

To be health protective, NIOSH derived the RELs from the linearized models. The RELs were
selected based on the following considerations of the risk estimates (Tables 4-7 and 4-8). As
mentioned above, the linearized models predict a 1/1000 excess risk of lung cancer after a 45-
year working lifetime exposure to a mean concentration in the range of 1 to 2 mg,/m3 of fine
TiO»; thus, NIOSH determined that it is reasonable and prudent to recommend 1.5 mg/m3 as the
REL for fine TiO-. This value is also consistent with the previously established MAK value of

1.5 mg/m® for fine TiO;, based on different data and approach (although the MAK value is a
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longer-term average value) [DFG 2000]. For ultrafine TiO,, these linearized models predict a
1/1000 excess risk of lung cancer after a 45-year working lifetime exposure to a mean
concentration of 0.05 to 0.2 mg/m®; thus, NIOSH determined that it is reasonable and prudent to

recommend 0.1 mg/m’ as the REL for ultrafine TiO,.

The unadjusted (i.e., no uncertainty factors) analyses of pulmonary inflammation data in rats
provide similar exposure estimates to those derived from considering 1/1000 excess risk of lung
cancer. While there is no a priori reason why these estimates would necessarily be similar, this
finding suggests that exposures below these concentrations over a working lifetime may be
associated with less than 1/1000 excess risk of lung cancer if it occurs via a secondary genotoxic
mechanism. However, there is also uncertainty in these risk estimates and in the possible cancer

mechanism in humans.

4.5 QUANTITATIVE COMPARISON OF RISK ESTIMATES FROM HUMAN AND
ANIMAL DATA

A quantitative comparison was performed of the rat-based MLE excess risk estimates for lung
cancer to the 95% UCL of excess risk from the epidemiologic studies (Appendices E and F) to
quantitatively compare the rat- and human-based excess risks of lung cancer by using hypothesis
tests with results from the human and rat studies. Comparisons were made using several
differing assumptions to include alternative plausible approaches. If the sensitivity of the rat
response to inhaled particulates differs from that of humans, then the excess risks derived from
the rat data would be expected to differ from the excess risks estimated from the human studies.

The results of the statistical tests, comparing the rat- and human-based excess risk estimates,
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were used to assess whether or not there was adequate precision in the data to reasonably exclude

the rat model as a basis for predicting the excess risk of lung cancer in humans exposed to TiO,.

The results of these comparisons showed that the MLE excess risk estimates from the rat studies
were generally lower than the 95% UCL from the human studies for estimated working lifetime
(Appendix F, Tables F-1 and F-2). These results indicate, that given the variability in the human
studies [Fryzek et al. 2003; Boffetta et al. 2004], the rat-based excess risk estimates cannot
reasonably be dismissed from use in predicting the excess risk of lung cancer in humans exposed
to TiO,. Thus, NIOSH determined that it is prudent to use these rat dose-response data for risk

assessment in workers exposed to TiOz.
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Table 4-1. Comparison of rat inhalation studies used to model the relationship
between titanium dioxide and pulmonary inflammation

Study
Experimental conditions
Tran et al. [1999] Cullen et al. [2002]
TiO; particle size: MMAD 2.1 (2.2) pm 1.2 (2.2 pm)
(GSD)*
Specific surface area 6.7 m%/g 6.41 m%/g

Rat strain, sex

Exposure conditions

TiO, dose: concentration,
duration

Male, Wistar rats

Whole body inhalation
7 hr/day, 5 days/week

25 mg/m’, 7.5 months
50 mg/m®, 4 months

Male, Wistar rats

Nose-only inhalation
6 hr/day, 5 days/week

140 mg/m®, 2 months

*MMAD: mass median aerodynamic diameter; GSD: geometric standard deviation
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Table 4-2. Threshold ostims}tes for particle surface area dose associated with pulmonary
inflammation (PMNs in BAL fluid) in rats, based on piecewise-linear model
(m’)
Data modeled MLE 95%LCL 95% UCL
TiO, [Tran et al. 1999] 0.0134 0.0109 0.0145
TiO; [Cullen et al. 2002] 0.0409 0.0395 0.0484
*Abbreviations: BAL fluid = bronchoalveolar lavage; L.CL = lower confidence limit;
MLE = maximum likelihood estimate; PMNs = polymorphonuclear leukocytes; TiO, = titanium dioxide;
UCL = upper confidence limit.
1689
1690
1691
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DRAFT

1709
Table 4-9. Estimated particle surface area dose of fine TiO; in workers’ lungs
after a 45-year working lifetime compared with rat-based thresholds
for pulmonary inflammation
Workers’ mean airborne exposure (mg/m’)
Item 0.5 1 2 5 10
Estimated TiO, surface area dose:
Workers’ lungs (m?) 35 7.0 14 35 70
Rat equivalent (mz) 0.0035 0.0070 0.014 0.035 0.070
Rat-based threshold for pulmonary inflammation:
Exceeds LCL of 0.011 m? [Tran et al. 1999] No No Yes Yes Yes
Exceeds LCL of 0.039 m” [Cullen et al. 2002] No No No No Yes
* Abbreviations: LCL = lower confidence limit; TiO, = titanium dioxide.
1710
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Table 4-10. Estimated particle surface area dose of ultrafine TiO; in workers’ lungs
after a 45-year working lifetime compared with rat-based thresholds
for pulmonary inflammation
Workers’ mean airborne exposure (mg/m®)
Item 0.05 0.1 0.5 1 2
Estimated TiO, surface area dose:
Workers’ lungs (m?) 3.1 6.2 31 62 120
Rat equivalent (m?) 0.0031 0.0062 0.031 0.062 0.12
Rat-based threshold for pulmonary inflammation:
Exceeds LCL of 0.011 m® [Tran et al. 1999] No No Yes Yes Yes
Exceeds LCL of 0.039 m? [Cullen et al. 2002] No No No Yes Yes
* Abbreviations: LCL = lower confidence limit, TiO, = titanium dioxide.
1713

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 81
information quality guideli 1t has not been formally disseminated by the National Institute for Occupational
Safety and Health. It does not represent and should not be construed to represent any agency determination or
policy.”




DRAFT

1714
Table 4-11. §ummary of quantitative risk estimates for workers exposed to fine and
ultrafine TiO; at various mean airborne concentrations over a 45-year working lifetime

Workers’ mean airborne exposure (mg/m’)’

Response Fine TiO, Ultrafine TiO,

Lung cancer excess risk <1/ 1,000 1-5 0.05-0.5

Pulmonary inflammation (below estimated threshold) <2-10 <0.5-1.0

Source: Tables 4-7 and 4-10.

*Abbreviations: BMA = Bayesian model averaging; GSD = geometric standard deviation, MMAD = mass median
aerodynamic diameter; TiO, = titanium dioxide; UCL = upper confidence limit.

YEstimates based on particles with the following specific surface area and MMAD: fine— 6.68 m*/g, MMAD
2.1 pm (2.2 GSD); ultrafine—48 m*/g, MMAD (agglomerated) 0.8 pm (1.8 GSD).

3As 95% UCL or BMA estimate of excess risk.
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Human

Recommended
exposure limit

Technical feasibility
Variability/uncertainty

Rat

. Dose-response model o
(particle surface area Working lifetime ;
dose in lungs) exposure concentration*
Human lung
¥ dosimetry model
Calculate tissue “# | Equivalent tissue
dose -- BMD . (species differences in dose
Tt s lung mass or surface

%

area)

* Compare ratbased

- Assume equal response to equivalent dose risk estimates with
: - confidence intervals

from human studies

Figure 4-1. Risk assessment approach using rat dose-response data to derive
recommended exposure limits for titanium dioxide.
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~ Piecewise-linear fit

~~~~~~~ Linear Fit

PMN (x108)

0.0 0.02 0.04 0.06 0.08

Particle Surface Area (m?/lung)

Figure 4-2. Piecewise-linear and linear model fits to rat data on pulmonary inflammation (PMN
count) and particle surface area dose of titanium dioxide (data from Tran et al. [1999]).
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Figure 4-3. Piecewise-linear and linear model fits to rat data on pulmonary inflammation

(PMN count) and particle surface area dose of TiO (data from Cullen et al. [2002]).
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Figure 4-4. BMD models [EPA 2003] fit to the lung tumor data (without squamous
cell keratinizing cysts) in male and female rats chronically exposed to fine or
ultrafine TiO; [Lee et al. 1985; Heinrich et al. 1995] expressed as particle surface
area dose. (note: confidence intervals were not constructed when the response
proportion was zero).
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5. HAZARD CLASSIFICATION AND RECOMMENDED EXPOSURE

LIMITS

NIOSH has reviewed the relevant animal and human data for assessing the carcinogenicity of
TiO; and has reached the following conclusions. First, the tumorigenic effects of TiO; exposure
in rats appear not to be chemical-specific or a direct action of the chemical substance itself.
Rather, these effects appear to be a function of particle size and surface area acting through a
secondary genotoxic mechanism associated with persistent inflammation. Second, current
evidence indicates that occupational exposures to low concentrations of TiO; produce a

negligible risk of lung cancer in workers.

On the basis of these findings, NIOSH has determined that insufficient evidence exists to
designate TiO; as a “potential occupational carcinogen” at this time. NIOSH will reconsider this
determination if further relevant evidence is obtained. However, evidence of tumorigenicity in
rats at high exposure concentrations warrants the use of prudent health-protective measures for
workers until we have a more complete understanding of the possible health risks. Therefore,
NIOSH recommends exposure limits of 1.5 mg/m? for fine and 0.1 mg/m’ ultrafine TiO, as time-
weighted average concentrations for up to 10 hr/day during a 40-year work week. These levels
will serve to minimize any risks that might be associated with the development of pulmonary

inflammation and cancer.
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5.1 HAZARD CLASSIFICATION

NIOSH reviewed the current scientific data on TiO; to evaluate the weight of the evidence for
the NIOSH designation of TiO; as a “potential occupational carcinogen.” Two factors were
considered in this evaluation: (1) the evidence in humans or animals for an increased risk of lung
cancer from inhalation of TiO,, including exposure up to a full working lifetime, and (2) the
evidence on the biologic mechanism of the dose-response relationship observed in rats, including
evaluation of the particle characteristics and dose metrics that are related to the pulmonary

effects.

No exposure-related increase in carcinogenicity was observed in the epidemiologic studies
conducted on workers exposed to TiO; dust in the workplace [Boffetta et al. 2001, 2003, 2004;
Fryzek et al. 2003; 2004a,b]. In rats exposed to fine TiO, by chronic inhalation, lung tumors
were elevated at 250 mg/m3 , but not at 10 or 50 mg/m3 [Lee et al. 1985; 1986a}. In contrast,
chronic inhalation exposures to ultrafine TiO; at approximately 10 mg/m’ resulted in a
statistically significant increase in malignant lung tumors in rats, although lung tumors in mice
were not elevated [Heinrich et al. 1995]. The lung tumors observed in rats after exposure to 250
mg/m’ were the basis for the original NIOSH designation of TiO; as a “potential occupational
carcinogen.” NIOSH evaluated these dose-response data in humans and animals, along with the
mechanistic factors described below, in assessing the scientific basis for the current NIOSH
designation of TiO; as a “potential occupational carcinogen.” In addition, NIOSH used the rat
dose-response data in a quantitative risk assessment, to develop estimates of excess risk of

nonmalignant and malignant lung responses in workers over a 45-year working lifetime. These
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risk estimates were used in the development of recommended exposure limits for fine and

ultrafine TiO,.

5.1.1 Mechanistic Considerations

The mechanistic data considered by NIOSH were obtained from published subchronic and
chronic studies in rodents exposed by inhalation to TiO; or other poorly soluble low toxicity
(PSLT) particles. These studies include findings on the kinetics of particle clearance from the
lungs, and on the nature of the relationship between particle surface area and pulmonary
inflammation or lung tumor response. The mechanistic issues considered by NIOSH include: the
influence of particle size or surface area (vs. specific chemical reactivity) on the carcinogenicity
of TiO, in rat lungs; the relationship between particle surface area dose and pulmonary
inflammation or lung tumor response in rats; and the mechanistic evidence on the development

of particle-elicited lung tumors in rats.

The conclusion that inhaled TiO; is carcinogenic in rats because of its particulate nature and not
due to a chemical-specific reaction is supported by studies on the dose-response relationship to
malignant and nonmalignant lung diseases and by mechanistic information on the relationship
between particle surface area dose, pulmonary inflammation and its sequela, and lung cancer in
the rat lung. The dose-response relationships for TiO; and various other PSLT particles can be
described using the same dose-response curve when surface area, rather than mass, is used as the
dose metric. If the cancer response was due to the chemical compound itself, the potencies of
different chemicals would not be expected to be equivalent when plotted as surface area dose.
This is illustrated in Figure 3-2, where crystalline silica has a steeper dose-response curve for

“This information is distributed solely for the purpose of pre dissemination peer review under applicable 89
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pulmonary inflammation, even when dose is expressed as particle surface area, whereas fine
TiO, (from two studies), ultrafine TiO,, and fine BaSOj4 data all fit the same dose-response
curve. Similarly, several types of PSLT particles follow a consistent dose-response relationship
for rat lung tumors (Figure 3-4). The importance of particle surface area in tile dose-response
relationship for lung tumors in the rat is illustrated in Figures 3-3 and 3-5, where the dose-
response is similar for fine and ultrafine TiO; on a particle surface area basis, but ultrafine TiO,
is more potent on a mass basis, presumably due to the greater surface area per unit mass. In the
rat, the carcinogenic potency on a mass basis was greater for ultrafine TiO; than for fine TiO, -
after chronic inhalation exposure to approximately 10 mg/m? of ultrafine TiO,, 19% of female
rats developed lung tumors (adenocarcinoma, squamous cell carcinoma, and adenoma), while
male and female rats exposed to fine TiO, had no excess of lung tumors at either 10 or 50
mg/m’, and at 250 mg/m® approximately 17% developed adenomas [Lee et al. 1985; Heinrich et

al. 1995].

Mechanistic studies of inhaled TiO, support a plausible sequence of events via a secondary
genotoxic mechanism. Specifically, a nonlinear relationship has been observed between the
particulate surface area dose of TiO; and the number of polymorphonuclear leukocyte (PMN)
cells in the lungs, a marker for pulmonary inflammation [Oberdorster et al. 1992; Tran et al.
1999]. Persistent pulmonary inflammation has been shown to generate reactive oxygen and
nitrogen species, which if unquenched by antioxidant defenses, can eventually cause oxidative
stress, tissue damage, and epithelial cell proliferation and hyperplasia, followed by the
development of nonmalignant and malignant lung tumors in rats [Oberddrster 1995, 1996;
Mossman 2000]. These effects increase significantly when the particle clearance processes in
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the rat lungs are overwhelmed, leading to greater retention of particles in the lungs (called rat

lung overload) [ILSI 2000].

Ultrafine TiO, was shown to have greater free radical activity than fine TiO,, and also caused
much greater damage to supercoiled plasmid DNA—an effect that was reduced by mannitol,
indicating involvement of hydroxy! radicals. Moreover, particle-clicited PMN cells (neutrophils)
and alveolar macrophages were shown to induce a specific gene mutation (hprt) in the lung
epithelial cells of rats exposed to TiO, and other particles, and these mutations were inhibited in
vitro by the addition of the antioxidant catalase [Driscoll et al. 1997]. These studies provide
mechanistic evidence for the role of persistent neutrophilic inflammation and cell-derived
oxidants in the rat lung tumor response to particles in the lungs. These mechanistic factors are

also consistent with the observed nonlinear dose-response relationships in rats inhaling TiQ..

NIOSH has considered these dose-response and mechanistic data and concludes that a plausible
interpretation of the scientific evidence is that TiO, is a carcinogen in rat lungs via a non-
chemical specific, secondary genotoxic mechanism involving persistent pulmonary

inflammation.

5.1.2 Cancer Classification in Humans

The lack of an exposure-response relationship in the epidemiologic studies of workers exposed
to TiO, dust in the workplace should not be interpreted as clear evidence of a discordance
between the mechanism presumed to operate in rats and the human potential for carcinogenicity.
As demonstrated by the quantitative comparison between the animal and human studies (Section
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3.5), the responses were not statistically inconsistent: the epidemiologic studies had insufficient

power to replicate or refute the animal dose-response.

However, the mechanistic data reviewed above leave open the possibility of species differences
beyond what would be anticipated for a genotoxic carcinogen. Although it is plausible that the
secondary genotoxic mechanism described above operates in humans exposed to TiO; dust, there
is insufficient evidence to corroborate this. In addition, there is limited information on the
kinetics or specific physiological response to TiO; particles in humans. Because of this lack of
information, it is not possible to determine whether or not exposures to high concentrations of
TiO, are carcinogenic in humans, as they are in rats. The evidence suggests that exposures with
insufficient TiO, surface area are not likely to show carcinogenic activity in any test species, and
the current epidemiologic data provide insufficient indication of carcinogenicity in humans.
NIOSH interprets this information to indicate that occupational exposures to low concentrations
of TiO; pose a negligible risk of cancer in workers. For this reason, NIOSH has removed the
classification of TiO; as a potential occupational carcinogen, with the recommendation that
occupational exposures to TiO, should be controlled to levels that are unlikely to cause persistent
inflammation and thus initiate a secondary genotoxic response. The RELs were developed using
the rat dose-response data, including the lung tumor data, to provide health-protective
recommendations for workers exposed to fine or ultrafine TiO,. NIOSH will reconsider the

cancer classification if sufficient additional scientific evidence becomes available.
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5.1.3 Basing the RELSs on Rat Tumor Data

NIOSH concluded from reviewing the mechanistic evidence that TiO; is carcinogenic in rats
because of its physical properties as a particulate, which at sufficiently high surface area doses
causes persistent pulmonary inflammation and lung tumors. The evidence indicates this occurs
through a secondary genotoxic mechanism, rather than to any inherent carcinogenicity of the
chemical TiO,. Although there is little direct evidence that this mechanism operates in humans
(leading NIOSH to remove the designation, “potential occupational carcinogen”), there is also no
compelling evidence to refute the plausibility of this mechanism in humans. Therefore, NIOSH
has determined that the rat is a reasonable model to predict human risks and has used the rat
tumor-response data supported by the inflammation data as the basis for the recommended
exposure limits (RELs). NIOSH believes that this reflects both the weight of evidence for the
potential human carcinogenicity of TiO, and NIOSH’s concern that the RELSs be sufficiently

protective of human health.

NIOSH has considered the evidence suggesting that rats may be an inappropriate model for
human lung cancer after exposure to particulates and has concluded that the rat is a reasonable
model for predicting human lung cancer risks. Although there is not extensive evidence that the
overloading of lung clearance, as observed in rats (Chapter 3), occurs in humans, lung burdens
consistent with overloading doses in rats have been observed in some humans with dusty jobs
(e.g., coal miners) [Stéber et al. 1965; Carlberg et al. 1971; Douglas et al. 1986]. Rather than
excluding the rat as the appropriate model, the lung overload process may cause the rat to attain
lung burdens comparable to those that can occur in workers with dusty jobs. In addition,
evidence suggests that, as in the rat, inhalation of particles increases the human inflammatory
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response, and increases in the inflammatory response may increase the risk of cancer (see
Section 3.5.2). This information provides additional support for the determination that the rat is
a reasonable animal model with which to predict human tumor response for other particles, such

as TiOz.

Examination of the lung cancer dose-response curve for TiO; and some PSLT particles shows a
nonlinearity in response. For example, the best fit in the multistage model was a cubic model
with no linear term. This is consistent with the proposed mechanism of action of TiO; in the rat:
as inhaled particles accumulate in the lungs and a critical dose is reached, pulmonary
inflammation increases sharply, accompanied by cellular proliferation and eventually
carcinogenesis by a secondary genotoxic mechanism involving reactive oxygen species produced
during inflammation. The RELs for TiO, are based on the linearized upper bound on risk from
the multistage model, which is expected to be health-protective due to the nonlinearity in the
dose-response curve. The nonlinear shape of the maximum likelihood estimate of the cancer
response increases confidence that the true risks of cancer are lower than 1/1000 at the RELs and
could be as low as zero. This is also consistent with removal of the designation, “potential

occupational carcinogen” from TiO,.

5.2 RECOMMENDED EXPOSURE LIMITS

NIOSH recommends exposure limits of 1.5 mg/m? for fine TiO, and 0.1 mg/m’ for ultrafine
TiO, as time-weighted average concentrations (TWA) for up to 10 hr/day during a 40-hour work
week, using the international definitions of respirable dust [CEN 1993; ISO 1995] and the

NIOSH Method 0600 for sampling airborne respirable particles [NIOSH 1998]. NIOSH selected
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these exposure limits for recommendation because they would reduce working lifetime risks for
lung cancer to below 1/1000 even under the worst-case assumption of low-dose linearity in the
exposure-response relationship. NIOSH believes that the true risk of lung cancer due to exposure
to TiO; at these concentrations is much lower than 1/1000, and could in fact be zero. To account
for the risk that exists in work environments where airborne exposures to fine and ultrafine TiO,
occur, exposure measurements to each size fraction should be combined using the additive
formula and compared to the additive REL of 1 (unitless) (see Figure 6.1 Exposure assessment

protocol for TiOy).

"Respirable" is defined as particles of acrodynamic size that, when inhaled, are capable of
depositing in the gas-exchange (alveolar) region of the lungs [ICRP 1994]. Sampling methods
have been developed to estimate the airborne mass concentration of respirable particles [CEN
1993; ISO 1995; NIOSH 1998]. “Fine” is defined in this document as all particle sizes that are
collected by respirable particle sampling (i.e., 50% collection efficiency for particles of 4 um,
with some collection of particles up to10 pm). "Ultrafine" is defined as the fraction of respirable
particles with primary particle diameter <0.1 pm, which is a widely used definition. Additional
methods are needed to determine whether an airborne respirable particle sample includes

ultrafine TiO, (Chapter 6).

The separate RELs for fine and ultrafine TiO, are supported by the higher lung cancer potency in
rats of ultrafine TiO; compared to fine TiO,, which was associated with the greater surface area

of ultrafine particles for a given mass. In rats chronically exposed to airborne fine TiO,,
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statistically-significant excess lung tumors were observed only in the 250 mg/m’ dose group.
With chronic exposure to airborne ultrafine TiO,, lung tumors were seen in rats exposed to an

average of approximately 10 mg/m3.

It may be a better reflection of the entire body of available data to set RELs as the inhaled
surface area of the particles rather than the mass of the particles. This would be consistent with
the scientific evidence showing an increase in potency with increase in particle surface area (or
decrease in particle size) of TiO; and other PSLT particles. However, current technology does
not permit the routine measurement of the surface area of airborne particles, and dosimetry
models would have to be modified to incorporate such data in order to reanalyze the risks to
reflect those measurements. Therefore, NIOSH recommends sampling the mass airborne
concentration of TiO,, as two broad primary particle size categories: fine (<10 um) and ultrafine
(< 0.1 pm). These categories reflect current aerosol size conventions, although it is recognized
that actual particle size distributions in the workplace will vary. Because agglomerated ultrafine
particles are frequently measured as fine-sized but behave biologically as ultrafine particles due
to the surface area of the constituent particles, exposures to agglomerated ultrafine particles

should be controlled to the ultrafine REL.

The NIOSH REL for fine TiO, of 1.5 mg/m’ is based on an assessment of the lung tumor
response in the rat and supported by consideration of the other pulmonary effects of TiO,. The
NIOSH REL for ultrafine TiO; of 0.1 mg/m reflects NIOSH’s greater concern for the potential
carcinogenicity of ultrafine TiO; particles. As particle size decreases, the surface area increases
(for equal mass), and the tumor potency increases per mass unit of dose. The ultrafine REL is
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based on an evaluation of the rat lung cancer data for TiO; and supported by the lower critical
lung doses for inflammation in the rat. Exposures to workers should be kept as low as feasible
and should not exceed the RELs. Interim recommendations for sampling and control of

exposures to fine and ultrafine TiO, in the workplace are described in Chapter 6.

In the NIOSH Pocket Guide, NIOSH will delete the designation “potential occupational

carcinogen” and add the following explanatory footnotes to the TiO; entry:
TiO: particles may be found as pigment-grade or fine TiO: (<10 um) or
ultrafine (<0.1 um) (primary particle sizes). The carcinogenicity of TiO:
is believed to be related to a nonchemical-specific interaction of the
particles with lung tissue, causing chronic inflammation and eventually
tumors in rat lungs. This effect is related to the surface area of the
particle, which increases as the particle size decreases. For that reason,
NIOSH has much greater concern for the carcinogenicity of ultrafine
TiO», and has set the REL for ultrafine TiO; much lower than that for fine
TiO,. The REL for ultrafine TiO; also applies to agglomerated ultrafine

TiO; particles, even when the agglomerate is greater than 0.1 um in

diameter.
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6. MEASUREMENT AND CONTROL OF TiO, AEROSOL IN THE

WORKPLACE

6.1 EXPOSURE METRIC

Based on the observed relationship between particle surface area dose and toxicity (Chapters 3
and 4), the measurement of aerosol surface area would be the preferred method for evaluating
workplace exposures to TiO,. However, personal sampling devices that can be routinely used in
the workplace for measuring particle surface area are not currently available. As an alternative, if
the airborne particle size distribution of the aerosol is known in the workplace and the size
distribution remains relatively constant with time, mass concentration measurements may be
useful as a surrogate for surface area measurements. NIOSH is recommending that a mass-based
airborne concentration measurement be used for monitoring workplace exposures to fine and
ultrafine TiO, until more appropriate measurement techniques can be developed. NIOSH is
currently evaluating the efficacy of various sampling techniques for measuring fine and ultrafine

TiO, and may make specific recommendations at a later date.

In the interim, personal exposure concentrations to fine (pigment-grade) and ultrafine TiO,
should be determined with NIOSH Method 0600 using a standard 10-mm nylon cyclone or
equivalent particle size-selective sampler [NIOSH 1998]. Measurement results from NIOSH
Method 0600 should provide a reasonable estimate of the exposure concentration to fine and
ultrafine TiO, at the NIOSH RELs of 1.5 and 0.1 mg/m’, respectively, when the predominant

exposure to workers is TiO,. No personal sampling devices are available at this time to
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2039  specifically measure the mass concentrations of ultrafine aerosols; however, the use of NIOSH

2040  Method 0600 will permit the collection of most airborne ultrafine particles and agglomerates.

2041  In work environments where exposure to other types of aerosols occur or when the size

2042  distribution of TiO, (fine versus ultrafine) is unknown, other analytical techniques may be

2043  needed to characterize exposures. NIOSH Method 7300 [NIOSH 2003] can be used to assist in
2044  differentiating TiO, from other aerosols collected on the filter while electron microscopy,

2045  equipped with an energy dispersive x-ray analyzer (EDXA), may be needed to identify and
2046  measure the fraction of the mass concentration that is attributable to fine and ultrafine TiO,
2047  particles. In workplaces where TiO, is purchased as a single type of bulk powder, the primary
2048  particle size of the bulk powder can be used to determine whether the REL for fine or ultrafine
2049  should be applied when adequate airborne exposure data exist to confirm that the airborne

2050  particle size has not substantially been altered during the handling and/or material processing of

2051  TiO;.

2052 6.2 EXPOSURE ASSESSMENT

2053 A multi-tiered workplace exposure assessment might be warranted in work environments where

2054  the airborne particle size distribution of TiO, is unknown (fine versus ultrafine) and/or where

2055  other airborne aerosols may interfere with the interpretation of sample results. Figure 6-1

2056 illustrates an exposure assessment strategy that can be used to ascertain the airborne size

2057  distribution of TiO; so that appropriate exposure concentrations can be determined for fine and

2058  ultrafine TiO2. An initial assessment of the workplace should include the simultaneous

2059  collection of a respirable dust sample as described in NIOSH Method 0600 with the collection of
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2060 a respirable dust sample using a mixed cellulose ester filter (MCEF)." If the respirable exposure
2061  concentration for TiO; (as determined by Method 0600) is less than 0.1 mg/m3 then no further
2062  action is required; however, subsequent workplace sampling should be performed at specified
2063  time intervals and when a process change occurs to ensure that exposures remain below the REL.
2064  If the exposure concentration exceeds 0.1 mg/m3 , then additional characterization of the sample
2065  is needed to determine the percentage and particle size distribution of TiO so that the

2066  appropriate comparison can be made with the fine and ultrafine TiO, RELs. To assist in this
2067  assessment, the duplicate respirable sample collected on a MCEF should be evaluated using
2068 transmission electron microscopy (TEM) to size particles and determine the percentage of TiO,
2069  for particles greater than and less than 0.1 pm in diameter. The identification of TiO2 can be
2070  accomplished using a TEM equipped with an energy dispersive x-ray analyzer (EDXA). Once
2071  the percent of TiO; (by particle size) has been determined, adjustments can be made to the mass
2072  concentration (determined by Method 0600) to assess whether exposure to the NIOSH RELs for
2073 fine, ultrafine, or combined fine and ultrafine TiO; had been exceeded. To minimize the need for
2074 the systematic collection of respirable samples for TEM analysis, samples collected for

2075  respirable TiO; using Method 0600 should also be routinely analyzed by inductively coupled
2076  argon plasma (ICP) spectroscopy for titanium using NIOSH Method 7300. The results obtained
2077  using Method 7300 should be compared with the respirable mass concentration measurements to
2078  determine the relative percentage of TiO; in the concentration measurements. The routine

2079  determination of TiO; (using Method 7300) from samples collected and analyzed by Method

" Note: The collection time for samples using a MCEF may need to be shorter than the duplicate samples collected
and analyzed by Method 0600 to ensure that particle loading on the filter doesn’t become excessive and hinder

particle sizing and identification by TEM.
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0600 can provide some quality assurance that the percent of airborne TiO, does not change over

time.

6.3 CONTROL OF WORKPLACE EXPOSURES TO TiO;

Given the extensive commercial use of fine (pigment grade) TiO,, the potential for occupational
exposure exists in many workplaces. However, few data exist on airborne concentrations and
sources of exposure. Most of the available data for fine TiO; are reported as total dust and not as
the respirable fraction. Historical total dust exposure measurements found in TiO; production
plants often exceeded 10 mg/m® [IARC 1989] while more contemporary measurement data
indicate that mean total dust measurements in these plants may be below 3 mg/m® (1.1 mg/m?
median) [Fryzek et al. 2003]. Few data exist to quantify exposures to fine TiO, during its
handling and use. Given the particle size dimensions of fine TiO (~0.1 um to 4 pm, avg. of 0.5
um) [Malvern Instruments 2004], it is reasonable to conclude that a significant fraction of total
dust measurements reported for TiO; are comprised of respirable particles. Although NIOSH is
not aware of any extensive commercial production of ultrafine anatase TiO; in the United States,
it may be imported for use in the United States. Likewise, fine rutile TiO, may be micronized to
produce an ultrafine particle fraction for product applications such as cosmetics. No data have

been published on occupational exposures to ultrafine TiO».

Although limited data exist on occupational exposures to TiOs, reducing exposures can be
achieved using a variety of standard control techniques [Raterman 1996; Burton 1997]. Standard
industrial hygiene practices for controlling airborne hazards include engineering controls, work

practices and administrative procedures, and personal protective equipment. Examples of
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engineering controls include process modifications and the use of an industrial ventilation system
to reduce worker exposures [ACGIH 2001c]. In general, control techniques such as source
enclosure (i.e., isolating the generation source from the worker) and local exhaust ventilation
systems are the preferred methods for preventing worker exposure to TiO,. Iﬁ light of current
scientific knowledge regarding the generation, transport, and capture of aerosols, these control
techniques should be effective for both fine and ultrafine particles [Seinfeld and Pandis 1998;
Hinds 1999]. Conventional engineering controls using ventilation systems to isolate the exposure
source from workers should be effective in reducing airborne exposures to fine and ultrafine
TiO,, based on what is known about the motion and behavior of respirable aerosols in the air.
Ventilation systems equipped with high efficiency particulate air (HEPA) filters are designed to
remove 99.97% of particles 300 nm in diameter. Particles smaller than 200 nm are generally
collected on the filter by diffusion, irrespective of the filter pore size. For particles larger than
800 nm, particles are deposited through impaction and interception [Lee and Liu 1981, 1982].
Ventilation systems must be properly designed, tested, and routinely maintained to provide

maximum efficiency.

The control of exposures should be primarily accomplished through the use of engineering
controls. When engineering controls and work practices cannot reduce worker TiO, exposures to
below the REL then a respirator program should be implemented. The OSHA respiratory
protection standard (29 CFR 1910.134) sets out the elements for both voluntary and required
respirator use. All elements of the standard should be followed. Primary elements of the OSHA
respiratory protection standard include (1) an evaluation of the worker’s ability to perform the
work while wearing a respirator, (2) regular training of personnel, (3) periodic environmental
monitoring, (4) respirator fit-testing, and (5) respirator maintenance, inspection, cleaning, and
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storage. The program should be evaluated regularly by the employer. Respirators should be
selected by the person who is in charge of the program and knowledgeable about the workplace

and the limitations associated with each type of respirator.

NIOSH provides guidance for selecting an appropriate respirator in the NIOSH Respirator

Selection Logic 2004 available online at: hitp://www.cde.gov/niosh/docs/2005-100/default. htm].

The selection logic takes into account the expected exposure concentration, other potential
exposures, and the job task. For most job tasks involving only TiO, exposure a properly fit-tested
half-facepiece particulate respirator will provide protection up to 10 times the respective REL.
When selecting the appropriate filter and determining filter change schedules, the respirator
program manager should consider that overloading of the filters with particulates may occur

because of the size and characteristics of TiO; particles.

Employers should establish a risk management program that includes all workers with potential
exposure to TiO,. An important objective of the program should be educating workers about the
potential adverse health effects associated with TiO; exposure and training them in the safe

handling of bulk TiO, and TiO,—products.
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7. RESEARCH NEEDS

Additional data and information are needed to assist NIOSH in evaluating the occupational
safety and health issues of working with fine and ultrafine TiO,. Data are particularly needed on
the airborne particle size distributions and exposures to ultrafines in specific operations or tasks.
These data may be merged with existing epidemiologic data to determine if exposure to ultrafine
TiO, is associated with adverse health effects. Information is needed about whether respiratory
health (e.g., lung function) is affected in workers exposed to TiO,. Experimental studies on the
mechanism of toxicity and tumorigenicity of ultrafine TiO, would increase understanding of
whether factors in addition to surface area may be important. Although sampling devices for all
particle sizes are available for research purposes, practical devices for routine sampling in the

workplace are needed.

7.1 WORKPLACE EXPOSURES AND HUMAN HEALTH
e Quantify the airborne particle size distribution of TiO, by job or process, and obtain

quantitative estimates of workers’ exposures to fine and ultrafine TiO,.

e Conduct epidemiologic studies of workers manufacturing or using TiO,-containing products,
using quantitative estimates of exposure by particle size, including fine and ultrafine

fractions (see bullet above).
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¢ Evaluate the extent to which the specific surface area in bulk TiO; is representative of the
specific surface area of the airborne TiO, particles that workers inhale and that are retained in

the lungs.

» Investigate the adequacy of current mass-based human lung dosimetry models for predicting

the clearance and retention of inhaled ultrafine particles.

7.2 EXPERIMENTAL STUDIES
o Investigate the fate of ultrafine particles (e.g., TiO,) in the lungs, and the associated

pulmonary responses.

o Investigate the ability of ultrafine particles (e.g., TiO-) to enter cells and interact with

organelle structures and DNA in mitochondria or the nucleus.

7.3 MEASUREMENT, CONTROLS, AND RESPIRATORS
» Develop accurate, practical sampling devices for ultrafine particles (e.g., surface area

sampling devices).

¢ Evaluate effectiveness of engineering controls for controlling exposures to fine and ultrafine

TiO;.

e Initial laboratory research indicates that a propetly fit-tested particulate respirator should

provide the expected level of protection at the assigned protection factor; however, additional
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2191 research is needed to determine whether the appropriate level of protection is being afforded
2192 by the respirator during use in the workplace.
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APPENDIX A

MODIFIED LOGISTIC REGRESSION MODEL FOR QUANTAL RESPONSE IN RATS

A modified logistic regression model was constructed to use all tumor data (including squamous
cell keratinizing cystic tumors) to account for heterogeneity in tumor response observed between
male and female rats in the Lee et al. [1985] and Heinrich et al. [1995] studies. In addition, the
Muhle et al. [1991] study reported tumor response for males and females combined. For these
reasons, the standard models in the BMDS [EPA 2003] could not be used. The BMDS models do
not allow for covariates (e.g., sex) or for alternative model structures to account for the combined

data.

In the modified logistic regression model, the total tumor count was evaluated as the sum of
tumors from two distinct binomial responses. This implies that the expected response can be

modeled as

Ny =n,p, +n;p; (equation 1)

where N =n,, +n,, and the set (p» py) are binomial probabilities of tumor response for males

and females that are modeled using the same assumptions of logistic regression. For example

female rats would have the following response:
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exp(a, + f3, - dose)

2804 = equation 2
Py 1+exp(a, + B, - dose) (equation 2)

2805
2806  that is the same as a logistic model that investigates only female rats. Thus, to model responses
2807  across studies using male, female, and male/female combinations, equations (1) and (2) can be

2808  used when n,, and nrare known. When they are not known (using results reported in Muhle et al.
2809  [1991]), these quantities are estimated to be % .

2810

2811  With p,and pr now estimable using all data, the benchmark dose (BMD) can be computed by
2812  methods described by Gaylor et al. [1998]. Further the benchmark dose lower bound (BMDL)
2813  can be computed using profile likelihoods, which are described by Crump and Howe [1985]. For
2814  simplicity in the calculation, we compute the male and female BMDL at the nominal level of

2815  a =0.025, which implies a combined nominal coverage « = 0.05.
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APPENDIX B

PIECEWISE LINEAR MODEL FOR PULMONARY INFLAMMATION IN RATS

In modeling pulmonary inflammation (as neutrophilic cell count in BAL fluid) in rat lungs, the
response was assumed to be normally distributed with the mean response being a function of

dose and the variance proportional to a power of the mean. Thus for the i* rat given the dose d;
the mean neutrophilic cell count would be 1, (d,) with variance a(x,,,(d,))” , where 4, is
any continuous function of dose, « is a proportionality constant, and p represents a constant
power. The mean response was modeled using a variety of functions of dose; these functions
were then used to estimate the critical dose at which the mean neutrophil levels went above the
background. For the continuous functions that did not include a threshold parameter, this critical
level was found using the BMD method [Crump 1984] and software [EPA 2003]. For purposes
of calculation, the BMD was defined as the particle surface area dose in the lungs associated

with . (d,) corresponding to the upper Sth percentile of the distribution of PMN counts in

control rat lungs.

For the piecewise linear model, which is a threshold model, we assumed no dose-response, and

thus no additional risk, above background prior to some critical threshold y . For points beyond

the threshold, the dose-response was modeled using a linear function of dose e.g.:

u ( d ) - {ﬂﬂ d: < e
et ﬂ0+ﬂ1(di_;/) diz}/
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As the parameter v is an unknown term, the above function is nonlinear and is fit using
maximum likelihood (ML) estimation. Very approximate (1-0)% CIs can be found using profile
likelihoods [Hudson 1966]. As the confidence limits are only rough approximations, the limits
and significance of the threshold can be cross validated using parametric bootstrap methods

[Efron and Tibshirani 1998].
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APPENDIX C

STATISTICAL TESTS OF THE RAT LUNG TUMOR MODELS

As seen in Figures 3-3 and 3-4, particle surface area dose is a much better dose metric than
particle mass dose for predicting lung tumor response in rats. The statistical fit of these models is
shown in Table C-1, using either mass or particle surface area dose. These goodness of fit tests
show that particle surface area dose provides an adequate fit to models using either the all tumor
response or tumors excluding squamous cell keratinizing cysts, and that particle mass dose
provides an inadequate fit to these data. The P-values are for statistical tests of the lack of fit;

thus, P<0.05 indicates lack of fit.

Because of the observed differences in tumor response in males and females, when squamous
cell keratinizing cystic tumors were included in the analysis (Table 4-4), it was important to test
for heterogeneity in response by rat sex. Since the data were from different studies and rat
strains, these factors were also investigated for heterogeneity (the influence of study and strain
could not be evaluated separately because a different strain was used in each study). Finally, the
possibility of heterogeneity in response to fine and ultrafine TiO; after adjustment for particle
surface area was investigated to determine whether other factors may be associated with particle
size that influence lung tumor response and that may not have been accounted for by particle
surface area dose. Table C-2 shows that there was statistically significant heterogeneity between
male and female rats for the all lung tumors response but not for the tumors excluding squamous
cell keratinizing cysts. No heterogeneity in tumor response was observed across study/strain or

for fine versus ultrafine, when dose was expressed as particle surface area. Therefore, it was
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necessary to adjust only for rat sex in the model for all lung tumor response (by including rat

sex

as a covariate in that model, as well as an adjustment for the combined male/female lung tumor

response data in the Muhle et al. [1991] study; see Appendix A).
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Table C-1. Goodness of fit of logistic regression models to pooled rat data of lung tumor
proportion and titanium dioxide dose (as retained particle mass or surface area in the

lungs) in rats after 24-month exposure*

Dose metric Tumor Degrees of P-value Degrees of P-value

response Freedom (doseonly Freedom (dose & sex
model) terms)

Surface area (m%/g lung)  All tumors 10 0.056 8 0.29

Mass (mg/g lung) 10 <0.0001 8 <0.0001

Surface area (m”/g lung) No 10 0.50 8 0.62
keratinizing

Mass (mg/g lung) cysts 10 <0.0001 8 <0.0001

* Pearson test for lack of fit. In the model with both dose and sex terms, the slopes and
intercepts are averaged for the male/female combined average data from Mubhle et al. [1991].
Rat data are from two studies of fine TiO; [Lee et al. 1985; Muhle et al. 1991] and one study of
ultrafine TiO, [Heinrich et al. 1995] (12 data points total).
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Table C-2. Tests for heterogeneity of rat sex or study/strain in dose-response relationship,
based on likelihood ratio tests

Test® Tumor response Degrees of P-value Heterogeneity
Freedom

Rat sex (male vs.  All lung tumors 2 0.012 Yes
female) >° L.

No keratinizing cysts 2 0.14 No
Study/strain ™ All lung tumors 4 0.46 No

No keratinizing cysts 4 0.44 No
Ultrafine vs. fine  All lung tumors 2 0.66 No
(in females) *f .

No keratinizing cysts 2 0.22 No

? Null model includes two terms: intercept and slope x surface area dose (m%g lung).

® Data include Lee et al. [1985] (male, female); Heinrich et al. [1995] (female); and Muhle et al.
[1991] (male-female average)—12 data points total.

¢ Full model includes four terms: separate intercepts and slopes for male and female rats (male-
female average data was included assigned a value of 0.5 each for male and female indicators).

¢ Full model includes six terms: intercept and slope from null model (for comparison group),
and separate intercept and slope terms for each of the other two study/strains.

¢ Data include females from Lee et al. [1985] and Heinrich et al. [1995]—6 data points total.

f Full model includes four terms: intercept and slope from null model (for comparison group),

and separate intercept and slope terms for the other group.
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APPENDIX D

ADDITIONAL MODELING OF RAT LUNG TUMOR DATA

As described in Chapter 4, male and female rat data could be combined for the models of lung
tumors without the keratinizing cystic tumors; however, due to heterogeneity by rat sex for the
all lung tumor response, the BMDS models [EPA 2003] were fit separately to the male and
female rat data. The results of these analyses are provided in Table D-1. In addition, a logistic
model was developed to account for the differences in the male and female response for all
tumors (i.e., including the squamous cell keratinizing cystic tumors); this modified logistic
model allowed all of the data to be used in the one overail model. The estimates from the logistic

model are provided in Table D-2.
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Table D-2. All tumors or lung tumors excluding cystic keratinizing squamous lesions:
Logistic (sex-adjusted) model used to estimate benchmark dose (BMD) and lower 95%
confidence limit (BMDL) estimates -- expressed as titanium dioxide (TiO;) particle surface
area in the lungs (m%/g) — in pooled rat data (males, female, and male-female average). *

Rat sex DF P-value (for BMD (BMDL) by Excess Risk Level
lack of fit) /10" 1/1000°¢

Tumors excluding cystic keratinizing squamous lesions

Male 1.07 (0.81) 0.011
8 0.73
Female 1.04 (0.93) 0.010
All tumors
Male 1.01 (0.78) 0.010
8 0.35
Female 0.85 (0.75) 0.0085

? Data are from two studies of fine TiO, [Lee et al. 1985; Muhle et al. 1991] and one study of
ultrafine TiO, [Heinrich et al. 1995].

® Estimated directly from model.

¢ Estimated from linear extrapolation of BMD and BMDL at 1/10 excess risk level.

“This information is distributed solely for the purpose of pre dissemination peer review under applicable D-3
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APPENDIX E

CALCULATION OF UPPER BOUND ON EXCESS RISK OF LUNG CANCER IN AN

EPIDEMIOLOGIC STUDY OF WORKERS EXPOSED TO TiO,

Results from two epidemiologic studies [Fryzek et al. 2003, 2004a,b; Boffetta et al. 2003, 2004]
were used to compute the upper bound estimates of excess lung cancer risk. The excess risks for
lung cancer corresponding to the upper limit of a two-sided 95% CI on the RR associated with
cumulative exposure to total TiO, dust in U.S. workers were based on results supplied by Fryzek
[2004] for Cox regressions fitted to cumulative exposures viewed as a time-dependent variable.
The provided results include the coefficients and standard errors for the continuous model for
cumulative exposure [Fryzek 2004]. For a study of United Kingdom and European Union
workers exposed to respirable TiO, [Boffetta et al. 2004], excess risks for lung cancer were not
available, and therefore were derived from the results provided in a detailed earlier report
Boffetta et al. [2003], as follows. The excess risk estimates computed from each of these
epidemiologic studies were then used in Appendix F for comparison to the rat-based excess risk

estimates for humans (Chapter 4).

Methods

Categorical results on exposure-response are reported in Tables 4.1 (SMRs) and Table 4.2 (Cox
regressions) of Boffetta et al. [2003]. There are four categories, i.e., 0-0.73, 0.74-3.44, 3.45-
13.19, 13.20+ (mg/m3-yr) in these results, and the maximum observed exposure is 143 mg/m>eyr
(Table 2.8 of Boffetta et al. [2003] ). Hence, the midpoints of the categories are 0.365, 2.09,

8.32, 78.1 mg/m>syr. The value of the highest category depends on the maximum observed value

“This information is distributed solely for the purpose of pre dissemination peer review under applicable E-1
information quality guideli It has not been formally disseminated by the National Institute for
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and is subject to considerable variability. An alternate value for this category is 56.5 mg/m’syr.
This value is based on estimating the conditional mean cumulative exposure given that the
exposure exceeds 13.20 using the lognormal distribution that has median 1.98 and 75th
percentile equal to 6.88 based on results in Table 2.8 (Overall). Results are generated using both
78.1 and 56.5 mg/m’eyr to represent the highest exposure group. The SMRs reported in Table 4.1
were modeled as follows:

E[SMR] = Alpha*(1+Beta*CumX) where SMR = Y/E is the ratio of the
observed to the expected count.

=> E[Y] = Alpha*(1+Beta*CumX)*E fitted to observed counts (Y)
by iteratively reweighted least squares (IRLS)
with weights proportional to 1/E[Y].
Notes:

Beta describes the effect of cumulative exposure, CumX, and Alpha allows the cohort to

differ from the referent population under unexposed conditions.

The estimators of Alpha and Beta are based on iteratively re-weighted least squares with
weights proportional to the reciprocal of the mean. Although these estimates are equivalent
to Poisson regression MLEs, the observed counts are not strictly Poisson. This is due to the
adjustments made by Boffetta et al. [2003] for missing cause of death arising from the
limited time that German death certificates were maintained. The reported observed counts
are 53+.9, 53+2.3, 52+2.7, 53+2.4 where 0.9, 2.3, 2.7 and 2.4 have been added by Boffetta
et al. [2003] for missing cause of death that are estimated to have been lung cancer deaths.
Invoking a Poisson regression model should work well given such small adjustments having
been added to Poisson counts of 53, 53, 52 and 53. Hence, Alpha and Beta are estimated
accordingly but their standard errors and Cls do not rely on the Poisson assumption; instead,
“This information is distributed solely for the purpose of pre dissemination peer review under applicable E-2
information quality guideli 1t has not been formally disseminated by the National Institute for Occupational
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standard errors were estimated from the data and Cls were based on the t distribution with 2

degrees of freedom.

A similar approach using the results of Table 4.2 was not attempted since these categorical
RR estimates are correlated and information on the correlations was not reported by Boffetta

et al. [2003].

Results

Results based on modeling the SMRs in Table 4.1 of Boffetta et al. [2003] with a linear effect of
cumulative exposure are presented in Table E-1. These results are sensitive to the value used to
represent the highest cumulative exposure category, particularly the estimate of the effect of
exposure. However, zero is contained in both of the 95% Cls for Beta indicating that the slope of

the exposure-response is not significant for these data.

Estimates of excess risk based on application of the results given in Table E-1 to U.S. population

rates using the method given by BEIR IV [1988] appear in Table E-2.

Discussion

The exposure assessment conducted by Boffetta et al. [2003] relies heavily on tours of the
factories by two occupational hygienists who first reconstructed historical exposures without
using any measurements (as described in Boffetta et al. [2003]; Cherrie et al. [1996]; Cherrie
[1999]; Cherrie and Schneider [1999]). The sole use of exposure measurements by Boffetta et al.
[2003] was to calculate a single adjustment factor to apply to the previously constructed
exposure estimates so that the average of the measurements coincided with the corresponding
“This information is distributed solely for the purpose of pre dissemination peer review under applicable E-3
information quality guidelines. It has not been formally di. i d by the National Institute for Occupational
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reconstructed estimates. However, Boffetta et al. [2003] offer no analyses of their data to support
this approach. Also, the best value to use to represent the highest exposure interval (i.e., 13.20+
mg/m>eyr) is not known and the results for the two values examined suggest that there is some
sensitivity to this value. Hence, these upper limits that reflect only statistical variability are likely

to be increased if the effects of other sources of uncertainty could be quantified.

“This information is distributed solely for the purpose of pre dissemination peer review under applicable E-4
information quality guideli; 1t has not been formally di; inated by the National Institute for Occupational
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Table E-1. Results on Beta from modeling the SMRs reported in Table 4.1 of Boffetta et al.
[2003] for the model, E[SMR] = Alpha*(1+Beta*CumX) ;
Value
Representing Beta® Approx Approximate
Highest CumX  Estimate Std Error 95% Confidence Limits
78.1 0.000044 0.00163 -0.00697 0.00706
56.5 0.000109 0.00229 -0.00975 0.00996
(a) Beta is the coefficient for the effect of 1 mg/m3 *yr cumulative exposure to respirable
TiO, dust.
3012
3013
3014 :
3015 :
3016
3017
3018
|
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Table E-2. Lifetime excess risk after 45 years of exposure estimated by applying the above
UCLs on Beta and the linear relative rate model of lung cancer to U.S. population rates (a).

Occupational

exposure Beta=0.000044 UCL~0.00706 Beta=0.000109 UCL~0.00996
(8-hr TWA Excess Excess Excess Excess
respirable Background risk (b) risk (b) risk (¢) risk (c)
mg/m’) risk (Ro) (Rx-Ro) (Rx-Ro) Rx-Ro) (Rx-Ro)

0.0 0.056 0 0 0 0

1.5 0.0002 0.024 0.0004 0.033

5.0 0.0005 0.076 0.0012 0.11
15.0 0.0015 0.21 0.0037 0.27

a. Based on the method given by BEIR IV using U.S. population rates given in Vital Statistics of
the U.S. 1992 Vol II Part A [NCHS 1996]. Occupational exposure from age 20 through
age 64 and excess risks subject to early removal by competing risks are accumulated up to
age 85.

b. Value representing the highest exposure category is 78.1 mg/m® yr based on the midpoint of
the interval [13.20, 143].

c. Value representing the highest exposure category is 56.5 mg/m> yr based on the conditional
mean given exposures greater than 13.20 using the conditional distribution derived from the
lognormal distribution having median and 75th percentiles equal to 1.98 and 6.88 mg/m’ yr,
respectively.

“This information is distributed solely for the purpose of pre dissemination peer review under applicable E-6
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APPENDIX F

COMPARISON OF RAT- AND HUMAN-BASED EXCESS RISK ESTIMATES FOR

LUNG CANCER FOLLOWING CHRONIC INHALATION OF TiO,

As described in Chapter 2, the epidemiologic studies of workers exposed to TiO; did not find a
statistically significant relationship between the estimated exposure to total or respirable TiO,
and lung cancer mortality [Fryzek et al. 2003; Boffetta et al. 2004]. However, the power of these
studies is also insufficient to detect excess risks of concern for worker health (e.g., <1/1000). In
addition, the exposure data in these studies was primarily based on the total dust fraction; limited
data were available for exposure to respirable particles, and no data were available on exposures
to ultrafine particles. Chronic inhalation studies in rats exposed to fine [Lee et al. 1985] and
ultrafine TiO, [Heinrich et al. 1995] showed statistically significant dose-response relationships
for lung tumors (Chapter 3). However, the rat lung tumor response at high particle doses that
overload the lung clearance has been questioned as to its relevance to humans [Watson and
Valberg 1996; Warheit et al. 1997; Hext et al. 2005]. Recent studies have shown that rats
inhaling TiO, are more sensitive than mice and hamsters to pulmonary effects including
inflammation [Bermudez et al. 2002, 2004], although the hamsters had much faster clearance and
lower retained lung burdens of TiO; compared to rats and mice. Because of the observed dose-
response data for TiO; and lung cancer in rats, it is important to quantitatively compare the rat-
based excess risk estimates with excess risk estimates derived from results of the epidemiologic

studies.

“This information is distributed solely for the purpose of pre dissemination peer review under applicable F-1
information quality guidelines. It has not been formally disseminated by the National Institute for
Occupational Safety and Health. It does not represent and should not be construed to represent any agency
determination or policy.”

e




3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

DRAFT

The purpose of these analyses is to quantitatively compare the rat- and human-based excess risks
of lung cancer by using hypothesis tests with results from the human and rat studies. If the
sensitivity of the rat response to inhaled particulates differs from that of humans, then the excess
risks derived from the rat data would be expected to differ from the excess risks estimated from
the human studies. The results of the tests will be used to assess whether or not the observed
differences of excess risks have adequate precision for reasonably excluding the rat model as a

basis for predicting the excess risk of lung cancer in humans exposed to TiO..

Methods

Excess risk estimates for lung cancer in workers were derived from the epidemiologic studies
(Appendix E) and from the chronic inhalation studies in rats [Heinrich et al. 1995; Lee et al.
1985]. These excess risk estimates and associated standard errors were computed for a mean
exposure concentration of 0.044 or 1.5 mg/m’ over a 45-year working lifetime. These exposure
concentrations were selected to correspond, respectively, to the average exposure reported in
Boffetta et al. [2004] and to a low value relative to the rat data (which is also the NIOSH REL,
Chapter 4). Excess risks were derived from the rat data based on a logistic regression model for
each gender using two different methods. One method used a logistic model to characterize the
dose-response relationship over the full range of doses. The other method used the logistic
model to estimate a benchmark dose (BMD) corresponding to a 10% excess risk, followed by

linear extrapolation to lower doses.

Excess risks were estimated from each of the two worker cohort studies, using two different

methods for each. For the cohort studied by Boffetta et al. [2004], two different values for

“This information is distributed solely for the purpose of pre dissemination peer review under applicable F-2
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representing the highest cumulative exposure group were separately assumed; and for the cohort
studied by Fryzek et al. [2003], two different exposure lags (no lag, 15 year lag) were separately
used. Each comparison is based on a statistical hypothesis test of equality of the expectations of
these estimates with the test statistic being their difference divided by the standard error. For the
Fryzek cohort the test statistic is referred to a standard normal distribution based on large sample
theory. For the Boffetta study the standard error of the difference is based on treating the
variance of the Boffetta-derived excess risk as unknown and estimated (Appendix E), and the
rat-based variance is treated as approximately known based on large sample theory; the variance
of the difference is hence estimated and the corresponding degrees of freedom of the estimate is
based on Satterthwaite's formula [Gaylor 1988] in referring the test statistic to a student's t
distribution. Each test compared an excess risk derived from a rat study to an excess risk derived
from one of the cohort studies. The pairwise tests are for two-tailed alternatives and are not
adjusted for multiple comparisons; such an adjustment would have reduced the power for

rejecting the rat model as a basis for extrapolating to humans.

Results
Tables F-1 and F-2 show the rat-based maximum likelihood estimates (MLE) of excess risks for

lung cancer and the human-based 95% UCL on excess risk from exposure to TiO,. There is
consistency in the estimates of the 95% UCL from these two independent epidemiologic studies
at the exposure concentration evaluated for both studies, 1.5 mg/m’ (Boffetta: 0.024 and 0.033;
Fryzek: 0.029 and 0.035). Table F-1 provides rat-based estimates using a logistic regression
model (Appendix A) to directly estimate the excess risk (which allows curvature in the low-dose
region), and Table F-2 provides rat-based estimates using linear extrapolation from the

“This information is distributed solely for the purpose of pre dissemination peer review under applicable F-3
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benchmark dose estimates at 10% excess risk (Tables 4-5 and D-1). Both Tables F-1 and F-2
include estimates using rat response data on the lung for either “all tumors” or “tumors excluding

squamous cell keratinizing cysts.”

Tables F-1 and F-2 compare the rat-based MLE excess risk estimates for lung cancer to the 95%
UCL estimates from the epidemiologic studies. The rat-based estimates for lung mass or lung
surface area extrapolation and fine or ultrafine TiO, exposures are all lower than the 95% UCL
risk estimates based on the human studies in Table F-1. For the rat-based excess risk estimates
using linear extrapolation from the benchmark dose estimates (Table F-2), most MLEs are below
the 95% UCL estimates from the human studies; however, the rat-based MLE excess risk
estimates for ultrafine TiO,, using the lung surface area extrapolation, are slightly above one or
more of the 95% UCL estimates from the human studies. The comparisons based on omitting the
squamous keratinizing cysts were also significant when compared to the excess risk derived
using 78.1 mg-yr/m® to represent the highest exposure group of the cohort studied by Boffetta;
when substituting 56.5 mg-yr/m® the comparisons were not quite significant (P =.06). When
comparing ultrafine TiO; using the lung surface area extrapolation to results derived from the
cohort studied by Fryzek, only the model based on a 15-year lag was suggestive (0.050 <P <

0.090) of higher excess risks derived from rat data under these assumptions.

Discussion

These two epidemiologic studies are subject to considerably larger variability than are the rat
studies. The results of the epidemiologic studies of TiO, workers by Fryzek et al. [2003] and
Boffetta et al. [2003, 2004] are consistent with a range of excess risks at given exposures,

“This information is distributed solely for the purpose of pre dissemination peer review under applicable F-4
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including the null exposure-response relationship (i.e., no association between the risk of lung
cancer and TiO, exposure) and an exposure-response relationship consistent with the low-dose
extrapolations from the rat studies (based on the methods used, either a logistic model or linear
extrapolation from the 10% BMD). The MLE excess risk estimates from the rat studies were
lower than the 95% UCL from the human studies for both fine and ultrafine TiO, when the rat
estimates were based on the logistic model and either extrapolation approach (Table F-1). When
the linear extrapolation from the 10% BMD was used, the rat MLE estimates were also generally
lower than the 95% UCL from the human studies--except for the rat MLE estimates for ultrafine
TiO, based on the lung surface area extrapolation, which were the same or slightly higher than

some of the human study estimates (Table F-2).

Comparison of the excess risk estimates from the human and rat studies was accomplished by
testing whether their difference departed significantly from zero; this test used the standard error
of the difference, which reflects variability in both the human data and the rat data. The results
of these tests show that the nonsignificant exposure-responses of the human studies are also ﬁ
consistent with the excess risks extrapolated from rats exposed to fine TiO; particles, but the
tests involving rats exposed to ultrafine TiO, show that extrapolations based on surface area may
overpredict the excess risks in these two cohorts of workers. However, information about the

size distribution of the workers’ exposures is not available.

The Fryzek et al. [2003] study used total dust exposure estimates. If the airborne dust had
included some fraction of particles larger than respirable size, then the human exposures to the
respirable TiO; would be overestimated. If a multiplicative factor to adjust the total dust

exposures to the respirable exposures were available then the effect would be to increase the
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current upper confidence limit estimate. However, the rat-based estimates are generally already
within the confidence interval estimates of the human excess risk estimates. Therefore, the
interpretation that the results from Fryzek et al. [2003] are consistent with the potency

extrapolated from the rats would not change.

The median working lifetime exposure in Boffetta et al. [2003] was relatively low—median
estimated cumulative exposure was 1.98 mg-yr/m’, which is equivalent to 0.044 mg/m’ over a
45-year working lifetime. The upper confidence limit on excess risk at that concentration was
also estimated to be quite low, approximately an order of magnitude lower than the excess risk
predicted to be observable in a typical epidemiologic study [Stayner and Smith 1993]. This
suggests that the exposures and risk estimates in the Boffetta et al. study [2004] are sufficiently
low such that a significant dose-response relationship for TiO, exposure and lung cancer would
not be expected to be observed. The Fryzek et al. [2003] study did not include sufficient
information to estimate the median exposure for the cohort, and neither the Boffetta et al. [2004]

nor the Fryzek et al. [2003] study provided information on the study power.

In conclusion, the comparison of the rat- and human-based excess risk estimates for lung cancer
indicates that the rat-based estimates for exposure to fine TiO; particles are not inconsistent with
those from the human studies. Therefore, it is not possible to exclude the rat model as an
acceptable model for predicting lung cancer risks from TiO, exposure in workers without further

knowledge of the particle sizes of their exposures.
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