

THE NATIONAL INSTITUTE FOR OCCUPATIONAL
SAFETY AND HEALTH/NATIONAL PERSONAL PROTECTIVE
TECHNOLOGY LABORATORY (NIOSH/NPPTL) PUBLIC MEETING

Friday, October 13, 2006



NEW AND CONTINUING RESEARCH

Commencing at 8:33 a.m. at the Crowne Plaza Pittsburgh South, Pittsburgh, Pennsylvania.



- 1 PROCEEDINGS
- 2 OPENING REMARKS, NPPTL OVERVIEW
- 3 MR. BOORD: Good morning, everyone.
- 4 Welcome to the second day of our public
- 5 meeting to discuss NPPTL activities. I trust that
- 6 you all had a pleasant evening in Southwestern
- 7 Pennsylvania last evening.
- 8 Actually this was the first real taste of
- 9 winter that we have had this year. So I don't know
- 10 whether you brought that weather to us or exactly
- 11 how it got here, but hopefully it didn't diminish
- 12 opportunities to experience a little bit of the
- 13 area.
- 14 For today's meeting, I would just like to
- 15 go over a few of the agenda items. The first
- 16 presentation that I will deliver this morning, I'll
- 17 share it with MaryAnn D'Alessandro. And we will
- 18 talk principally about the PPT, personal protective
- 19 technology cross-sector programs for the Institute.
- We will give you a little bit of the
- 21 background on what is being done regarding the PPT
- 22 cross-sector.

- 1 Then for the technical presentations, we
- 2 will follow the schedule as identified in the
- 3 agenda, and Dr. Ron Shaffer will be leading those
- 4 presentations from our research branch.
- 5 The presentation that's scheduled for
- 6 11:10, which is the customer satisfaction summary,
- 7 that was the information that we covered at
- 8 yesterday's meeting that MaryAnn had addressed to
- 9 the audience. So that presentation will not occur
- 10 today. So we won't repeat it.
- 11 And I think with those adjustments, and if
- 12 our researcher presentations can stick roughly to
- 13 schedule, I think that we should be able to adjourn:
- 14 our meeting by 11:30 a.m. without very much
- 15 difficulty, which I think will be good these for
- 16 those of you who need to travel today.
- 17 Again, I will repeat that our meeting
- 18 objective for these two days of presentations is to
- 19 provide program information to our stakeholders and
- 20 customers.
- 21 So our interest was not so much to report
- 22 results, but basically to inform what we are doing,

- 1 where we are going, and the types of things that we
- 2 are finding.
- 3 As I mentioned, the discussion this
- 4 morning will address some of our personal protective
- 5 technology issues. As far as the logistics for the
- 6 rest of the meeting, we will follow the same
- 7 patterns that we had yesterday.
- Following the presentations, if there are
- 9 questions, we would ask you to go to the middle of
- 10 the room, address who you are, who you represent,
- 11 and then follow through with the question.
- 12 The entire process is being recorded and
- 13 videotaped, so everybody knows that we do -- will
- 14 have a record of the meeting.
- And before we get into the discussions on
- 16 the personal protective technology cross-section, I
- 17 would like to ask Judy Coyne to make some
- 18 announcements or requests.
- 19 ADDRESS BY MS. COYNE
- MS. COYNE: We are trying to get a new
- 21 cable so that we are not lime green over here.
- I am the communications coordinator and

- 1 responsible for outreach program. Those are my
- 2 mannequins over there, and my hands.
- When I go to different shows, I like to
- 4 have products to take with me, and my mannequins
- 5 dressed appropriately. For the firefighter show, I
- 6 like to have them dressed, and I like to have
- 7 equipment on display that relates to firefighters.
- 8 If we are in the mainstream -- like we
- 9 went to the local general show a couple of weeks
- 10 ago -- it was a community event -- I would like to
- 11 have various respirators on display and safety
- 12 equipment, whether it's -- all kinds of PPT. My
- 13 mannequin was dressed with ear protection, safety
- 14 goggles, and a respirator. And I like to have them
- 15 on display in our building also.
- 16 So what I need is I need samples of all
- 17 kinds of personal protective equipment. And I want
- 18 to give everybody a fair representation, and also
- 19 high quality, high resolution photos that we can use
- 20 in these types of presentations.
- 21 Some people have been really forthcoming
- 22 in providing photos to me. And if you just give me

- 1 your card, I will be happy to send you an email with
- 2 my official request.
- 3 So I will be here the rest of the day.
- 4 And to those that have already helped me, thank you
- 5 so much. It really makes my job a lot easier.
- 6 So thank you.
- 7 NIOSH PERSONAL PROTECTIVE TECHNOLOGY PROGRAM
- 8 MR. BOORD: Thanks, Judy.
- 9 The slide that I have on the screen now is
- 10 the slide that identifies the various divisions and
- 11 offices -- divisions, offices, and laboratories for
- 12 the Institute. And as I mentioned yesterday, there
- 13 are 16 different offices and laboratories. NPPTL is
- 14 one of the laboratories comprising the institute.
- The research program and the research
- 16 activities for the institute are being geared around
- 17 the industry sector program portfolio that I
- 18 discussed yesterday.
- 19 The industry sectors are as identified in
- 20 the right-hand column, the agriculture,
- 21 construction, through wholesale and retail trade.
- 22 The cross-sector programs are identified in the

- 1 center column of the slide. And the personal
- 2 protective technology cross-sector program is being
- 3 managed by the laboratory, by NPPTL.
- 4 As discussed yesterday, and mentioned by
- 5 Frank Hearl, the institute is working with the
- 6 National Academies of Science to review the various
- 7 programs and research activities for the laboratory.
- 8 In that regard, we have already started to follow
- 9 through that review process.
- 10 Two of the program areas have already been
- 11 through the National Academy review. And those are
- 12 the mining program and the hearing loss cross-sector
- 13 program.
- 14 The mining program has, as I say, has
- 15 completed the review. And the National Academy
- 16 report on that review will be available on the NIOSH
- 17 website in November for those of you who are
- 18 interested in seeing that.
- The hearing loss review has also been
- 20 completed, and that program, I believe, is available
- 21 on the NIOSH website currently.
- 22 So those two are available.

- 1 The respiratory disease studies National
- 2 Academy review is scheduled to begin with the first
- 3 meeting with the National Academies on October 26
- 4 and 27. And that is an open public meeting, so if
- 5 you have an interest to engage and participate in
- 6 that activity, the dates are October 26 and 27.
- 7 Other sector programs that will go in
- 8 front of the National Academies over the next six
- 9 months include the construction program and the
- 10 personal protective technologies program.
- We are scheduled to have our Academy
- 12 review beginning in June of next year. So that
- 13 gives you a little idea of the future direction for
- 14 the NIOSH activities and the research program
- 15 portfolio.
- 16 Regarding the personal protective
- 17 cross-sector program, as I mentioned, the laboratory
- 18 is responsible for developing that program.
- 19 It should be noted that the activities
- 20 relative to personal protective technologies for the
- 21 institute are not uniquely concentrated at NPPTL.
- 22 We are responsible for identifying the program and

- 1 leading the program, but there are other divisions
- 2 and laboratories that are engaged in various PPT
- 3 activities.
- 4 The cross-sector team that we have
- 5 assembled to prepare our package -- and our National
- 6 Academy package really has two components to it.
- 7 The first component is a strategic
- 8 planning and strategic direction for the future
- 9 activities for personal protective technologies.
- 10 And the second component is an evidence package
- 11 looking backwards in time to identify what has been
- 12 done and the outputs and the impacts of the previous
- 13 work.
- 14 So our personal protective technology
- 15 cross-sector team is engaged in both of those
- 16 activities.
- 17 That team is being managed -- I am the
- 18 program manager for that team. And our program
- 19 coordinators are Maryann D'Alessandro from the
- 20 laboratory, and Jeff Welsh from PRL, who many of you
- 21 may know. And the program assistant coordinator is
- 22 Angie Shepherd, who you heard from yesterday.

- 1 The team, the composition of the team is
- 2 comprised of members from around the institute. So
- 3 you can see the team membership identified on the
- 4 slide. And you will note notice that there are
- 5 representatives from DSR, DRDS, DSHEFS, DART, and
- 6 PRL actively engaged in the process.
- 7 Plus, there will be other participants in
- 8 preparing the evidence package and preparing the
- 9 strategic planning that will come in and provide
- 10 input to the team, but then not be there as a
- 11 continuing team member.
- So this is the team that we have assembled
- 13 for the program.
- And at this point, what I would like to do
- 15 is turn it over to Maryann, who is a program
- 16 coordinator, who will walk through some of the
- 17 activities that we have already completed, where
- 18 that program stands, and give you some idea of what
- 19 the direction forward for PPT cross-sector is.
- 20 PPT CROSS-SECTOR HISTORY AND DIRECTION
- MS. D'ALESSANDRO: Good morning. I just
- 22 want to walk through what we have been doing over

- 1 the past year so you see how active the PPT
- 2 cross-sector is within NIOSH and how NPPTL fits into
- 3 that overall structure.
- 4 First quarter 2006, which is October
- 5 through December last year, the PPT cross-sector met
- 6 weekly. That was Les and I and Jeff Welsh. And we
- 7 developed a draft mission, vision, definition, and
- 8 logic model or value creation system, as you saw Les
- 9 present yesterday and the day before, and discussed
- 10 the strategy for the PPT cross-sector.
- And then, beginning in January 2006, we
- 12 began monthly meetings with the entire team. And
- 13 over that time, we refined that mission, vision, and
- 14 definition in the logic model with the entire team,
- 15 which, again, encompassed all divisions within NIOSH
- 16 and a big sector of NPPTL.
- 17 After that was refined -- actually, here's
- 18 the mission, vision, and definition then that now --
- 19 this is for the overall NIOSH -- for the institute,
- 20 NIOSH mission, vision, and PPT definition. And then
- 21 NPPTL is a smaller, more focused part of that.
- 22 So the mission is to prevent work-related

- 1 injury and illness by advancing the state of
- 2 knowledge and application of personal protective
- 3 technologies. And the vision is be the leading
- 4 provider of quality, relevant, and timely PPT
- 5 research training and evaluation.
- And we spent a lot of time going over what
- 7 the mission and vision should be, and we thought
- 8 that this was a pretty good representation of
- 9 overall what the PPT mission and vision statement
- 10 should be for the cross-sector.
- But we are interested in your feedback,
- 12 and we will be opening a docket on this as well.
- 13 And that hasn't been opened yet, but we look forward
- 14 to your input there.
- 15 And then with the definition, the
- 16 technical methods, processes, techniques, tools, and
- 17 materials that support the development and use of
- 18 PPE worn by individuals to reduce the effects of
- 19 their exposure to a hazard.
- 20 We wanted to make sure that the PPT did
- 21 not include things like flashlights, for example,
- 22 things that would be handheld, or environmental

- 1 sensors, that the PPT definition encompassed those
- 2 things that would protect you from various hazards.
- 3 And that's how we resulted in the definition that we
- 4 have there.
- 5 Again, we do look for feedback. This is
- 6 draft at this time, and our package is not due to go
- 7 to the National Academies until next spring.
- I don't know if you can see this, probably
- 9 not. But we will be posting this logic model -- can
- 10 you see that at all or is -- not at all. Okay. We
- 11 will post this ...
- 12 But if you remember the value creation
- 13 system that NPPTL has, talks about inputs to our
- 14 activities, the activities that are being conducted
- 15 throughout NPPTL.
- I'll put that we expect the intermediate
- 17 outcomes and end outcomes. And this is what this
- 18 encompasses. But this is for all of NIOSH, so it's
- 19 a lot more detailed.
- 20 And when we put this together, we also
- 21 included certification. We pulled that out of the
- 22 overall logic model. So that is included

- 1 separately, but it is also within there. But it's
- 2 easy to identify that because we thought that was a
- 3 very important part of what PPT is doing in the
- 4 institute, so we pulled that out. But it was really
- 5 difficult to develop this because of the unique rule
- 6 that certification plays in the NIOSH.
- 7 Most of the programs that are undergoing
- 8 review have just a research component. Therefore
- 9 several have other components to them, like the
- 10 health hazards evaluation program.
- But really NPPTL, the certification
- 12 program is unique to NIOSH. And that is something
- 13 that we really have to figure out how we are going
- 14 to describe this, describe our past, and then how we
- 15 move forward into the future for the National
- 16 Academies when the review happens.
- 17 But we will post this along with all of
- 18 the slides that I have here today. But if I could
- 19 just -- is that easier to see?
- 20 That covers the same things that are in
- 21 the logic model, and I'll just briefly go over what
- 22 we have considered in putting together our past and

- 1 moving forward to the future.
- The inputs that we have been looking at
- 3 are, first of all, what the industry sector goals
- 4 and draft goals are.
- 5 As Les talked about, all of the eight
- 6 sectors in NIOSH, the industry sectors which include
- 7 mining, construction, health care -- I'm at a loss,
- 8 but all of those eight industry sectors. They are
- 9 all developing goals and draft goals at this time.
- 10 And we have considered those inputs into what PPT
- 11 goals should be.
- 12 We have also looked at all of the
- 13 surveillance data that is out there, all of the
- 14 surveillance data that NIOSH has collected and
- 15 surveillance data that is being collected in other
- 16 places.
- 17 We, of course, have considered stakeholder
- 18 needs, something NPPTL has always done, but NIOSH
- 19 has not necessarily done that very well in the past.
- 20 So we are including that.
- 21 Also, townhall meeting feedback. The NORA
- 22 program and NIOSH had many townhall meetings last

- 1 year. We went through all of the feedback from
- 2 those meetings. Everything that had a PPT component
- 3 to it, we looked at and saw where that fit into
- 4 where PPT should go in the future.
- 5 And also, of course, the national
- 6 priorities. The mining issues are high priority
- 7 right now. Pandemic influenza considerations are
- 8 also high priorities. And also the feedback from
- 9 our committee on PPE has well has been an input to
- 10 developing the goals that we have at this point.
- 11 So now, we have developed draft goals, and
- 12 now we are trying to identify where is the best fit
- 13 for the various goals.
- 14 Should -- the goals that we have, once we
- 15 identify activities that should be conducted and be
- 16 associated with those goals, where they should they
- 17 fit. Should they be activities be conducted
- 18 intramurally? Should we put them extramurally into
- 19 the grant process? Should we recommend they go
- 20 other places other than NIOSH? Or should we do them
- 21 in-house, like a lot of our activities went through
- 22 a contract mechanism?

- 1 So we are doing all of that up front
- 2 before we look at our current activities that we are
- 3 doing just so we don't try to focus on what we are
- 4 doing right now and say that this is where we should
- 5 go in the future.
- 6 So we are looking at all of the needs from
- 7 those inputs.
- Now we are seeing where do all of the
- 9 things that we should be doing fit into what we are
- 10 currently doing. Then we will identify and
- 11 prioritize the gaps, and then develop measures and
- 12 metrics.
- That's where we are right now, trying to
- 14 put measures and metrics to the goals that we have
- 15 developed and expand upon those goals for various
- 16 industry sectors.
- 17 The current activities are on the
- 18 right-hand side, and we are currently developing
- 19 content for the website. Each sector and
- 20 cross-sector that is being evaluated by the National
- 21 Academies has to describe the past with a website
- 22 and evidence package. We are putting that together

- 1 right now.
- 2 Rand is being used as a consultant.
- 3 Primarily, so far, they have helped us with the
- 4 logic model, in refining that. And then we are also
- 5 looking at what current external PPT activities are
- 6 going on that we may be able to exploit.
- We have developed quad charts for all of
- 8 our projects, which include the objective of all of
- 9 our programs, who the stakeholders and partners are,
- 10 milestones that are achieved, and what we anticipate
- 11 the outputs and outcomes to be.
- 12 And we have to develop for each of those
- 13 projects compendiums, so just descriptions of all of
- 14 those projects and where we intend for those to go.
- 15 For the first quarter of 2006, we are
- 16 refining the mission, vision; definition, and logic
- 17 model that I showed. We are continuing the monthly
- 18 meetings that we have had.
- And in addition to the monthly meetings
- 20 with the whole team, we have broken the team into
- 21 separate groups. We have a health and a safety
- 22 group.

- And then within those two groups, we have
- 2 groups that focus on respiratory protection or
- 3 inhalation hazards, dermal hazards, or protective
- 4 clothing and ensembles, hearing protection, hearing
- 5 loss hazards, head protection, and eye and face
- 6 protection.
- 7 In the second quarter, we -- that's what
- 8 we have done already. Gone over that. Now, here we
- 9 are with the goals. Somehow they got backwards.
- The first goal that we came up with,
- 11 Identify and develop performance requirements and
- 12 evaluation criteria for PPT to achieve harmonized
- 13 standards to improve the quality and performance of
- 14 PPE through all lifecycle stages.
- That's a mouthful. It encompasses a lot,
- 16 and it will be broken down into a lot of
- 17 subcategories. And that's currently what the teams
- 18 are doing at this time is breaking that 1.1, 2, and
- 19 3 down further and focusing on each industry sector
- 20 and aligning what all of the sectors are doing in
- 21 their goals with the PPT goals that we have.
- The second goal is to develop

- 1 informational materials to provide guidance to
- 2 identify appropriate PPE for all lifecycle stages.
- 3 The second stage, after we have the first,
- 4 go ahead, develop the standards that are needed in
- 5 the performance requirements. Then guidance is
- 6 needed to address those issues that were developed
- 7 in goal one.
- 8 And that is part of the second goal,
- 9 guidance in all of those areas, and where we should
- 10 be focusing, and in those five areas that address
- 11 the hazards that I mentioned.
- 12 Then in Goal 3, conduct research to
- 13 address personal protective technology knowledge
- 14 gaps and improve existing technologies. Then the
- 15 end of the -- beginning and the end of the cycle is
- 16 to identify what the research is that should be
- 17 conducted to address the standards needs that have
- 18 been identified that then could be put into the
- 19 standard and then into the guidance ultimately.
- 20 So now, for the remaining fourth quarter
- 21 '06 and now this first quarter of 2007, we are
- 22 continuing this evidence package development to

- 1 describe the past and the history of the program.
- 2 And then we are also incorporating partner and
- 3 stakeholder lists and letters.
- What we need to do is -- what the National
- 5 Academies did with the mining and the hearing loss
- 6 programs is they went to the stakeholders and the
- 7 partners that they had identified in all of their
- 8 projects and they actually contacted them and asked
- 9 them to come in.
- 10 So what we were going to do is solicit
- 11 people up front who think that they should be
- 12 involved or could have a role in what we are doing
- 13 and get them involved up front in the process
- 14 instead of at the end.
- And that's what we are doing now is
- 16 identifying who those partners and stakeholders are
- 17 in PPT and perhaps seeing what has been developed in
- 18 the past, perhaps letters that came in on success
- 19 stories or areas where we needed to improve and how
- 20 we responded to that and get those stakeholders
- 21 involved.
- 22 So when the docket is opened, I would

- 1 encourage you to, if you are one of those partners
- 2 or stakeholders, to indicate that you would be
- 3 interested in participating in this process.
- In the second quarter '07, we will
- 5 continue to refine and finalize the evidence
- 6 package, and we do intend to get that out for others
- 7 to review and provide input prior to submitting to
- 8 the National Academies in around the May time frame.
- 9 So, again, we do want your feedback. And
- 10 if you have any questions, Les or I could answer
- 11 those or anyone on the team. Most of the team
- 12 members, or a lot of them, are in the room. And
- 13 thank you for your attention.
- 14 Are there any questions?
- 15 NPPTL PRIORITIES
- 16 MR. BOORD: Thanks, Maryann.
- I think yesterday in the presentation, I
- 18 went over some of the priorities for the laboratory.
- 19 And I just want to run down those
- 20 priorities because I think it's kind of important
- 21 that you can see through the course of what we
- 22 presented yesterday and the discussions and some of

- 1 the comments that have been made, the discussions
- 2 that we have today and the presentation that we just
- 3 had relative to PPT, I think you can start to see
- 4 perhaps some thread winding through everything that
- 5 we are doing, and our focus for the laboratory, our
- 6 standards focus.
- 7 I think in the presentations yesterday,
- 8 you certainly heard and see the connections that we
- 9 make between our research and development programs
- 10 and national, international, and federal standards.
- 11 Partnerships. Partnerships are key to be
- 12 being able to accomplish anything. So partnerships
- 13 continue to be a driving priority for the laboratory
- 14 to make things happen.
- 15 Personal protective technology
- 16 evaluations. And our focus is to improve the
- 17 technology of evaluation for our respirator
- 18 certification program. Okay.
- 19 Some of the things that Heinz discussed
- 20 relative to -- and Bill Newcomb relative to our
- 21 quality assurance program module and our TIL
- 22 programs that we talked about, these are

- 1 improvements to the way we certify our equipment.
- 2 Science Center of Excellence. The
- 3 keywords there are robust evaluations.
- 4 We know that the institute is going down
- 5 the road to work with the National Academy as the
- 6 premier review activity. And that activity and
- 7 association with the National Academy is impacting
- 8 NPPTL and the programs and projects that we have
- 9 going on with the National Academy in parallel to
- 10 the institute activities.
- And the PPT cross-sector is moving forward
- 12 for a major review by the National Academy next
- 13 year.
- 14 Outreach. Again, outreach is very
- 15 important to us. We have talked many times, and you
- 16 have heard many times in the presentations yesterday
- 17 about the outreach activities and our interest to
- 18 facilitate and create dialogue with our stakeholders
- 19 and partners. It is important to keep the ship
- 20 moving forward and forward in the right direction.
- 21 Human resource excellence, it is
- 22 imperative that as we look inside and inward towards

- 1 our operation in the institute, that we have a good
- 2 human resource focus so that we are accomplishing
- 3 things with qualified people and expertise.
- 4 So I think that you can see that there is
- 5 a thread that's weaving through all of the
- 6 activities of the laboratory and certainly are
- 7 achieving performance excellence.
- 8 Our APEX program is really, for the
- 9 laboratory, it's kind of the web that pulls
- 10 everything together because it's what gives us the
- 11 direction and the drive to do the outreach, to:
- 12 sponsor and support the evaluations.
- So the APEX program is really the
- 14 mechanism that we use to keep things going and to
- 15 accomplish our objectives.
- 16 So with that, what I would like to do
- 17 is -- we are -- I'm going to go backwards. We are
- 18 going to have a slight agenda change. And I will
- 19 introduce Dr. Ron Shaffer who will give an overview
- 20 of some of the research activities.
- 21 Following Ron's presentation, we will take
- 22 a short break. And that break will be used to try

- 1 to get our projector set up so that they can operate
- 2 on both screens.
- 3 So with that, I would like to introduce
- 4 Ron.
- 5 GENERAL REMARKS ON THE NPPTL RESEARCH PROGRAM
- 6 MR. SHAFFER: Thanks, Les.
- 7 For those of you who are on this side of
- 8 the room and are going to have trouble seeing the .
- 9 slides, I only have eight of them in this
- 10 presentation. This is a longer version of what I
- 11 did yesterday when I introduced the poster session,
- 12 so there's not a lot of -- there's no data, no
- 13 pretty graphics in particular.
- But if you did want to see, I suggest you
- 15 move over to this side of the room or towards the
- 16 back because you can see the slides a little bit.
- 17 But these will be posted to the web for download at
- 18 a later time, so you can certainly see them 'later.
- 19 I wanted to give basically an overview of
- 20 the research branch.
- 21 Following my discussion, and after the
- 22 break, we will have four technical talks about

- 1 specific projects.
- 2 But I just want to give you, again, the
- 3 high level overview of all of the types of things
- 4 that we are working on so you can see the diversity
- 5 of projects and maybe see something that piques your
- 6 interest where we can work together on the project.
- For those of you that were here yesterday,
- 8 in my introductory remarks and also for Maryann's
- 9 discussion at the end of the day yesterday, you
- 10 learned a little bit about a survey that we
- 11 conducted with the Office of Personnel Management, a
- 12 stakeholder survey, manufacturer survey.
- 13 Well, one of the questions in that survey
- 14 was respondents were asked about their awareness of
- 15 the NPPTL research portfolio.
- And the part of the responses that we got
- 17 back were -- I think manufacturers were about 30 --
- 18 gave us a favorable rating about 38 percent of the
- 19 time, users about 56 percent of the time.
- 20 So obviously there is an opportunity there
- 21 to improve our outreach efforts. And so part of the
- 22 discussions this morning -- my speaking here is to

- 1 really try to improve that a little bit.
- 2 So today, I'm just going to talk about the
- 3 projects within the research branch, not about the
- 4 research projects that were discussed in the
- 5 afternoon yesterday that are undertaken by policy
- 6 and standards development.
- 7 The focus areas for the laboratory, as I
- 8 discussed yesterday, are these four, respiratory
- 9 protection, certainly the bread and butter for the
- 10 laboratory. Sensors and electronics, primarily
- 11 where it's integrated with personal protective
- 12 equipment.
- 13 Protective clothing ensembles, and then
- 14 human performance. Human performance being trying
- 15 to understand how PPE affects the user, what kind of
- 16 burden it places upon the user.
- We have a portfolio of research projects,
- 18 and it will range somewhere between 10 to 15
- 19 projects at any given time. They are all at various
- 20 stages of development.
- 21 And so you will see today, we have got
- 22 projects that are at the very early formative stages

- 1 where we don't even have a protocol written. We are
- 2 still working on that, trying to get our
- 3 partnerships developed.
- 4 Some very mature projects that are at the
- 5 end of their life stage and have been very
- 6 successful.
- 7 So, for example, some of the work that
- 8 Ziqing will talk about later, that's a project
- 9 that's been around since about 2001-2002 time frame.
- 10 And it's had a number of publications.
- 11 Pengfei Gao has a poster on a
- 12 decontamination of chemical protective clothing,
- 13 again, another project that's been around since
- 14 about 2001-2002 time frame. And we have seen a
- 15 number papers come up, a very productive research
- 16 project.
- 17 So we do have a diverse mix of new ones as
- 18 well as the projects that are at the end of their
- 19 lifecycle.
- 20 And all of the projects that we will talk
- 21 about today have a standards focus to them. They
- 22 impact a standard or some policy or recommendation

- 1 that CDC or NIOSH puts out. The standard could be
- 2 an ASTM standard, an NFPA standard, or as well as in
- 3 something in 42 CFR. So we have projects that span
- 4 that entire gamut.
- 5 The staff at the lab, we have about 20
- 6 researchers, including contract staff that support
- 7 the group, the postdoctoral fellows. I think 13 of
- 8 us are federal employees, the diverse backgrounds.
- 9 Six Ph.D.s, degrees from the industrial hygiene to
- 10 chemical engineering to chemistry. So a very broad
- 11 background.
- 12 The budget of the research branch is on
- 13 order of 2 to 4 million dollars a year, depending
- 14 upon the priorities of the lab and the needs of the
- 15 research projects.
- 16 The work that we do is a mix of in-house
- 17 work and work that we fund at universities. In the
- 18 earlier days of the lab, it probably was more
- 19 heavily weighted towards work that was funded at
- 20 universities or other government agencies, and that
- 21 was while we were building up our in-house
- 22 capabilities.

- 1 We have had a number of renovations done
- 2 to our labs, so we have expanded our capabilities.
- 3 So now we are probably a little more weighted
- 4 towards in-house research. But we still try to keep
- 5 a balance of extramural and intramural research.
- And what I'm going to do is, the next
- 7 slides, I'm going to have one slide or two on each
- 8 one of these four focus areas.
- 9 In the area of respiratory protection,
- 10 this is basically -- slide categorizes how we break
- 11 up the research.
- 12 Basically, you know, the hazard or the
- 13 inhalation, the total inward leakage to a respirator
- 14 user primarily comes from two means, either
- 15 particles or gases would penetrate through the
- 16 filter or the cartridge, or they cause a leak around
- 17 the face seal.
- So we obviously have projects that are
- 19 interested in both of those areas.
- In the aerosol filtration studies work,
- 21 I'll be talking a little bit later about work that
- 22 we are doing in nanoparticles, and there's a poster

- 1 obviously about that.
- Sammy Rengasamy talked about some
- 3 bioaerosol work that we did, and that also is a
- 4 poster over on this side of the room.
- 5 Ziqing Zhuang will talk later about the
- 6 respirator fit test research that we have been
- 7 doing, primarily in the area of facial
- 8 anthropometrics, measurements of human face, and
- 9 number of applications of that technology that he
- 10 will be discussing later.
- 11 And then in the area of influenza
- 12 pandemic. So this is what we would consider more of
- 13 an emerging issue. And we have got one project
- 14 listed here under that category, and that's a
- 15 project that is titled reusability of filtering
- 16 facepiece respirators.
- 17 Although it does cover more than just the
- 18 reusability, it also considers re-aerosolization and
- 19 risk assessment, you know, handling a respirator
- 20 that's been used, been potentially exposed to an
- 21 infectious aerosol.
- That's a new start for this fiscal year.

- 1 Jon Szalajda will have a presentation about that
- 2 later.
- 3 In the area of the sensors and
- 4 electronics, our focus at the lab has primarily been
- 5 on end-of-service-life indicators, either new sensor
- 6 technology or mathematical models. And Jay Snyder
- 7 will have a presentation after the break that will
- 8 go through this in a lot more detail.
- 9 Protective clothing ensembles research is
- 10 a major focus area. If you look at the breakout of
- 11 our projects by funding or by budget, about
- 12 50 percent of the work goes in respirators or sensor
- 13 projects that are all focused on respirators, and
- 14 the other half of the funding goes towards
- 15 protective clothing and human performance, which are
- 16 closely aliqued in our projects today.
- 17 So this just -- this slide just lists the
- 18 various projects that we are currently working on.
- 19 And there are posters on the first two, Pengfei Gao
- 20 has a poster over here on the decontamination of
- 21 chemical protective clothing. And Angie Shepherd
- 22 has got the poster and the display over there on the

- 1 emergency medical protective clothing.
- The EMS project supports NFPA 1999 work.
- 3 And Pengfei's work on the chemical protective
- 4 clothing has resulted in at least one work item at
- 5 ASTM on some software that he has developed for
- 6 automating permeation calculations for chemical
- 7 permeation testing.
- 8 The third bullet on here is development of
- 9 bench and MIST protocols for particulate penetration
- 10 measurements through protective clothing and
- 11 ensembles. That's a new start for us -- actually,
- 12 it was an FY '06 new start.
- 13 The first year was primarily spent
- 14 researching the area and getting some preliminary
- 15 data in order to write a proposal. That proposal
- 16 has been sent out for peer review.
- 17 We got the responses back a couple of
- 18 weeks ago, and Pengfei and his team are currently
- 19 going through the process of revising the project
- 20 plan based on the peer reviewer's comments.
- 21 The last project -- and, actually, I
- 22 should say that part of the nanotechnology talk I

- 1 will give later is actually -- is an aspect of
- 2 this -- the third bulleted project as well.
- 3 The final project listed as a new start
- 4 for FY '07, so it is at very early formative stages
- 5 of just conceptual planning of how we want to
- 6 execute that project, and that's going to be led by
- 7 Angie Shepherd.
- 8 And the focus of that project is to look
- 9 at various preconditioning methods that are used in
- 10 NFPA standards, such as the 1971 structural
- 11 firefighting and 1994 protective ensembles for
- 12 terrorism response.
- And she will be looking at things like
- 14 laundering, abrading, heating, and flexing and
- 15 attempting to correlate that with wear trials.
- And that's an area where NFPA has
- 17 indicated a need for some good scientific data in
- 18 order to support the performance requirements and
- 19 test methods.
- In the area of human performance, we have
- 21 the poster over in the back corner there on Project
- 22 HEROES. This is certainly something we have spent a

- 1 lot of time working on. This is a project that is
- 2 funded by the Technical Support Working Group,
- 3 otherwise as TSWG. It's actually managed by the
- 4 International Association of Firefighters, the IAFF.
- 5 And our piece of the project is to focus
- 6 on the physiological testing of that prototype
- 7 HEROES ensemble.
- 8 And we have also been heavily involved in
- 9 developing the standards, revising the NFPA
- 10 standards that would support this type of a new
- 11 technology. John Williams is the project officer of
- 12 the first two efforts on this slide.
- The second one physiological models and
- 14 countermeasures is more of a broader project that's
- 15 looking at new test methods for assessing the burden
- 16 of PPE, looking at cooling garments and also
- 17 physiological monitoring equipment.
- 18 And the -- both projects have gone -- at
- 19 least the protocols for how we are doing the testing
- 20 have both gone through external peer review and
- 21 either are currently in data collection mode or
- 22 subject -- trying to get the subjects signed up for

- 1 the testing.
- The final bullet is a new start for FY'07,
- 3 so that's why you don't have a poster on some of the
- 4 new -- the very new projects. We just don't have
- 5 enough material even to put a -- to really create a
- 6 good poster on.
- 7 That is project entitled metabolic
- 8 evaluation of N95 respirators with protective
- 9 covering. So this bullet actually could go under
- 10 the respiratory protection slide, but it really does
- 11 focus more on the human performance.
- 12 The idea behind that project -- let me
- 13 explain this in a little more detail because it
- 14 might be of interest to this audience.
- 15 The National Academy of Science's
- 16 Institute of Medicine produced that report that was
- 17 discussed a number of times yesterday on the
- 18 reusability of face masks.
- One of the recommendations that came out
- 20 of that report was that it -- to extend the lifetime
- 21 of an N95 respirator, you might want to use a
- 22 surgical mask to cover the respirator. The idea is

- 1 that if droplets came into contact with that, the
- 2 surgical mask, you could take that and off and
- 3 potentially reuse your respirator. Again, this
- 4 would primarily be only used in an emergency
- 5 situation, like a pandemic where you had a shortage
- 6 of respirators.
- What got us thinking a little bit about
- 8 that was how would that affect the metabolic gas
- 9 responses inside the mask.
- 10 We certainly know that there are a number
- 11 of papers that have come out that show that higher
- 12 levels of CO2 in healthcare workers wearing
- 13 respirators can give headaches and generally make
- 14 it, you know, something you would not want to wear
- 15 for six, seven, eight hours at a time. And so how
- 16 would having an extra piece of material in front of
- 17 the respirator affect that?
- And so we are doing a very simple set of
- 19 experiments with the automated breathing and
- 20 metabolic simulator to look at the CO2 and oxygen
- 21 levels inside a N95 respirator while the surgical
- 22 mask is worn and then while there was no surgical

- 1 mask, and doing some comparisons.
- 2 So that project, the proposal has -- is
- 3 certainly in internal review right now. It has been
- 4 written.
- 5 So that's the projects that we have. I
- 6 just want to emphasize a few key points here.
- We have a standards focus at the
- 8 laboratory. I think that's evident in reviewing the
- 9 posters and talking to the researchers. Our
- 10 projects support various ASTM, NFPA, ISO standards
- 11 as well as 42 CFR, and guidance and policy
- 12 recommendations that CDC or NIOSH puts out the door.
- So we have a very clear linkage in what we
- 14 call r2p, or research to practice, where we have got
- 15 an end outcome in mind for the projects at the very
- 16 beginning.
- 17 You will see that we have a diverse mix of
- 18 projects from across all four focus areas.
- Most people, you know, when they know --
- 20 hear of NPPTL or NIOSH think respirators, and that's
- 21 what we -- that's all we do. But, actually, we do
- 22 have a broad mix and have been very diligent in

- 1 making sure that we have a really good 50/50 type
- 2 split of protective clothing and respirator
- 3 research.
- 4 And finally, I just want to make a few
- 5 remarks about research to practice.
- 6 Through partnerships, obviously this is
- 7 where you can get involved. Certainly, whether
- 8 you're a user or a manufacturer, there is
- 9 opportunities to help us improve the research, which
- 10 will ultimately benefit you as well.
- 11 Input can happen through, you know,
- 12 appearing before the National Academy of Sciences to
- 13 make a presentation or participating on a committee,
- 14 through the various focus groups that Maryann and
- 15 her team put together.
- 16 You can be involved in peer reviewing our
- 17 proposals or peer reviewing the projects at the end
- 18 of the -- or not the projects, but the outputs, the
- 19 reports, the manuscripts at the end of the project.
- 20 So there is opportunities to participate
- 21 from beginning through the end.
- 22 And certainly if you have ideas for

- 1 research that you think we would should be doing, we
- 2 don't have a docket number open for that, but
- 3 certainly an email to me or anybody on the
- 4 management team, we will be happy to consider those
- 5 within our process for selecting our research
- 6 projects because certainly we don't have the, you
- 7 know, the monopoly on all the great research ideas
- 8 that are out there.
- 9 So we certainly welcome your input into
- 10 the projects and how we select which ones we work on
- 11 and which ones we don't.
- 12 So with that, I will close and take any
- 13 questions. And then we will, like Les said, we will
- 14 have a short break while we try to fix the
- 15 projector.
- And Jay's presentation has a lot of great
- 17 graphics in it, so we definitely need to -- and lots
- 18 of data. So we need to make sure the projector is
- 19 fixed, or we move to this side of the room.
- 20 So any questions? All right. Thanks.
- 21 MR. BOORD: Thanks, Ron. So we will take
- 22 a few minutes break to fix the equipment, and we

- 1 will give you an announcement before we begin.
- 2 Thanks.
- 3 (A recess was taken.)
- 4 MR. SHAFFER: We are going to -- because
- 5 we had the break a little bit earlier, we are going
- 6 to go ahead and do all four technical presentations
- 7 back to back with Q and A in between them. And then
- 8 we will wrap it up with a few remarks by Les Boord,
- 9 our director.
- 10 So with that, I will turn it over to Jay
- 11 Snyder, who is going to talk about our
- 12 end-of-service-life sensor program.
- 13 END-OF-SERVICE-LIFE SENSOR PROGRAM
- MR. SNYDER: Good morning, again. Seems
- 15 like we have done this before, same time, same
- 16 place, only a day difference.
- 17 And I thought the problem had been solved
- 18 of being ambidextrous with two laser pointers
- 19 simultaneously with having only one projector, but I
- 20 see we have got two back, so bear with me.
- 21 This morning, for the next 20 minutes or
- 22 so, I wanted to talk to you about our

- 1 end-of-service-life program and give you some
- 2 details regarding it.
- 3 And in doing so, I will be covering a
- 4 cartridge simulator, which we have constructed and I
- 5 have brought with me today. So if you would like to
- 6 see that, please stop by later. I would be happy to
- 7 show that to you.
- It also has a sensor arrangement in it, et
- 9 cetera.
- 10 And I also wanted to give you some real
- 11 details about our CMU sensor development program,
- 12 which we have been working with them for the past
- 13 several years.
- 14 Yesterday, I mentioned to you about some
- 15 of our stakeholders' interests in end of service
- 16 life, but the one I didn't mention that is really
- 17 quite important is the regulatory requirement that
- 18 OSHA has in their 1910 standard, which says that an
- 19 end-of-service-life indicator shall be used, with
- 20 the caveat that, When available.
- 21 And when it's not, then other factors need
- 22 to be brought into play such as using mathematical

- 1 models or breakthrough test data. And all of this
- 2 needs to be a part of the respirator program.
- 3 So in trying to assist our stakeholders in
- 4 that effort, we have developed an
- 5 end-of-service-life program, and it's a two-pronged
- 6 program.
- 7 The short-term part of that program -- we
- 8 thought we could do something relatively quickly --
- 9 was in the area of mathematical models. And I
- 10 talked to you about this in some detail yesterday.
- 11 I will briefly say that currently, breakthrough is
- 12 for a single vapor with the effects of relative
- 13 humidity. It's available on the OSHA website or
- 14 from NIOSH by CD.
- We are planning later this year to release
- 16 multivapor, which will calculate a service time for
- 17 a respirator cartridge with five organic vapors and
- 18 the effects of relative humidity.
- 19 And GasRemove is on hold until we are able
- 20 to generate some data to support it.
- Now, in considering an end-of-service-life
- 22 program, one of the things we certainly need to do

- 1 in the sensor area is consider the certification
  2 criteria.
- 3 And if we look at the NIOSH certification
- 4 criteria, we notice a significant fact. And that is
- 5 that a system should alert the user when 90 percent
- 6 of the service time has been consumed, and
- 7 10 percent remains. So what we are really talking
- 8 about is an almost end-of-service-life system.
- 9 Now, those of us who have worked in the
- 10 area of industrial hygiene, we think we have seen or
- 11 heard all of the horror stories, a new one pops up.
- 12 Here's one that is rather interesting.
- An individual working for a manufacturing
- 14 company wears his respirator religiously for seven
- 15 years. At that point in time, the company decided
- 16 to send him to a training class.
- 17 And the individual was looking over the
- 18 schedule of topics and put up his hand and said,
- 19 Excuse me, but I see there is a topic here called
- 20 change-out schedules. Does that mean these
- 21 cartridges don't last for the life of the
- 22 respirator?

- Well, we think that if we hang some
- 2 electronics on with flashing lights, it will cause
- 3 some interest in the user to inquire as to what
- 4 that's about and hopefully pay more attention to
- 5 changing out the cartridges.
- I have included this slide to give you
- 7 some idea of the complexity we are dealing with when
- 8 we are looking at multiple solvent assault of an
- 9 organic vapor cartridge.
- In this case, this is an actual cartridge
- 11 which we have assaulted with approximately 400 parts
- 12 per million of three compounds. You see the arrow
- 13 pointing to the concentrations, the assault
- 14 concentrations. In this case, we had acetone,
- 15 trichlorethylene, and xylene. And the interesting
- 16 thing about this is the fact that we get
- 17 breakthrough first with acetone, and then
- 18 trichlorethylene, and then finally xylene.
- But as we see here, we are good for the
- 20 first 50 to 60 minutes. And then acetone breaks
- 21 through. But its ultimate concentration is almost
- 22 twice that of the assault concentration. And that's

- 1 true also of the trichloroethylene.
- 2 So it becomes quite a significant
- 3 situation to not only model and calculate, but also
- 4 to develop a sensor system to handle.
- 5 This slide indicates the concept that we
- 6 put forth in attempting to produce an
- 7 end-of-service-life electronic system.
- It's one in which we place multiple
- 9 sensors inside the bed. And as the wave -- as the
- 10 wave of solvent comes through the cartridge, it
- 11 effects a response by the sensor. That information
- 12 then is transferred to the user in some form, in
- 13 this case, multiple LEDs flashing.
- Back in 2005, May, we did an external peer
- 15 review of our sensor program. And we had seven
- 16 external reviewers come in and evaluate it. They
- 17 represented regulatory agencies, user groups,
- 18 respirator manufacturers, and sensor experts.
- 19 And the recommendations that came out of
- 20 that were essentially to continue our interaction,
- 21 our work with CMU, on sensor development, but also
- 22 to expand the experimental program to include the

- 1 effects of sensor placement, temperature, relative
- 2 humidity.
- And we came away with a warm and fuzzy
- 4 feeling about that because those were actually the
- 5 initiatives that we had included in our research
- 6 program. It's just that it hadn't matured far
- 7 enough that we were doing that. So they were in our
- 8 plans.
- 9 As a part of that effort to achieve those
- 10 things, we built a cartridge simulator, which I have
- 11 shown here in a cross-section. It amounts to a
- 12 block of aluminum, which you see here on my right,
- 13 an example that I brought along.
- Inside, there's a chamber, an isolated
- 15 chamber which we can pack with 50 grams of carbon.
- 16 We can also place a sensor at most any location
- 17 inside the carbon bed, as well as some external
- 18 measurement devices where we can measure
- 19 temperature, humidity, and, in this case, using a GC
- 20 probe to confirm the concentrations that the sensor
- 21 would see.
- This is an animation of assembling the

- 1 cartridge simulator with the various components.
- 2 The green part you just saw go in was the sensor.
- 3 The black was the carbon bed, and then finally the
- 4 retention.
- 5 This is the inside of the simulator
- 6 showing the carbon retention material at the bottom
- 7 with a sensor being located here in the center and
- 8 our GC probe here on the side extending to the
- 9 center near the sensor location.
- Here we have a loading of the various
- 11 steps in the cartridge simulator.
- 12 First we have showing the sensor exposed,
- 13 a bed of -- a partial bed of carbon being placed in
- 14 the simulator. The second slide shows the sensor
- 15 being fully covered. And, finally, the capping with
- 16 the fine screen to prevent leakage of carbon out of
- 17 the simulator.
- 18 And down here in the corner, you can see
- 19 the actual sensor board and the retaining ring
- 20 that's used to secure the sensor system as well as
- 21 the carbon bed.
- 22 Here we have some information we have

- 1 generated from the simulator. I thought one of the
- 2 important characteristics of the simulator should be
- 3 that it passed NIOSH certification for a respirator
- 4 cartridge, organic vapor respirator cartridge.
- 5 And, in fact, it does because at the
- 6 conditions we run here, using a thousand parts per
- 7 million carbon tetrachloride, the 50 grams of
- 8 carbon. Air at 32 liters a minute at 50 percent
- 9 relative humidity, we should have a breakthrough of
- 10 at least -- or a service time of at least 25
- 11 minutes.
- Well, in this case, without the sensor, we
- 13 get 96 minutes. And with the sensor, we have got 75
- 14 minutes.
- 15 So what we see here, we are certainly well
- 16 within the NIOSH certification requirements. We see
- 17 some diminution in performance as a result of the
- 18 sensor. That's most likely due to its size and thus
- 19 displacement of carbon in the bed.
- 20 Here's another chart showing the simulator
- 21 data with the GC probe simultaneously. What we have
- 22 done here is located the GC sampling probe at the

- 1 center of the bed, midway through it, at half
- 2 height, and also collected data at the very end of
- 3 the bed.
- And the idea here is to demonstrate that
- 5 we can get adequate data from the center of the
- 6 carbon bed.
- 7 And interestingly enough, the service time
- 8 for the full bed is 88 minutes in this case, again,
- 9 at a thousand parts per million carbon tet, 32
- 10 liters and 50 percent relative humidity. While we
- 11 are starting to see what would be defined as
- 12 breakthrough for five parts per million at the
- 13 center of the bed at 44 minutes.
- It turns out in this case, it's exactly
- 15 half, but that's not always the case. It does very
- 16 little.
- One of the other questions that commonly
- 18 is raised is what about the relative humidity
- 19 effects on the carbon bed.
- 20 So here I have got a plot showing the
- 21 carbon in the -- packed in the simulator. Again, 50
- 22 grams. And we are exposing it to 75 percent

- 1 relative humidity gas stream at 30 liters per
- 2 minute.
- 3 And what you can see here at the
- 4 beginning, the carbon actually reduces the level of
- 5 humidity in the exiting gas stream significantly.
- 6 We dropped from 75 down to around 30. And we hold
- 7 there for approximately 500 seconds. And then
- 8 suddenly, we begin to get a rise in the relative
- 9 humidity at the exit of the carbon bed.
- 10 But it doesn't go up to the 75 percent
- 11 immediately. In fact, it rises somewhere around 50,
- 12 55 percent, and then asymptotically approaches the
- 13 75 percent over hours and hours. So it's a very
- 14 slow process.
- But we do see this significant change
- 16 occurring early on, and then a leveling off.
- 17 So we think we can work with that in our
- 18 sensor system because we hopefully will just see
- 19 this as a baseline shift, this area here as a
- 20 baseline shift in the sensor response.
- One of the other interesting pieces of
- 22 data we have gleaned from the cartridge simulator is

- 1 the temperature effects, and, in this case, the
- 2 temperature effects caused by subjecting a carbon
- 3 bed to relative humidity.
- 4 And you can also get temperature changes
- 5 in the bed when you add an analyte because there is
- 6 the heat of absorption, and that typically is an
- 7 exothermic process.
- 8 Well, in this case, we started out by
- 9 subjecting a bed of carbon, again, 50 grams, to an
- 10 airstream of approximately 25 and a half degrees
- 11 centigrade and relative humidity of about
- 12 30 percent.
- And we continued to run that, let it
- 14 equilibrate for about 20 minutes, and then jacked up
- 15 the relative humidity to 80 percent. And you can
- 16 see we get a significant -- I'm sorry, 60 percent.
- 17 We get a significant rise in temperature of almost
- 18 four degrees, and then it begins to diminish.
- We left it run for a short period of time,
- 20 and then added a gas stream of 80 percent of
- 21 relative humidity. And you can see we got another
- 22 temperature rise.

- 1 Continued on for a short time, began to
- 2 see a diminution in temperature and then reduced the
- 3 relative humidity to gas stream to 30 percent. And
- 4 we see a significant drop off in temperature.
- 5 Now, at this point, we said, Well, let's
- 6 see what adding an organic contaminant to the gas
- 7 stream does. In this case, we added a couple of
- 8 hundred parts per million isopropyl alcohol. And as
- 9 you can see, we got a significant rise in
- 10 temperature of the carbon bed. And when we turned
- 11 the alcohol off, we began to see a diminution of
- 12 temperature back to a normal ambient.
- Obviously, temperature is a factor, and
- 14 variations in temperature is a factor when you are
- 15 attempting to place sensors inside the carbon bed.
- 16 This is a breakdown of our sensor system
- 17 that we are currently using in the cartridge
- 18 simulator. It consists of a silicon chip with six
- 19 sensors on it. You see the six here that I'm
- 20 identifying with the arrows, three of which are
- 21 exposed to the environment and three are covered to
- 22 protect it from seeing things like the organic

- 1 contaminant.
- What we think we can do with this is by
- 3 incorporating a four-way bridge, is to use those
- 4 covered sensors to subtract out backgrounds such as
- 5 temperature and noise.
- 6 The sensors consist of a spiral electrode
- 7 arrangement. Looks similar to a burner on your
- 8 electric stove, which you have got gold electrodes
- 9 in a spiral fashion with a three-micron gap between
- 10 those.
- 11 This entire section you see here, which is
- 12 representative of the sensor over here, is a hundred
- 13 microns in diameter.
- And onto that, we jet a very special
- 15 polymer. It has some unique properties in that it's
- 16 a conductive polymer. This polymer series is called
- 17 polythiophene, unique in that it is a polymeric
- 18 conductive material as opposed to most polymers,
- 19 which are insulators.
- 20 This is a cross-section of how that sensor
- 21 is constructed.
- 22 It starts out on a silicon wafer, you see

- 1 at the bottom. Onto that is a surface of 500
- 2 angstroms of silicon dioxide. And plated onto that
- 3 is 20 angstroms of titanium. And finally onto the
- 4 titanium is deposited 600 angstroms of gold.
- 5 The reason for the bimetal system is
- 6 because gold doesn't adhere well to silicon dioxide,
- 7 but titanium does. So we use the titanium as the
- 8 initial layer to adhere the gold, which is our final
- 9 topical layer that we are very interested in.
- Then onto that, we use an inkjetting
- 11 process, similar what you would use in an inkjet
- 12 printer to deposit microdroplets of these
- 13 polythiophenes, which I just explained to you about
- 14 being a conductive polymer.
- 15 You also see these wells on the side
- 16 labeled SU8. Those are simply supports that are --
- 17 polymeric supports that are built up for supporting
- 18 the cover plate.
- 19 And then all of that is contained in a two
- 20 and half millimeter by two and a half millimeter
- 21 silicon wafer that we then wire bond to the outside
- 22 world.

- 1 It is placed in a TO-5 panel, which is a
- 2 very common electronics package used in the
- 3 electronics industry. The sensors are bonded from
- 4 these bond pads to connections on the TO-5 package
- 5 by 50-micron gold filament wire. You may be able to
- 6 see some of those here on the sides.
- 7 As I said earlier, the entire package is
- 8 approximately a quarter of an inch in diameter.
- 9 That then is capped, again, with the TO-5
- 10 package. And we have a hole in the center for our
- 11 gases to enter into the system. That is then
- 12 covered with Gore-Tex to help us get some additional
- 13 filtering.
- 14 We use the Gore-Tex to help us prevent
- 15 carbon fines from getting into the sensors. Since
- 16 the carbon is conductive, that would be a problem,
- 17 getting those in contact with the sensors. We also
- 18 use it to inhibit some of the transfer of moisture
- 19 into the sensor system.
- 20 And then this entire package is covered
- 21 and placed inside the cartridge simulator.
- And finally, I thought I would include

- 1 some data showing the response of the sensor system.
- In this case, we started out with a bed of
- 3 carbon, not the simulator in this case, but a bed of
- 4 carbon in which we got a baseline, then began adding
- 5 isopropyl alcohol to the point that we started to
- 6 see breakthrough in the bed.
- 7 And this then is the sensor response that
- 8 we see. And finally, when we turn the IPA off, the
- 9 isopropyl alcohol, we saw a diminution in sensor
- 10 response. So it did give us a warm and fuzzy
- 11 feeling that we in fact could get a response from
- 12 organic breakthrough.
- 13 While the system I have talked to you
- 14 about now looks a little cumbersome, it's not our
- 15 ultimate goal. Our ultimate goal would be to take
- 16 the sensors you have seen, add the electronics to
- 17 it, put that all into a single chip package, and add
- 18 an antenna.
- 19 Reduce that about the size of a carbon
- 20 particle so we could then distribute those
- 21 throughout the bed of the cartridge. And having an
- 22 antenna on it, we could then transmit RF power to

- 1 it, poll the sensor, take some readings, and have it
- 2 transmit information back to a central processing
- 3 unit. This would all be done wirelessly. That
- 4 information then could be fed in some format to the
- 5 user, either in the form of LEDs or a digital
- 6 display.
- Back in 2004, we did place an announcement
- 8 in the Federal Register asking for companies,
- 9 manufacturers who would be interested in partnering
- 10 with us to come forward and work with us on the
- 11 integration of sensors into respirator cartridges,
- 12 and these were the companies that volunteered to
- 13 work with us.
- 14 We also sent that same notice out to our
- 15 electronic mailing list. And, again, these are the
- 16 companies that responded.
- And we expect to be working with them in
- 18 the first quarter of 2007 on actually integrating
- 19 sensors into the cartridges for testing purposes and
- 20 evaluation because we think that integration is a
- 21 major part of this program.
- 22 Back in June, we released a sensor program

- 1 newsletter that we intend to continue. This was
- 2 done via the electronic mailing list. So if you
- 3 didn't get that, and you would like to have it in
- 4 future versions, which we do expect to send out as
- 5 we have significant developments in the program,
- 6 please get your name on the list so you can get a
- 7 copy.
- 8 And finally, while I have been talking
- 9 today specifically about the respirator application,
- 10 the idea here is to produce a sensor system that's
- 11 capable of being utilized in personal protective
- 12 equipment in general. And we think this application
- 13 has that capability.
- So with that, I will open it up to any
- 15 questions you might have.
- 16 MR. SPAMPINATO: Is this on? You showed a
- 17 slide -- Phil Spampinato, ILC Dover.
- 18 You showed a slide where you mentioned
- 19 that the sensor lowered filter performance, and I
- 20 think that slide was something like 20 or
- 21 25 percent, and there was other information there,
- 22 and you had a comment about it.

- But do you see an inherent lowering of
- 2 filter performance because of the presence of either
- 3 the sensor or the chemicals involved here?
- 4 MR. SNYDER: Given our current
- 5 configuration, yes, I do see a lowering occurring.
- 6 However, that's not our ultimate configuration.
- 7 These are really only experimental devices at the
- 8 moment. They are large.
- 9 Our next iteration of this will be
- 10 significantly less.
- MR. SPAMPINATO: Thank you.
- 12 MR. SELL: Bob Sell, Draeger Safety.
- 13 Have you done any conditioning tests to
- 14 look at the reliability of the sensor in the system?
- MR. SNYDER: No. We haven't gotten to
- 16 that point yet. We are just getting sensors to the
- 17 point that we can collect data in this format.
- Once we are comfortable we can do that and
- 19 reproduce it, we will be doing things like that.
- 20 MR. HEINS: Bodo Heins, Draeger Safety,
- 21 Germany.
- To point the same out what Bob just said.

- 1 All these methods you have seen here, or you showed,
- 2 very, are very good for laboratory measurements of
- 3 such things, but I invite you to come to see how a
- 4 canister cartridge is be done. It is something
- 5 which happens in seconds.
- 6 How will you fit all of this stuff into
- 7 the cartridge or canister? And the biggest question
- 8 then is who has to pay for that.
- 9 It's everything which is thrown away
- 10 afterwards.
- MR. SNYDER: Well, let me comment on that.
- I would like to work with the volunteer
- 13 companies that we have got.
- MR. HEINS: Yes. But are we waiting one
- 15 and a half year already. We are rather disappointed
- 16 that it is going so slow because it is a very
- 17 important topic, but you have to follow your --
- MR. SNYDER: We share that disappointment.
- MR. HEINS: One of the major questions
- 20 which has to be solved before is, Who is responsible
- 21 for an accident which happens? Because a number of
- 22 possibilities, what should have gone wrong.

- 1 First is that the sensor was wrong. It
- 2 was wrong calibrated. The user didn't notice what
- 3 the sensor showed, and a lot of other possibilities.
- 4 The biggest one probably in this case is
- 5 that your sensor afterwards are different
- 6 measurements. They are reversible. So if something
- 7 happen, you cannot find out what that test time of
- 8 the emergency case happened with it.
- 9 So, you know in your country, this can be
- 10 very expensive.
- MR. SNYDER: We recognize those issues,
- 12 and we agree that they are important. But we think
- 13 that we need an operable system first before we can
- 14 those issues.
- MR. HEINS: Okay. And I understood right
- 16 that you at this time only had for OV, or at a
- 17 maximum four or five OV gases sensors available.
- MR. SNYDER: Yes. We have only been
- 19 working on OV.
- MR. HEINS: Because my concern is that
- 21 it's much more interesting or important that we, for
- 22 example, if you look to the CBRN topics, for this

- 1 types, for to have something.
- 2 MR. SNYDER: One of the virtues that we
- 3 really like about this sensor system that we have
- 4 been working out with CMU is its versatility. It is
- 5 a multiple modality system. We are not locked into
- 6 just a chemo resistant device.
- 7 So we think it will be capable of
- 8 expanding to other agents that are not organic.
- 9 MR. HEINS: As far as I understood, your
- 10 reactions here, chemical reactions at this time only
- 11 possible for OV, and I have no idea if you have
- 12 already something against other stuff, like gases or
- 13 vapors.
- Okay. But one very important point is the
- 15 90 percent requirement.
- I think this is a requirement from the
- 17 past which you have to think over. As I said some
- 18 minutes before, the sensor will measure everything
- 19 of what is going on actually, and that it doesn't
- 20 stop at one time.
- 21 So and to show when 90 percent is done,
- 22 that belongs also to the environment or the

- 1 conditions around. And if it changes something,
- 2 then it immediately has to show something different.
- 3 MR. SNYDER: I think we need to
- 4 demonstrate that we can't (sic) meet our
- 5 requirements first. And if, in fact, that is the
- 6 case, then we visit a requirement such as
- 7 certification.
- 8 MR. HEINS: Did you ever calculate the
- 9 costs for such an equipment? Not only the sensor,
- 10 but you also need the measurement unit, too.
- 11 MR. SNYDER: Yes. One of the
- 12 considerations that we have continued to have
- 13 throughout this development program is to attempt to
- 14 keep sensors under a dollar, and the electronics in
- 15 the 20 to 50 dollar range with the electronics being
- 16 reusable and the sensor being considered disposable.
- 17 MR. HEINS: For each canister? The cost
- 18 for each canister?
- 19 MR. SNYDER: A dollar for the sensors for
- 20 canister. But the electronics would be associated
- 21 with the facepiece and removable so that they would
- 22 be reusable.

- 1 MR. HEINS: But for one mask and one user
- 2 only, so you need to have a lot of additional
- 3 equipment.
- 4 And what is going on with the twin filter
- 5 system? Do you need to have two of those things?
- 6 MR. SNYDER: No. We think the electronics
- 7 will be such that it can monitor both cartridges,
- 8 for example, if you have a two-cartridge system.
- 9 MR. HEINS: And another point which is
- 10 going into the cost is that this sensor needs to be
- 11 calibrated, and I guess this calibration will be
- 12 only valid for a limited time. And I expect much
- 13 less than the storage time of the canister.
- 14 It will reduce the storage time of
- 15 canisters in this case and makes this, again, much
- 16 more expensive.
- MR. SNYDER: Again, a very good point.
- We need to look at storage and aging of
- 19 these devices to determine what the effects are.
- I can't answer that question yet, but it's
- 21 obviously a very important issue.
- MR. HEINS: Okay.

- 1 MR. SMITH: Thank you. Simon Smith, 3M
- 2 Canada.
- 3 You showed the effects of the humidity and
- 4 additional solvent on the temperature.
- 5 I just wondered if your mathematical
- 6 models are using -- take into account those
- 7 temperature changes.
- 8 MR. SNYDER: Yes, it does.
- 9 Well, you -- in the model, you have to put
- 10 in the ambient temperature.
- 11 MR. SMITH: The ambient, yes. But then
- 12 the elevation, is that taken account of?
- MR. SNYDER: No. That's handled by some
- 14 other factors in the equations. Essentially, we-
- 15 have used Weaver (phonetic) equation, added some
- 16 palangi (phonetic) potential theory to derive those.
- 17 MR. SMITH: Yes. Thanks. I think those
- 18 were my only concerns. Thanks.
- MR. VINCENT: John Vincent, North Safety
- 20 Products.
- 21 Has any market research been done on what
- 22 users, or premium users would pay for this kind of

- 1 technology? And, if so, could you share that with
- 2 us? Premium and price, what they would pay for
- 3 cartridges and these electronics for the facepiece.
- 4 MR. SNYDER: Yes. We had a research road
- 5 map document developed for us several years ago by
- 6 the Naval Research Lab, and we chose them because
- 7 they had extensive experience in sensor development.
- But they looked at various aspects, talked
- 9 to user groups, respirator manufacturers, and so
- 10 forth, and did come to some conclusion on cost.
- And that was that an order of \$2, 2.50
- 12 additional on a cartridge would be acceptable.
- MR. SAVARIN: Mike Savarin, Bullard
- 14 Technology, or just Bullard now.
- I just want to say something on behalf of
- 16 maybe the group. As someone now looking on the --
- 17 on the outside looking in, I think this all looks
- 18 quite fantastic, the latest technology, new way of
- 19 thinking about going about some of the issues.
- From my perspective, I think it is
- 21 extremely encouraging, although some of the
- 22 commentators have obviously made it clear that has

- 1 taken quite some time, which is in my opinion is no
- 2 surprise.
- 3 The group, of course, is going to want to
- 4 consider when are they going to get something real,
- 5 are real effects considered, and how much is it
- 6 going to cost.
- 7 Yet the fact is we can't be anywhere near
- 8 something practical in terms of costs yet. So I'm
- 9 not quite sure why we are all hammering and thinking
- 10 about how much the cost is going to be when it is
- 11 pretty clear that -- what generation are we in now?
- 12 I don't know if it is the fifth.
- 13 MR. SNYDER: Yes. In fact, the fifth has
- 14 just gone to the foundry.
- MR. SAVARIN: So it's looking like a few
- 16 away yet from all of these facts that people are
- 17 considering.
- So I want to thank the group for letting
- 19 me have an insight into what some of the critical
- 20 aspects beyond what is some of the technology that
- 21 you have proposed and put forward in your work
- 22 today.

- 1 Thanks.
- 2 MS. FEINER: Lynn Feiner, North Safety
- 3 Products.
- In the real world, cartridges are not used
- 5 continuously, but they will be used for an hour.
- 6 Then they may be put away for a couple of days and
- 7 used for a couple of more hours.
- 8 And have you taken that into
- 9 consideration, and are you working that into your
- 10 models?
- 11 MR. SNYDER: Yes. Interesting you bring
- 12 that up because we do have a program this year which
- 13 we are calling an extension of the multivapor model,
- 14 which we are looking at just that aspect of it, that
- 15 is people utilizing for a period of time. Then you
- 16 have an interval of nonuse and reusing them again.
- 17 So we are attempting to do something about
- 18 that in terms of our modeling program.
- 19 MS. FEINER: And when you are looking at
- 20 organic vapors, are you looking for an organic vapor
- 21 family rather than for specific organic vapors?
- MR. SNYDER: In the modeling?

- 1 MS. FEINER: Yes.
- 2 MR. SNYDER: No. It's for an individual
- 3 compound.
- 4 MS. FEINER: Okay.
- 5 MR. SNYDER: In fact, the models have a
- 6 library of about 1,400 compounds of data in there,
- 7 so you can go in, identify a compound, either by its
- 8 IUPAC name or its common name.
- 9 And you can then locate data which you
- 10 need to plug into the model for it, such as
- 11 molecular weight, the vapor pressure, et cetera,
- 12 polarizability.
- 13 MS. FEINER: Okay. Thank you very much.
- 14 MS. DEMEDEIROS: Edna DeMedeiros, North
- 15 Safety Products.
- Jay, I'm wondering in your experiments,
- 17 okay, have you done what Lynn was saying where you
- 18 take the cartridge, you expose it to chemicals.
- 19 Then you put it away. Then you take it again,
- 20 expose it to chemicals, put it away.
- 21 What's the effect on the sensor?
- 22 MR. SNYDER: Can't answer that yet. We

- 1 haven't done the experiments yet.
- 2 MS. DEMEDEIROS: So you're not to that
- 3 point yet.
- 4 MR. SNYDER: That's correct.
- 5 MS. DEMEDEIROS: And your models that you
- 6 are discussing, those are basically based on Jerry
- 7 Wood's work?
- 8 MR. SNYDER: Yes.
- 9 MS. DEMEDEIROS: All right. Okay. Thank
- 10 you.
- 11 MR. SNYDER: Okay. Last question.
- 12 MR. HEINS: Bodo Heins again.
- 13 You should point out what's the main
- 14 purpose of this end-of-service-life indicator,
- 15 should be -- is it for the user to be -- to get a
- 16 warning when he has to go out, or is mainly as the
- 17 first end-of-service-life indicators has been a
- 18 topic for the employer, that he knows when he has to
- 19 buy new cartridges.
- Okay.
- 21 MR. SNYDER: It's designed to protect the
- 22 employee.

- 1 MR. HEINS: And another --
- 2 MR. SNYDER: In a couple of ways.
- 3 As I mentioned, hopefully with having
- 4 something obvious like this in the system, it would
- 5 generate more interest in finding out what about
- 6 change-out schedules and what about changing your
- 7 cartridges, but the bottom line is to provide
- 8 additional protection to the user.
- 9 MR. HEINS: Okay. And the last remark
- 10 again to the environmental conditioning.
- If you place these sensors inside the
- 12 charcoal bed, what is obviously the case here, the
- 13 canister will no longer be vibration tight, and this
- 14 is a requirement.
- 15 If you have cable, it's more difficult.
- 16 If you have no cable, the sensors will move inside
- 17 the charcoal bed.
- 18 So have a look to the vibration tightness
- 19 or -- approval for the canister if you would fit
- 20 your canister -- your sensors in. Excuse me.
- 21 MR. SNYDER: Good point. I appreciate you
- 22 bringing that to our attention.

- 1 That's obviously a point that we should
- 2 take into account as we are looking at the
- 3 integration of these sensors into cartridges.
- 4 MR. SHAFFER: Let's thank Jay for his
- 5 excellent presentation.
- 6 And I hope we fixed the automatic fast
- 7 forwarding of the slides. This is why you should
- 8 never do a public meeting on Friday the 13th. I'm
- 9 convinced of that now.
- 10 With that, I'll turn it over to Ziging
- 11 Zhuang. He is going to talk about NPPTL respirator
- 12 fit test panels.
- 13 NPPTL RESPIRATOR FIT TEST PANELS
- 14 MR. ZHUANG: Okay. Yes. Good morning.
- 15 First of all, I would like to thank my -- the team.
- 16 Dr. Ron Shaffer has been helping me with the PCA
- 17 analysis. And then Dr. Bruce Bradtmiller is the
- 18 president of Intertek, and he was one of the
- 19 principal investigators for the Army survey in '88
- 20 and has been in this field for many years.
- 21 And then also, this is the company that
- 22 help Alan Hack develop the Los Alamos panel.

- 1 And Dennis Viscusi, he also has been
- 2 working with me on this project. And also I was
- 3 able to get Dr. Ray Roberge to help with another
- 4 aspect of the project to look at body mass index and
- 5 facial dimension. And then I was able to get some
- 6 summer student and also my Ph.D. student to help me
- 7 to work on this project.
- 8 Yeah. We all know that it is important to
- 9 have a good fit test panel because they have been,
- 10 yeah, relied upon to provide sizing reference for
- 11 respirator in many applications. And as soon as the
- 12 LANL panel was developed, they were used to do fit
- 13 testing on various model respirator. And then those
- 14 data were used to establish the first set of APF.
- 15 And then also, yeah, as I mentioned
- 16 earlier, they have been used to develop a
- 17 respirator. And then currently we have the Total
- 18 Inward Leakage program, and we need this kind of
- 19 panel also. Otherwise the testing may not be --
- 20 meaningless.
- 21 And then also various researchers have
- 22 used the panel to include subject in the past.

- Historically, yeah, at that time, back in
- 2 earlier 1970, there was no civilian data. And so
- 3 the Air Force data was the only data set available
- 4 at that time.
- 5 And then so they cover -- they show that
- 6 data was representative of the U.S. adults, and then
- 7 face length, face width, and lip length was selected
- 8 at that time. There was no scientific basis. There
- 9 was no study to look at correlation between facial
- 10 dimension at all.
- 11 And so basically, just use common sense or
- 12 follow some of the idea from the Air Force, that
- 13 when they designed the oxygen mask, they used lip
- 14 length and face length to look at their size.
- 15 And then there is the LANL panel for
- 16 testing full facepiece respirator. And it is based
- 17 on face width and face length, and it range from 93
- 18 a half to 133 and a half for face length. And then
- 19 for face width, it is from 117 and a half to 153 and
- 20 a half.
- 21 And based on -- basically they use the
- 22 mean of the male and mean of female subject and just

- 1 add two standard deviation to the mean of the male
- 2 and the mean of the -- and subtract two standard
- 3 deviation from the female to come up with the
- 4 boundary.
- 5 And then for the upper lip and lower right
- 6 corner, very few subject were there, so they delete
- 7 those cells. And that left a 10-cell panel. And
- 8 these are the number of the subjects that they
- 9 recommend that we should sample from each cell.
- And this is the one that's for testing
- 11 half-mask respirator, and it is based on lip length
- 12 and face length.
- 13 And it is similar. This time, it's not
- 14 four column. It's like three column, and only two
- 15 cell was deleted. But we still have 10 cells here.
- 16 And each of the cells, these are the numbers that we
- 17 will sample from each cell.
- 18 So right after the panel was developed
- 19 and, yeah, we would have -- yeah, there was some
- 20 concern. And then, but lately, we, yeah, look at
- 21 the demographics of the U.S. population. And now it
- 22 has changed a lot over the last 30 years. And then

- 1 also there some evidence that military data may not
- 2 represent the diversity that you will see in the
- 3 civilian population.
- 4 And we also have some scientific evidence
- 5 as early as like 1975, as I mentioned, there is a
- 6 study, like a fit test program that they -- fit test
- 7 about like, yeah, 1,467 employee. And while they
- 8 are doing the fit besting, they measure the
- 9 employee, and they find out there are more than like
- 10 12 percent of their subject were outside the LANL
- 11 panel.
- 12 And at that time, they recommend revision
- 13 of the panel. And then also, Bureau of Mines in
- 14 1978 did a survey of, yeah, 48 male, and they look
- 15 at the bivariate distribution of face length and
- 16 face width. And they found out it is significantly
- 17 different from the LANL panel. So -- and they said,
- 18 oh, that's their Cartwright panel for male worker.
- 19 And that is a very small sample. But that's what
- 20 they claim in their study.
- 21 And then, yeah, we have various study
- 22 later on. One of them is Ken, Dr. Ken Ostenstep

- 1 (phonetic) at University of Alabama, and I also talk
- 2 to him as well.
- And in his study, he found out lip length
- 4 did not have any correlation with respirator fit.
- 5 And that's one of the dimensions that Los Alamos
- 6 used, but it's not relevant to fit.
- 7 And then also, lately, we have CAESAR
- 8 project. It's called Civilian American and European
- 9 Surface Anthropometry Resource. And this is a
- 10 project conducted by the US Air Force. And they
- 11 have about like 40 comments from different industry,
- 12 the aircraft industry, automotive industry, and also
- 13 the apparel industry as well.
- 14 So they -- but what they did was to
- 15 measure like civilian American, except they focusing
- 16 on whole body. Like they scan the subject using the
- 17 whole body scanner, and they only measure like
- 18 limited dimension was the traditional measurement.
- 19 So unfortunately, by the time I know that
- 20 they have such a project, they only measure two
- 21 dimension, and it was too late to ask them to do any
- 22 other measurement, to add any other dimension.

- 1 So -- but I was able to use the face
- 2 length and face width information and to look at how
- 3 they differ from the LANL panel. And then at that
- 4 time, I found out that like 16 percent of the
- 5 subject were outside of boundary.
- And so with that, we started to create a
- 7 database of our own, detailing the face size
- 8 distribution of the current U.S. respirator user.
- 9 So we went to, like various industry in eight
- 10 different state and national survey.
- 11 So whereas the data, we were able to
- 12 confirm that. The Air Force is not reflective of
- 13 the anthropometric distribution anymore. And that
- 14 paper was published back in 2004.
- 15 And we also concluded that we need to
- 16 revise the panel or come up with new panel.
- 17 So today I'm just focusing on the
- 18 development of the new panel that are representative
- 19 of the current US work force.
- 20 So we used the data that we collected back
- 21 in 2003, and that paper was published last year,
- 22 November of last year in the JOEH Journal. And we

- 1 described our study. We published the summary
- 2 statistic for male and female. We also did a
- 3 comparison between our data and the military data.
- 4 And just, you know, confirmed that our
- 5 data like, yeah, it represent more diversified
- 6 population and different from the military data.
- 7 So in that survey, we use a stratified
- 8 sampling approach.
- 9 We look at male and female. We have
- 10 white, African-American, Hispanic, and other. We
- 11 combine Hispanic -- we combine Asian and Pacific
- 12 Islander and also Native American into one group.
- 13 And we also arbitrarily like divide the
- 14 population from 18 to 65 into three interval, like
- 15 from 18 to 29, to 30 to 44, and 45 to 65. And our
- 16 final tally of the database is 3,997 subjects.
- And we use the 2000 US Census data to
- 18 weight our subject, to match the U.S. adult, like 18
- 19 to 65. Then we -- so our estimates covered national
- 20 estimate also. And at that time, we used
- 21 traditional tools to measure 19 dimensions, and then
- 22 we also scanned one-fourth of the subjects.

- So the approach that we are using to
- 2 develop the new panel, the first one is just we
- 3 still use two dimensions, which is called bivariate
- 4 distribution, and the other one is principal
- 5 component analysis.
- 6 Yeah, the bivariate panel has been
- 7 developed since like 2004, so it has been around for
- 8 a while. But the PCA panel, it's the first time --
- 9 the first word is different, and now we kind of,
- 10 yeah, keep on changing it and revising it.
- 11 And the criteria for selecting the
- 12 dimension, the approach that we use is like it needs
- 13 to be relevant to respirator fit. And what we can
- 14 do is, now, it's not like '70 anymore. So we do
- 15 have 30 years of information that -- eight study out
- 16 there look at.
- 17 So we did the literature review, and we
- 18 also talk to the expert, the ISO committee, the
- 19 manufacturers. And so based on that kind of
- 20 information.
- 21 And for -- we selected the two dimension
- 22 for the bivariate panel. But for the PCA, we add

- 1 some more criteria.
- We think that if the dimension you exclude
- 3 and can be well predicted by the other one that you
- 4 include, then that will be good. So you cover the
- 5 facial characteristic very well.
- 6 And the number of -- the dimension is --
- 7 also, originally, you do all the measurement, and
- 8 some of them are a little difficult to measure. You
- 9 need to pressure the hair a little bit. You get a
- 10 small number. Or if you don't press that much, you
- 11 may get a larger number. And there are a lot of
- 12 dimension that we try not to use, and select the one
- 13 that we can measure with a little bit of accuracy.
- 14 And so the dimension -- yeah, this is the
- 15 principal component analysis, and -- yeah.
- 16 Principal component analysis defines a new
- 17 coordinate system using linear combinations of the
- 18 original variables to describe trends in our data.
- 19 And for our data, you may see that, like
- 20 the subject on the left, after you finished
- 21 analysis, you can identify which subject as small or
- 22 they are large or they in the middle, or medium, or

- 1 maybe short and wide, or long and narrow.
- 2 So based on the literature review, we also
- 3 look at our own study between fit and facial
- 4 dimension also. And so we publish another paper
- 5 there to report our finding and also summarize what
- 6 people found in their studies.
- 7 And then also, at the ISO committee, the
- 8 committee also look at this kind of things, and they
- 9 said -- they also look at -- select dimension, what
- 10 dimensions should be looked at or should be
- 11 selected. And so -- and then -- so at that time, we
- 12 think that lip length may not a good dimension to
- 13 use.
- And so the bivariate panel, we still keep
- 15 10 cells, and the 25 subject. We did not address
- 16 that. Just keep whatever Los Alamos used at that
- 17 time.
- And then what we did was that we tried to
- 19 make sure that at least two subjects for each of the
- 20 cell. And then the real of the cell, like you want
- 21 to match the population, the distribution of the
- 22 population to your sample size as much as possible,

- 1 and then face length and face width were selected to
- 2 define the bivariate panel in which may be used for
- 3 both half-mask and full-facepiece respirator.
- 4 And this is the new panel. And you can
- 5 see the range is quite different from the Los Alamos
- 6 panel. It range from 98 and a half to 138 and a
- 7 half, and 120.5 to 158.5. And then we kind of label
- 8 them from one, two, three, four, five, six, seven,
- 9 eight, nine, and 10. And these are the subjects
- 10 that we recommend that you, yeah, can select from
- 11 each of the cell.
- 12 I think they are all two subjects except
- 13 Cell No. 4, where you come in five, and Cell 7,
- 14 where you come in four person.
- 15 And this other percentage that we
- 16 estimated for the population work force, whatever
- 17 you want to call it, we don't have any profile like
- 18 how many male, female for respirator user. We don't
- 19 know how many like -- like each -- in each group, we
- 20 didn't have that.
- 21 So all we can tell is like we can get the
- 22 national statistic and then the work force, the

- 1 users group. They do it different from that. So
- 2 that's our estimate.
- 3 And it's -- yeah, the results are
- 4 25 percent of the population are in Cell 4, and Cell
- 5 7 is 21.3 percent.
- And based on that, that's why those two
- 7 cell we recommend sampling more subject. And then
- 8 the rest of the other cell have a range from 3.5 to
- 9 10.5. And so even some of them are larger than the
- 10 others, we still recommend that it's important to
- 11 sample at least two subjects from each of the cell.
- 12 And this is the scatter plot of the data
- 13 of the subject that we have. And we still have some
- 14 people with wider face. Our data, we cannot
- 15 include. And we only -- but the panel does cover
- 16 more than 95 percent of the population.
- 17 And these are the dimension that we use
- 18 for the principal component analysis.
- And, again, like this is the dimension
- 20 that we use like based on the criteria that I
- 21 mentioned earlier.
- 22 We look at literature review. We look at

- 1 expert opinion. We look at correlation analysis.
- 2 And these are the nine dimensions that we
- 3 do not use. And then -- but they can be predicted
- 4 by the 10 dimensions that we included in the PCA
- 5 panel, with an R square of like .83 for maximum
- 6 frontal breadth and p-value for that is .01.
- 7 So the one with the smallest R square is
- 8 bitragion coronal arc, which is the one going above
- 9 and then come down to the -- on the other side. And
- 10 that's the one that I -- yeah, we think that is
- 11 highly variable, and it's a little bit difficult to
- 12 measure and may not be that related to respirator
- 13 fit also. So this are the kind of dimension that we
- 14 can exclude.
- 15 And this is the results. We run the
- 16 principal component analysis. Back in the '70s, if
- 17 you want to do this kind of analysis, it may take
- 18 you a year or so. But now computer can do it for
- 19 us, and quickly, just, yeah, several seconds or one
- 20 minute or so, you can get the results.
- 21 And we included 10 dimension. We can also
- 22 get 10 principal components, and that's the

- 1 analysis.
- 2 And then we have a set of eigenvalue. And
- 3 then the cumulative is like just add whatever like,
- 4 yeah, of the eigenvalue for each of the component,
- 5 and then we have a total -- like percent of total
- 6 variance, each component can explain. And then we
- 7 can also calculate the cumulative also.
- 8 So and then one of the rule of thumb is
- 9 like the eigenvalue. If it's less than one, you
- 10 should not look at those component anymore. And
- 11 that's one of the purpose to do the principal
- 12 component of analysis.
- 13 Basically you can look at less variable,
- 14 but then it can explain most of your variation and
- 15 then do whatever you want to do with that.
- 16 And at this point, we -- early on, the
- 17 earlier version of the PCA panel, I look at three
- 18 dimension, and I think that's too complicated to
- 19 use. And so we kind of scale back. But if we use
- 20 this type of rule of thumb based on our -- like
- 21 sadisco (phonetic) test or -- so we kind of decided
- 22 to keep two principal component only.

- 1 And then these are the eigenvector, which
- 2 is kind of -- a set of coefficients. And one is
- 3 like PC1 is a bunch of original measurement, all the
- 4 ten dimensions times the corresponding coefficient.
- 5 And the sum is that score for that particular
- 6 person.
- 7 And then PC2 is different, like it -- so
- 8 the first one, they are all positive. And so the
- 9 larger the dimension, the larger the PCA score,
- 10 that's why you may have from small to large.
- But the second one, sum of the
- 12 coefficient, the loading, lateral loading, like
- 13 .3598, these are the significant ones, very
- 14 important, but then they are positive.
- 15 Like face length, nose protrusion, they
- 16 are positive. That means like if face length is
- 17 longer, PCA2 is larger also. And then -- but on the
- 18 other hand, we have some negatives. That means if,
- 19 like the face width or bigonial breadth or
- 20 interpupillary breadth, like these are the
- 21 dimensions of -- like the wider, the smaller the PC2
- 22 component.

- 1 So when you look at that figure or the
- 2 distribution, the people on the left tend to be like
- 3 the first principal component, they are small, and
- 4 then it go to medium and large.
- 5 But then if you look at the vertical,
- 6 Y-axis, the second principal component, then the
- 7 people at the bottom, the smaller PCA2 variable,
- 8 then they are wide.
- 9 They have wider face and then wider nose
- 10 and then shorter face as well. And when the people
- 11 on top, they are kind of opposite. They tend to
- 12 have longer face and narrow nose. And so this is
- 13 based on the distribution of our data.
- 14 This is the new principal component
- 15 analysis panel.
- And so the ellipse cover about 95 percent
- 17 of the population, and the standard smaller ellipse
- 18 cover about 35 percent of the population. And that
- 19 can be changed.
- Like some people recommend up to 50, and
- 21 also some people say like a medium size can fit can
- 22 fit 70 percent of the population.

- 1 So but at this point, from a sampling
- 2 approach, you can do whatever you want.
- And, basically, we, yeah, divide the
- 4 ellipse into four area, like one, two, three, four.
- 5 And in the middle, it's the same things. And so we
- 6 have eight cells. And these are the estimate of the
- 7 population in each of the cell.
- 8 And you can see the total column. Like
- 9 14.7 for Cell 1. They are all very uniform, around
- 10 15 percent. And in the middle like, five, six,
- 11 seven and eight, it's about an 8 percent or 9
- 12 percent.
- 13 So the total is like 96.8. And these are
- 14 the kind of number of subjects that we recommend to
- 15 sample. And, again, this is a number that we do not
- 16 do any statistical analysis to come up. We just
- 17 keep on using the same number that has been used in
- 18 the past.
- 19 So we did some comparison of the two
- 20 panel. For the bivariate panel, it is very easy to
- 21 understand and use. And since we came up with this
- 22 panel, 3M already recruited subjects. And they were

- 1 able to put together two panels, identical, like all
- 2 25 subjects, and then all together 50 person.
- 3 They also did some fit testing on the
- 4 data -- on the subjects. So it's very easy to use,
- 5 and they only measure about a hundred people of
- 6 their employee.
- 7 And then for our own TIL testing, we
- 8 measure about 146 subjects. And most of them -- we
- 9 used 87 of them. But then they are all one way --
- 10 like -- in one of the cell. And we excluded about
- 11 4.7 percent of the subject.
- 12 And so very easy to recruit subject.
- And then, yeah, like in comparison with
- 14 the LANL panel, like when I look at our subject,
- 15 like 146 subjects, I did not see any subject. Like
- 16 if you use lip length and face length, I did not see
- 17 any subject in Cell 1, 3, and 6 of the LANL panel,
- 18 and only one subject in Cell 2.
- 19 So from that, it kind of like validate the
- 20 development of the panel here based on just a couple
- 21 of the sample, like our own subject, and then the
- 22 subject in 3M.

- 1 But then the bivariate panel may not
- 2 exclude end user faces, like -- because you only
- 3 look at face length and face width. And so someone
- 4 has a larger nose, then you may still include that
- 5 subject, or you don't consider that characteristic.
- 6 But then we did use our database. We also
- 7 did a simulation to measure how many subjects you
- 8 need to measure to fill the panel.
- 9 And on the average, like we get 91
- 10 subjects. It range from 34 to 264.
- 11 And then for the PCA, on the other hand,
- 12 it is complicated and more measurement, 10 versus 2,
- 13 but it's very like to include unusual face. You
- 14 look at -- it's extremely long, extremely large, or
- 15 very short nose. Those are the people that like,
- 16 yeah, you can exclude them.
- 17 And then from our simulation analysis, you
- 18 only need to measure 58 subjects to come up with the
- 19 25-subject panel. And the minimum of subject to
- 20 measure is 28, but you can -- you have to measure as
- 21 many as like 144 to fill the panel.
- 22 And so another advantage of the PCA is

- 1 like dimension including the model correlated with
- 2 those excluded, too.
- 3 So at this point, we have developed two
- 4 panel. And respirator designed to fit this panel, I
- 5 expect it to accommodate more than 95 percent of the
- 6 current US civilian work force. And both panel
- 7 represent an improvement over the LANL panel used
- 8 today. And it's up to the certification body or
- 9 standard to select which one to use.
- 10 And this is, yeah, future follow up.
- 11 Right now, we are looking at differences
- 12 among age or race and gender. And we also would,
- 13 yeah -- in fact, I did some comparison study between
- 14 the bivariate and PCA using the TIL data. And I was
- 15 able to -- they all fit the panel, even the slide
- 16 that Doug showed yesterday, scattered a lot. But if
- 17 you look at a smaller -- like you group some of the
- 18 cell, you can see very good pattern, particular for
- 19 PCA.
- Like if you have a large respirator, it
- 21 tend to fit the people in the large cell. And then
- 22 for small or medium, like we can see good pattern

- 1 there except all you do is counting. And we have a
- 2 hundred more, and I can count maybe most of them.
- 3 And it's kind of like not a statistical test, and I
- 4 do not -- we need more discussion to make any valid
- 5 conclusion there.
- And then, on the other hand, we also do
- 7 some headform using our three-dimensional data. And
- 8 then the picture on the, yeah, right is our first
- 9 generation of headform.
- 10 And so this is one individual from the
- 11 medium. But then it is just too much like
- 12 individual. So right now, we are looking at the
- 13 second generation, trying to average them.
- 14 So average the dimension for the people in
- 15 each of the cell based on a certain like sizing
- 16 scheme, and then pick the one that are close to the
- 17 average. And then -- and then maybe average a few
- 18 subjects.
- So by the end of the averaging, then we
- 20 do -- that headform will not be a single person. It
- 21 will be more representative a group of people.
- 22 And then we also have a study in China

- 1 that was that was like sponsored by, yeah, seven
- 2 manufacturers, and, yeah, it was last year. And
- 3 then we have finished the data collection and are
- 4 doing some analysis right now.
- 5 And then in the lab, we also look at
- 6 respirator fit, and we are also trying to measure
- 7 three-dimensional parameter and see would that be a
- 8 better prediction of respirator fit.
- 9 So this is a summary of what we have
- 10 published, and then one is in the queue right now.
- 11 It has been submitted.
- So, again, each one document -- each of
- 13 the step, that what we did, and address particular
- 14 question scientifically.
- And they have all been like going through
- 16 peer review also. Even it's not as rigorous as like
- 17 National Academy of Science Review, at least we need
- 18 to get our leadership division to approve. And then
- 19 before that, we have to get a review, four to five
- 20 internal reviewers to review them.
- 21 And then after I submitted them to
- 22 Journal, the Journal also have reviewer they have

- 1 there, like three people and the editorial review
- 2 board editor to review it.
- 3 So it's not like an eleven member panel,
- 4 NIOSH panel, but at least it has been going through
- 5 a long period of peer review.
- 6 So, again, like this is my own view, do
- 7 not represent a NIOSH at this point. So whatever
- 8 NIOSH decided to use, that would be NIOSH policy.
- 9 Thank you.
- 10 Any questions?
- 11 MR. HEINS: Bodo Heins from Draeger
- 12 Safety.
- I cannot remember if I probably already
- 14 gave you the suggestion. In the country where I
- 15 live, in the north of Germany, in
- 16 Schlesweig-Holstein, the capital city is Kiel.
- 17 And in Kiel, there is a university, and
- 18 there is a professor who is working since several
- 19 years on a survey for these dimensions.
- 20 Probably you should contact him because he
- 21 is working a long time on it, and he has a lot of
- 22 knowledge about that.

- l Thank you.
- 2 MR. ZHUANG: Good. I will get the
- 3 information from you. Thanks.
- 4 MR. SPAMPINATO: Phil Spampinato from ILC
- 5 Dover.
- 7 was very good, by the way, very comprehensive.
- 8 MR. ZHUANG: Thank you.
- 9 MR. SPAMPINATO: The any effect -- if any
- 10 effect was there from deformities, for example, a
- 11 broken nose, do you -- do you believe that the
- 12 research and the data that you have would allow this
- 13 95 percent successful fitting, even in the face of
- 14 deformities?
- In other words, were they part of your
- 16 sample population and so on?
- 17 MR. ZHUANG: That need to be investigated.
- 18 Right now, like, we just make sure that these the
- 19 kind of boundary for the subject.
- But, again, when you only sample 25, it
- 21 could be in the middle. It could be on the edge.
- 22 So whether, like once you select 25 and how good it

- 1 can fit the population, that need to be verified.
- 2 We cannot cram that.
- But at least it cover the population,
- 4 their facial characteristic, but how good -- and
- 5 even by a certification test, you cannot be sure
- 6 that it will fit everyone. No, that's not the case.
- 7 But then, like the panel, you can use it,
- 8 so you can recruit subject. You can -- and do your
- 9 own tests. But it will give you, yeah, good
- 10 results, like from fitting characteristics
- 11 standpoint.
- 12 MR. SPAMPINATO: Thank you.
- 13 MR. ZHUANG: Okay.
- 14 MS. DEMEDEIROS: Edna DeMedeiros, North
- 15 Safety Products.
- 16 Ziqing, once it gets past the National
- 17 Academies, because that's where it is now being
- 18 reviewed, is NIOSH planning to adopt this and
- 19 replace the Los Alamos panel for certification
- 20 testing?
- 21 MR. ZHUANG: I guess that question can be
- 22 answered later on. At this point, I am just working

- 1 on it. It will be up to policy branch.
- 2 I guess that Bill Newcomb is considering
- 3 right now, and, yeah, Les also.
- 4 MR. BOORD: Yeah. I think in our
- 5 presentations yesterday, we talked about our TIL
- 6 program.
- 7 MS. DEMEDEIROS: Right.
- 8 MR. BOORD: And that would be the obvious
- 9 place that we would -- that we have considered the
- 10 panel, and we will continue to consider it.
- So, yeah, I think eventually it will be --
- 12 work its way into certification through our TIL
- 13 program.
- MS. DEMEDEIROS: Do you think it would
- 15 also take over for the isoamyl acetate?
- MR. BOORD: I think eventually, that's the
- 17 vision.
- 18 MS. DEMEDEIROS: Okay. And it would be
- 19 more -- go out like to a Leonard certification?
- 20 MR. BOORD: Yeah. Actually, the TIL
- 21 program, the concept is that that will be addressed
- 22 through rulemaking processes.

- 1 MS. DEMEDEIROS: Okay.
- 2 MR. BOORD: So I see these different
- 3 research activities coming together in the TIL
- 4 program going through rulemaking into our
- 5 certification activities.
- 6 MS. DEMEDEIROS: Okay. All right. Thank
- 7 you.
- 8 MR. PFRIEM: Dale Pfriem, ICS
- 9 Laboratories.
- For Les, first a plea, then a question.
- 11 Please hurry up.
- 12 And then second, when you put this into
- 13 the certification procedures, if you would consider
- 14 both panel methodologies so that those of us who
- 15 would choose the more complicated method and deal
- 16 with that, but then not have to scour the cities,
- 17 looking for a Size 2, for instance, you know, less
- 18 work, if you could give us that option. And those
- 19 who have 500 employees from which they can choose
- 20 from test subjects, they can use the simplified
- 21 method, if you know what I mean.
- MR. BOORD: Yeah. I think it's a good

- 1 suggestion, and it certainly will be considered as
- 2 we go forward.
- 3 MR. PFRIEM: Thanks.
- 4 MR. BOORD: Thank you.
- 5 NANOTECHNOLOGY AND PERSONAL PROTECTIVE EQUIPMENT
- 6 MR. SHAFFER: Let's thank Ziqing for his
- 7 excellent presentation.
- 8 Obviously, I'm Ron Shaffer, and I'm going
- 9 to be giving the presentation on nanotechnology. I
- 10 want to start off by acknowledging my coauthors,
- 11 Pengfei Gao in the front row here, and Sammy
- 12 Rengasamy, who is in the second row there.
- Pengfei has done all of the work that they
- 14 will be talking about today related to protective
- 15 clothing, and Sammy has led the contracts or
- 16 conducted the studies involving respirators, so I
- 17 wouldn't be up here talking if it wasn't for their
- 18 efforts in getting this presentation together.
- This is the overview of the talk today.
- 20 To start off, I will just tell you a little bit
- 21 about nanotechnology and why there is some interest
- 22 in it.

- 1 I'm going to spend a lot of time talking
- 2 about the NIOSH document that's out on the web now.
- 3 It's called our, Approaches to Safe Nanotechnology
- 4 document. And because all of the findings and
- 5 pieces of information are taken right out of that
- 6 document today.
- 7 And then I will talk about what efforts we
- 8 have done, literature studies and measurements on
- 9 respirators, respirator filter media, and then
- 10 protective clothing.
- 11 So what are nanoparticles? The definition
- 12 is listed here. It is particles having a diameter
- 13 between one and a hundred nanometers. So that's,
- 14 you know, less than .1 micron sized particles, so
- 15 they are -- let me see if I can -- so you are
- 16 looking at basically right in this range and on
- 17 down, so particles here and one smaller.
- 18 So those are the types of things that
- 19 would be the smogs, fumes, tobacco smoke, viruses
- 20 are particles in that size range.
- 21 Those are all naturally occurring or
- 22 incident particles. What most people are concerned

- 1 about now are what is sometimes called engineered
- 2 nanoparticles. So those would be things like carbon
- 3 nanotubes, quantum dots, and things like that,
- 4 things that are grilled -- not grilled, but grinded
- 5 or milled during manufacturing that produce very,
- 6 very small particles.
- In fact, you know, that is becoming more
- 8 common today. I mean, now you have got -- you
- 9 certainly can buy pants from Dockers that have a
- 10 nanocoating on them, your nanopants.
- 11 Nanoparticles are used in coatings in
- 12 tennis balls. They are putting carbon nanotubes in
- 13 the panels for car parts, for the autobody parts for
- 14 a car.
- So nanotechnology is expanding in its
- 16 growth, and there has certainly been a lot of
- 17 concerns that have raised recently about the health
- 18 concerns of worker exposure to nanoparticles.
- 19 And this really isn't coming from NIOSH.
- 20 This is coming from the manufacturers, the people
- 21 that actually make those types of the products are
- 22 coming to NIOSH and saying, How should I outfit my

- 1 employees? What type of respirators should they be
- 2 wearing? What type of clothing should they be
- 3 wearing?
- 4 And so we are being almost dragged into
- 5 this by the large number of responses we are getting
- 6 for questions.
- 7 So this is a slide that just outlines some
- 8 of those health concerns. Make it very clear, I'm
- 9 not a toxicologist, and everything that is listed on
- 10 this slide is taken from the document that is shown
- 11 on the slide here.
- 12 This is the -- NIOSH's Approaches to Safe
- 13 Nanotechnology document. It's available on the
- 14 website. I have got the link there. Certainly with
- 15 that, you can contact me. I'll be happy to send you
- 16 a PDF copy of this report.
- 17 Basically it summarizes everything that
- 18 NIOSH knows about nanoparticles and nanotechnology
- 19 and the Occupational Safety and Health concerns.
- 20 This document was generated by our -- we
- 21 have a NIOSH steering committee I will talk about on
- 22 the next slide that has generated this document.

- 1 If you go to that website and you look at
- 2 the -- and you download the document, there is
- 3 actually links on there where you can provide
- 4 comments. There is a Federal Registry notice that
- 5 has been set up to provide comments on our approach.
- 6 So if you think that we have missed some
- 7 key literature references or we are understating or
- 8 overstating the problem, please feel free to put
- 9 comments into that docket, which you can get to
- 10 through the website.
- 11 So I'm not going to read the words on
- 12 here. I specifically just want to point out the
- 13 third bullet, because the key point there is that
- 14 the nanoparticles, generally speaking, have a larger
- 15 surface area than the larger particles. That
- 16 surface area is what gives them their great
- 17 properties and why they are being introduced into so
- 18 many products today. But it is also the reason why
- 19 there is some additional health concerns.
- 20 So in the NIOSH Nanotechnology Research
- 21 Steering Committee, the NTRC, it's a
- 22 cross-divisional group. NPPTL has four

- 1 representatives, myself, Pengfei, Sammy, as well as
- 2 George Bokosh (phonetic) who leads in the
- 3 application side, we are looking at all aspects of
- 4 the problem.
- 5 So we have got research projects in
- 6 toxicology, risk assessment, measurements. There is
- 7 even some interest now in looking at, you know,
- 8 explosions and things like that. So it's a broad
- 9 based program.
- 10 Obviously at NPPTL, our focus is in the
- 11 controls area, in particular, PPE.
- 12 So, you know, why are people interested in
- 13 this? Well, it has been brought to our attention
- 14 that there is some concerns out there that
- 15 nanoparticles could penetrate through PPE at higher
- 16 rates than larger particles.
- And it's not just, you know, my opinion on
- 18 that. That has actually been documented in probably
- 19 20 or more research gap reports that have been
- 20 written by a number of government agencies.
- 21 EPA, UK's Health and Safety Executive, all
- 22 have indicated that PPE studies should be high

- 1 priority to make sure that the smaller particles
- 2 don't penetrate at a larger rate than the larger
- 3 particles.
- In fact, there even was a recent hearing
- 5 in Congress on this issue where they emphasized that
- 6 more research really needs to be done on the
- 7 occupational safety and health aspects of
- 8 nanotechnology.
- 9 So we initiated two research projects, one
- 10 looking at air purifying respirators and one looking
- 11 at protective clothing.
- 12 We recognize that we can't do this alone,
- 13 and we have established a number of partnerships.
- 14 The big one that we established this summer was a
- 15 memorandum of understanding with Dupont.
- The Dupont company leads a consortium of
- 17 about 15 to 18 large companies, the Intels, Proctor
- 18 & Gambles of the world, that have a complementary
- 19 research program to also look at a lot of the same
- 20 issues.
- 21 So the memorandum of understanding spells
- 22 out how we are going to collaborate with them to

- 1 share data, make sure that we are using common test
- 2 platforms so that we can mutually get the best kind
- 3 of data published in the review editor.
- 4 Also ASTM and ISO have been using some of
- 5 the NIOSH reports in developing new standards.
- 6 There is an E56 committee at ASTM that looks at
- 7 nanotechnology, and they have a subgroup that looks
- 8 at occupational safety and health.
- 9 And ISO also has a committee that is
- 10 looking at this.
- In addition, we have formed some
- 12 partnerships with universities, and I will talk a
- 13 little bit later about the work we have done with
- 14 the University of Minnesota Center for Filtration
- 15 Research.
- 16 So I will start off, I'll talk about
- 17 what's in the safe working practices document from a
- 18 respiratory protection aspect.
- 19 This slide just shows, it's the standard
- 20 model describing single-fiber filtration theory,
- 21 showing the basically the four mechanisms that
- 22 particles get captured.

- 1 So on the X-axis is particle diameter, and
- 2 on the Y-axis is filter efficiency.
- 3 I will interchangeably use penetration,
- 4 which is just one minus -- penetration is basically
- 5 the inverse of the efficiency. So if something is a
- 6 hundred percent efficient, that means there was zero
- 7 percent penetration. So I use those
- 8 interchangeably.
- 9 So in this case, a higher number is good.
- 10 So filtration theory is and has been
- 11 experimentally confirmed very well down to, say,
- 12 about 20 nanometers, 20 nanometer particles, which
- 13 is about the same size limit that the -- on some of
- 14 the TSI commercial filtration systems cut off at.
- So there is very good data down to there.
- What's less, at least well experimentally
- 17 verified is what happens to the smaller particles.
- 18 In fact, there was one paper that was published as
- 19 an abstract at a filtration conference that
- 20 suggested that there was some -- an effect called
- 21 the thermal rebound effect, that the particles
- 22 literally bounced through the filter, particles less

- 1 than 20 nanometers.
- 2 And so what we decided to do was to
- 3 collect some experimental data to verify that the
- 4 filtration theory, single-fiber theory, is indeed
- 5 intact for those smaller particles and valid.
- So we -- at this time, we didn't have our
- 7 research aerosol lab set up, so we got a contract
- 8 awarded to University of Minnesota Center for
- 9 Filtration Research, had them construct a
- 10 nanoparticle test system, measured particles smaller
- 11 than 300 nanometers through various types of filter
- 12 media.
- 13 So these were not actual respirators; but
- 14 they were the filter media. And just to verify that
- 15 filtration theory holds for the smaller particles.
- 16 That report was -- that work was
- 17 completed, and a final report was given to us in
- 18 April. I'm pleased to say that that's actually
- 19 available now on the NPPTL website. If you go there
- 20 and look under research programs, you will find a
- 21 link to the Minnesota report.
- We are trying to get that cross-posted on

- 1 the NIOSH nanotech website so that you can get it
- 2 from a number of different places if you want to
- 3 take a look at.
- 4 But the Minnesota group is in the process
- 5 of getting this published in a peer review journal
- 6 as well. So the data will be available a number of
- 7 different ways.
- I will talk in the next few slides about
- 9 the conclusions and some the data for the Minnesota,
- 10 but I just wanted to mention that we have continued
- 11 along with this project. And Sammy Rengasamy has
- 12 developed a proposal that is currently in internal
- 13 peer review right now that would extend the studies
- 14 where we can basically are building a test system at
- 15 NPPTL.
- 16 We are going to validate the previous work
- 17 with NIOSH-approved respirators and also going to
- 18 look at the effect of particle size on the face seal
- 19 leakage.
- 20 So this is the test system that Minnesota
- 21 developed. And I'm not going to go through all of
- 22 the details here, but just wanted to point out that

- 1 they used silver nanoparticles in the size range of
- 2 about three to 20 -- three nanometers up to about 20
- 3 nanometers size is the particles that you can
- 4 generate with this furnace based system.
- 5 And this is some data from Hollingsworth
- 6 (phonetic) and Vo's fiberglass filter media. So,
- 7 again -- let's see if I can do this -- so, again, we
- 8 are looking at penetration as a function of particle
- 9 size for four different filter media.
- 10 And this data suggests that the smaller
- 11 particles get captured very well by the filter
- 12 media. In fact, for some of the particle sizes,
- 13 they basically were not able to get any of the
- 14 particles through the filter media.
- They also looked at electret filter media.
- 16 And again, you see a similar effect, that the
- 17 penetrations are very small for the very small
- 18 particle sizes. And this is through five different
- 19 types of filter media.
- 20 Through the Center for Filtration
- 21 Research, 3M is a member of that. And they
- 22 collaborated with us, and Minnesota contributed some

- 1 data, where they tested the same types of filter
- 2 media, but tested them at a setup in their
- 3 laboratory.
- 4 So what you see here is combined, the data
- 5 from the previous slide with some of the 3M data, so
- 6 you can see the distribution from, say, three
- 7 nanometers up to 300 nanometers or so.
- 8 So you see a very good connection between
- 9 the two lines and, again, confirming that the
- 10 smaller particles do get captured very well by the
- 11 electret filter media. And that you see a less
- 12 penetrating particle size in the range of 50
- 13 nanometers or so for those types of filter media.
- 14 So the summary from the Minnesota contract
- 15 was that penetration decreased with decrease in
- 16 particle size less than 20 nanometers.
- 17 The filtration theory or the filtration
- 18 data supported the single-fiber filtration theory
- 19 down to three nanometer in size. And we saw no
- 20 evidence for thermal rebound.
- 21 Since the Minnesota work has been done, a
- 22 group in Germany has also done similar experiments

- 1 and found similar findings. And I think there are
- 2 other couple of research groups across the country,
- 3 the Dupont folks as well, that are also in the
- 4 process of -- with different particles generation
- 5 system, are finding similar results.
- 6 So this is the interim recommendations
- 7 that are in the Approaches to Safe Nanotechnology
- 8 document.
- 9 Obviously our advice is still that
- 10 respirators may be necessary when other control
- 11 methods are not adequate.
- There are no exposure limits for
- 13 engineered nanoparticles, and the decision is still
- 14 based on professional judgment. But what we can say
- 15 about the respirators is that there certainly has
- 16 been no deviation from single-fiber theory for the
- 17 particle sizes that we have tested and Minnesota has
- 18 tested.
- 19 And that you get -- when used within the
- 20 context of an OSHA respiratory protection program,
- 21 it is likely that the respirators will be useful for
- 22 protecting workers.

- 1 Now I'm going to switch gears and talk
- 2 about protective clothing.
- 3 Whereas we had a lot more data on the
- 4 respirator side, we found a lot less information in
- 5 the protective clothing. And, in fact, we found
- 6 that there were no guidelines currently available to
- 7 guide end users to select clothing or gloves for
- 8 prevention of dermal exposure to nanomaterials.
- 9 There has been little data published on
- 10 penetration. There is an ASTM standard that uses a
- 11 27 nanometer bacteriophage, and there is at least
- 12 some data out there on larger particles.
- We initiated a research study that
- 14 actually looked at a broader set of issues on
- 15 basically systems level aerosol testing for
- 16 protective ensembles.
- To that study, we have added some
- 18 nanoparticle work. And Pengfei is the project
- 19 officer for that.
- I was at a recent conference just a couple
- 21 of weeks ago, an elevated wind studies conference in
- 22 September. I came across a number of military

- 1 reports that actually have studied particle
- 2 penetration through clothing, which was something
- 3 that we hadn't come across in our literature search.
- 4 The military studies are often buried in a
- 5 government report that's very hard to find or in an
- 6 obscure test method. But at the meeting, I did get
- 7 some contacts, so we are in the process of gathering
- 8 this new information.
- 9 But this slide just summarizes essentially
- 10 some of the presentations that were at that
- 11 conference, basically that aerosol penetration of
- 12 permeable fabrics is also particle size dependent.
- And the Battelle work in particular found
- 14 that penetration was consistent with respirator
- 15 filtration theory, although the penetration values
- 16 were much larger because they are not designed to be
- 17 respirator filter media, they find the most
- 18 penetrating particle size and the very smallest
- 19 particles, the nanoparticles, were captured much
- 20 better than the larger particles.
- 21 What we have been focusing on at NPPTL is
- 22 developing a passive aerosol sampler that would be

- 1 able to be placed on a person in a systems level
- 2 test to measure particle penetration, something that
- 3 would use minimal flow.
- 4 The feeling is that active sampling
- 5 methods may overestimate particle penetration
- 6 because you are adding an additional driving force.
- 7 And our belief is that samplers should not disturb
- 8 the PPE wearer environment.
- 9 So the concept that Pengfei and his team
- 10 have come up with is to use a magnetic sampler,
- 11 basically to use a very small magnet. And then use
- 12 a challenge particle which has magnetic
- 13 susceptibility. So that when it comes in proximity
- 14 to the magnet, basically it becomes attracted and
- '15 gets trapped in there.
  - 16 So the idea is you don't apply an external
  - 17 sampling force, just enough force to get the
  - 18 particle to stick to the magnet so that, during
  - 19 handling, it would stay there.
  - 20 And, you know, there is a number of
  - 21 advantages to this type of method. You know,
  - 22 certainly it would be inexpensive, and also a wide

- 1 range of particle sizes would be available if we
- 2 used some iron oxide particles.
- 3 The detection would be accomplished,
- 4 basically, you would take the magnet sampler out,
- 5 take it back to a lab, use either a Colorimetric
- 6 method or some other more sophisticated methods,
- 7 SEMs or TEMs, or you can use some magnetic
- 8 susceptibility.
- 9 I should say that this project was part of
- 10 the project that went out for external peer review,
- 11 and we are still responding to the some of the
- 12 comments that -- that some of them did raise on some
- 13 of the issues of the detection methods, and we are
- 14 revising the proposal based on that.
- 15 Some preliminary data -- and I should
- 16 point out this was collected before our aerosol lab
- 17 was developed, so Pengfei did his best with the
- 18 facilities in our clothing research labs.
- 19 You will see sort of a homemade aerosol
- 20 test system that we built, and of course it has
- 21 updated in the last year.
- 22 So this was some data from last year,

- 1 actually. This just shows the characterization of
- 2 the passive aerosol sampler response. Basically, we
- 3 filled this bag with an aerosol concentration just
- 4 to see if the response of the sampler was
- 5 proportional to concentration in the chamber.
- 6 We looked at two prototypes, and this is
- 7 of the data that we got. You see that, yes, you do
- 8 get a proportional response so that the more -- or
- 9 the higher level of concentration of particles in
- 10 that chamber, the more material is collected on the
- 11 sampler.
- 12 It's not a -- the variation is more than
- 13 what we would like to see, but we were happy to see
- 14 that there was a proportional response. Certainly
- 15 additional work is being done to validate this and
- 16 to improve the method.
- We also did an experiment that we actually
- 18 tested the penetration through a swatch of fabric,
- 19 in this case, a Nomex fabric. So we basically used
- 20 an ASTM F-739. It's a vapor penetration cell. Put
- 21 particles in the top half, put the fabric in the
- 22 middle, and put the magnetic sampler at the bottom.

- 1 So there was an ambient condition, so we
- 2 were not drawing the particles through the fabric
- 3 sample. We used a prototype one for these
- 4 measurements.
- 5 This is some the data that we got. This
- 6 just shows the column on the -- the first column
- 7 under the cell just shows type of fabric that was in
- 8 the cell at that time. Nomex parafilm, which
- 9 basically would be a blank. It would be nothing --
- 10 well, nothing would get through an opening, which
- 11 would be everything should get through.
- 12 And so this is just some of the average
- 13 numbers collected and the standard deviation and the
- 14 number of experiments done.
- We do agree that the variation is a little
- 16 higher than what we would like to see. But as a
- 17 proof of concept, we were encouraged that you could
- 18 get a protection factor from a system, a crude setup
- 19 like this. And it -- for a Nomex fabric such as
- 20 this, we got a protection factor of six.
- 21 This is data that is a little more current
- 22 from the aerosol research lab. Pengfei has built a

- 1 system this summer that generates a monodisperse
- 2 nanoaerosol stream. This just shows a photograph of
- 3 that setup. The data in the lower half here is
- 4 basically the particle size distribution from three
- 5 different experiments.
- And then this just shows the long-term
- 7 stability of that aerosol stream. So the next set
- 8 of experiments would be to take this aerosol stream
- 9 and basically put fabric samples in sort of a wind
- 10 tunnel type configuration, a miniature one, and then
- 11 subject that particle stream to the fabrics and then
- 12 detect what comes out on the other side.
- 13 So this is just some preliminary data that
- 14 we have been collecting.
- 15 So I want to summarize the clothing
- 16 results.
- The prototype, based on magnetic sampling,
- $18 \ \mathrm{does} \ \mathrm{allow} \ \mathrm{a} \ \mathrm{minimal} \ \mathrm{or} \ \mathrm{sometimes} \ \mathrm{we} \ \mathrm{call} \ \mathrm{it} \ \mathrm{a} \ \mathrm{zero}$
- 19 flow collection of the iron oxide aerosols. We do
- 20 get a proportional response, but we feel that
- 21 additional characterization is necessary.
- We think that it will be applicable for

- 1 bench scale fabric penetration. Its applicability
- 2 has already been shown, but further development is
- 3 underway.
- And finally, we do need to incorporate and
- 5 analyze the results from some of these military
- 6 studies to update the NIOSH recommendations so that
- 7 that additional information is available to a
- 8 broader audience.
- And with that, I will be happy to take any
- 10 questions.
- 11 At this point, we will -- some extra
- 12 slides. We turn it over to Jon Szalajda, who is
- 13 going to talk about reusability of filtering
- 14 facepiece respirators.
- 15 REUSABILITY OF FILTERING FACEPIECE RESPIRATORS
- 16 MR. SZALAJDA: At this point, you know,
- 17 with everyone having the PowerPoints there, I wish
- 18 there was some sort of reward I could give you all
- 19 for hanging in there until the end. But
- 20 unfortunately, I think the only reward I can give
- 21 you is keeping my comments brief.
- 22 With that, we will move into the

- 1 presentation.
- 2 I think at least a little bit of
- 3 information to keep in mind is that the planning
- 4 efforts for our research program and the reusability
- 5 and handling of filtering facepiece respirators
- 6 started some time ago. And it has been a very, very
- 7 dynamic type of road that we have been on.
- I think a couple of things of note above
- 9 and beyond what I had mentioned yesterday was the
- 10 ILM report that the Department of Health and Human
- 11 Services requested, you know, in trying to identify
- 12 issues associated with the reuse of medical masks
- 13 and N95 filtering facepiece respirators.
- 14 And this topic has also, believe it or
- 15 not, gotten the interest of Congress. And if you go
- 16 through the current appropriations language, you
- 17 would see that the Senate is recommending that we do
- 18 an evaluation of respirators for effectiveness
- 19 against transmission of influenza and other
- 20 pathogens.
- 21 So what really precipitated that ILM
- 22 study, DHHS's request to the National Academies to

- 1 have the Institute of Medicine conduct this type of
- 2 evaluation.
- 3 I think when you look at healthcare
- 4 recommendations for respiratory protection, CDC
- 5 recommends the use of NIOSH certified N95 filtering
- 6 facepiece respirators or higher for dealing, at
- 7 least as far as providing the minimum level of
- .8 respiratory protection for healthcare workers
- 9 dealing with the influenza viruses or other
- 10 infectious aerosols.
- And it's apparent that, you know, in the
- 12 event of a pandemic, looking historically at other
- 13 pandemics that have occurred in the past century,
- 14 that healthcare workers and the general public will
- 15 potentially have an increased reliance on these
- 16 types of respirators for infection control.
- 17 What did the IOM tell us? Well, I think
- 18 the one recommendation that a lot of people latched
- 19 onto is there is no recommendation for
- 20 decontamination. But, however, if you go through
- 21 and you specifically look at the specific
- 22 recommendations that the IOM put forward, they had

- 1 recommended a couple of things.
- 2 And few of the things we are addressing in
- 3 this research program deal with the efficacy of
- 4 decon methods that a hospital setting could use on
- 5 respirators to decontaminate the filtering
- 6 facepieces without causing a negative impact on the
- 7 respirator integrity.
- 8 The other aspect of that is the handling
- 9 aspect, and I think Ron had mentioned earlier today
- 10 this is probably the last time that you will see the
- 11 title of this project the way it is.
- We will probably modify the title to
- 13 reflect the handling aspect of the system as well  $\sim$
- 14 because, you know, part of the issue is if you do
- 15 have a filtering facepiece respirator that has been
- 16 contaminated with a viral agent, you know, what
- 17 happens with regard to the handling of that
- 18 respirator, what types of controls need to be in
- 19 place to avoid an individual from contacting the
- 20 respirator and becoming contaminated that way.
- 21 Another aspect of that also is looking at
- 22 the re-aerosolization of the viruses off of the

- 1 respirator itself.
- 2 And I think one of the things that's going
- 3 to be important, an important product out of this
- 4 research is that when you think of in general that
- 5 hospitals tend to have lower concentration of
- 6 particulates in their settings, and the reuse may be
- 7 more dependent on the infection control procedures
- 8 that we evaluate in this process than the actual
- 9 decontamination proceedings themselves.
- This is the fun part of the presentation,
- 11 at least as far as how we are going to do the work.
- 12 And I want to at least identify a couple of the key
- 13 players that are going to be doing some of the
- 14 initial tasks.
- Dennis Viscusi is sitting up here in the
- 16 front in the yellow shirt. He is going to be our
- 17 task leader for task one, which is going to look at
- 18 the effect of decon on filtering facepiece
- 19 respirators' performance.
- And as part of that task, we are going to
- 21 be looking at things, doing things, the base types
- 22 of research activities that you would expect in any

- 1 type of study. You know, we are going to do a
- 2 literature survey looking at trying to identify
- 3 decontamination methods that could potentially be
- 4 used against filtering facepiece respirators.
- 5 And in particular, I then think when you
- 6 think about the materials of construction that roll
- 7 into the fabrication of these types of systems, we
- 8 are going to try to focus our literature survey to
- 9 look at decon methods that may have been developed
- 10 that specifically look at those materials.
- We are also going to do some screening
- 12 studies as part of this evaluation. Initially we
- 13 are going to try to identify potentially up to 10
- 14 different types of decontamination methods for:
- 15 consideration and look at doing some initial
- 16 screenings with N95 respirators and P100 respirators
- 17 under two different conditions, either, you know,
- 18 maybe depending on the type of decontamination, but
- 19 maybe things along the lines of sprays or soaking
- 20 the respirator in the solution and then determining
- 21 any degradation in the filtration performance of the
- 22 respirator.

- 1 Once we go through that initial screening,
- 2 then we are going to go and expand and do some
- 3 additional studies looking at a broader population
- 4 of filtering facepiece respirators.
- 5 We are going to add surgical masks/N95
- 6 type systems. And we are also going to look at
- 7 filtering facepiece respirators that possess some
- 8 type of antiviral sterilization types of
- 9 capabilities that are integrated into the respirator
- 10 itself.
- 11 When you look at task two, the intent is
- 12 to develop a standard test procedure, a reproducible
- 13 test procedure that can quantify decontamination.
- 14 effectiveness. That effort is going to be led by
- 15 Evanly Vo, who is sitting in the back of the room.
- 16 And the intent here is to look at
- 17 developing a generic methodology that could be
- 18 applied to any type of decontamination agent that
- 19 could be used in the decontamination of a filtering
- 20 facepiece respirator.
- 21 We are intending with this effort to
- 22 collaborate with the ASTM F-23 committee to help us

- 1 with the development of that methodology.
- 2 Task three is going to address the
- 3 concerns, the infection control procedure concerns
- 4 about the survivability of a virus on the -- virus
- 5 simulant on the filtering facepiece respirator where
- 6 we are going to contaminate filtering facepiece
- 7 respirators under controlled conditions and see what
- 8 happens.
- 9 You know, it might be the case that in a
- 10 contaminated respirator, if it's left alone for a
- 11 day or two days, that may be enough to allow the
- 12 reuse of that type of system.
- 13 Task four, the re-aerosolization, is going
- 14 to be conducted on a contract that we have with the
- 15 Battelle Columbus Laboratories, and this is -- we
- 16 selected Battelle to do this work.
- 17 They had done initial studies for us
- 18 using -- on re-aerosolization of virus particles,
- 19 and we felt that the contract with Battelle was a
- 20 good fit to conduct this effort for us.
- 21 When you look at the task and our
- 22 relationships, the task five and six are really

- 1 dependent on the outcomes of one and two.
- 2 And one of the things that I think it's
- 3 important to note when you are looking at the
- 4 potential of developing a method, I mean, from our
- 5 perspective, this project will still be a success
- 6 even if the end result is there is no decon method
- 7 that can be used to decontaminate, effectively
- 8 decontaminate a filtering facepiece respirator.
- 9 You know, the one thing that we have noted
- 10 and the IOM noted as part of the research was there
- 11 really is a lack of research in this area.
- 12 And we are hopeful that by going through,
- 13 you know, the comprehensive screening effort that we
- 14 will be able to make a determination whether or not
- 15 there are methods that could be used and then take
- 16 them to fruition.
- 17 If not, then that's good information to
- 18 have that can be relayed to the stakeholder
- 19 community as a whole.
- The other aspect to keep in mind, too,
- 21 with this process is, this is really a respirator
- 22 shortage emergency type of situation.

- We don't anticipate, you know, any
- 2 guidelines, at least as far as the methods are
- 3 concerned, being implemented and put into practice
- 4 unless there is an actual pandemic where there are
- 5 respirator shortages in place. You know, this is
- 6 not something to, you know, circumvent existing
- 7 recommendations for disposal of contaminated
- 8 respirators.
- 9 Again, it is addressing an emergency, you
- 10 know, type of situation where there could be a
- 11 respirator shortage.
- But just to kind of finish the effort with
- 13 the slides, in task five, we are going to take the
- 14 results of task one and task two and take the method
- 15 that was developed in task two, look at the
- 16 promising characteristics identified -- or promising
- 17 decontamination methods that were identified in task
- 18 one, marry those two things together and see what
- 19 happens.
- 20 Another product of task five is going to
- 21 be when you look at the types of systems that have
  - 22 the antiviral capabilities, we are going to evaluate

- 1 in task five what the reactive by-products are of
- 2 those types of systems, whether or not when you --
- 3 excuse me -- whether or not there are any
- 4 by-products that we should be concerned about coming
- 5 through the respirator into the breathing zone for
- 6 people that are wearing those types of systems.
- 7 Task six ties things together. Once you
- 8 have a decontaminated respirator, how does that
- 9 affect -- how does any changes in the integrity
- 10 affect the fit of the respirator to the individual.
- 11 And this will all be tied up at some point in a nice
- 12 final report which could be used to generate
- 13 guidance documents for the stakeholder community.
- One thing that some of you I know have
- 15 noted that's in -- been recently published in the
- 16 Federal Register notice is an announcement where we
- 17 are looking to try to identify some of these
- 18 antiviral technologies to consider as part of the
- 19 candidate respirators that we are going to evaluate
- 20 in the various tasks.
- 21 And this is a hierarchy of how we are
- 22 going to make a selection on the types of

- 1 respirators that are going to be used in the system.
- 2 The first emphasis is going to be looking
- 3 at existing products that are currently in the work
- 4 force that meet and conform to NIOSH part 84
- 5 requirements.
- Then we will go from there, looking at
- 7 products that may be in the loop to be certified or
- 8 products that come from manufacturers that have
- 9 existing NIOSH certifications for other types of
- 10 respirators.
- 11 But we also wanted to leave the
- 12 announcement open enough that, if there was a novel
- 13 technology that's currently being explored in the
- 14 industry that could have a widespread application,
- 15 we wanted to be able to address that as part of the
- 16 study.
- 17 At this point, if you are interested in
- 18 participating, all you need to do -- I'm the contact
- 19 point in the Federal Register. All you need to do
- 20 is send me an email or a letter just identifying
- 21 your interest in participating or having your
- 22 products being considered as part of the process.

- We are not looking for hardware or
- 2 anything else at this time. We are just looking to
- 3 identify interest in the project. And then we will
- 4 go through this hierarchy of consideration that was
- 5 in the Federal Register notice, at least as far as
- 6 to select potential candidates for inclusion in the
- 7 project.
- 8 One thing I did forget to mention, I was
- 9 talking about the research, the research itself.
- 10 We are in the process of developing a
- 11 proposal. We have developed a proposal that we are
- 12 going to use to execute the various tasks in the
- 13 study.
- 14 Right now, we have gone through an
- 15 internal review of the proposal within NPPTL.
- 16 Dr. D'Alessandro has gone out looking for external
- 17 peer reviewers looking for a combination of
- 18 manufacturer industry representatives, academia, and
- 19 stakeholders to review the proposal and give us
- 20 suggestions and critique the work that we wanted to
- 21 execute.
- 22 What I would suggest was, depending on

- 1 where you are in those different categories, ISEA
- 2 and IAHA, the Industrial Hygiene Association, have
- 3 the lead, at least in terms of identifying potential
- 4 proposal evaluators.
- 5 So if you are interested in being part of
- 6 the evaluation process, I would suggest you could
- 7 talk to Dr. D'Alessandro or talk to your contacts at
- 8 those organizations to indicate your interest in
- 9 being involved.
- The schedule, at least as far as how it is
- 11 currently laid out, is resource driven. I mean
- 12 based on the existing workloads within the branch
- 13 and the other activities going on and the amount of
- 14 resources that were identified by CDC to conduct the
- 15 program, we have laid out a schedule to bring the
- 16 project to fruition.
- 17 Where do we expect to end up with outcomes
- 18 for this project? I think there's three
- 19 different -- there is three specific areas where I
- 20 think we are going to expand the knowledge base in
- 21 these areas.
- One is the performance data on the

- 1 filtering facepiece respirators that incorporate
- 2 decontamination capabilities. Now, these are
- 3 relatively new products to the market.
- 4 We would like to expand our knowledge base
- 5 on them as far as their effectiveness and as far as
- 6 any issues that may be associated with the use of
- 7 those types of respirators.
- Also, depending on how the project goes,
- 9 there is a consideration for making modifications to
- 10 what CDC currently recommends for reusability of
- 11 filtering facepiece respirators.
- 12 And ultimately the product will come up
- 13 with an output that can be used or can be
- 14 established and documented in an ASTM procedure
- 15 where others in industry or academia can go out and
- 16 do their own studies to look at decontamination
- 17 effectiveness on filtering facepieces with other
- 18 agents.
- Now, when you look at how we are
- 20 conducting the program, we are going to be using a
- 21 viral simulant which will hopefully replicate or
- 22 represent, you know, animal viruses and is based on

- 1 existing research that's been done.
- 2 But that's not to say that there isn't an
- 3 opportunity for work in other laboratories to look
- 4 at other types of viruses and other types of
- 5 settings to implement this procedure to develop
- 6 knowledge and use that knowledge to protect workers.
- 7 So with that, I would be happy to take any
- 8 questions.
- 9 MR. BERGMAN: Excuse me. Mike Bergman,
- 10 the SEA Group.
- Jon, thank you very much for your
- 12 presentation, and it is a very important study that
- 13 you are undertaking.
- 14 I would like to ask that you also consider
- 15 looking at elastomeric half-masks with mechanical
- 16 P100 filters as a complement to your study in that
- 17 that type of system will also be a protective
- 18 measure in the event of a pandemic influenza.
- 19 Thank you.
- MR. SZALAJDA: Thank you, Mike.
- I think that's a good consideration. You
- 22 know, when you look at the CDC recommendations of

- 1 using an N-95 or higher, you know, half-mask
- 2 respirators are used within the various settings,
- 3 and that could be a good consideration for us to
- 4 consider.
- 5 MR. GREEN: Larry Green, Syntech
- 6 International.
- 7 And I was wondering about the studies
- 8 regarding PAPRs for that. We have a lot of
- 9 customers that -- in the health care that want to go
- 10 to the even higher levels of protection and use
- 11 PAPRs to get the reduced CO2 loadings for those
- 12 critical personnels.
- 13 And I'm sure they would like to -- this --
- 14 all of this study is very closely related to what
- 15 our customers are telling us that they want to see.
- 16 MR. SZALAJDA: Okay. That's a good
- 17 comment as well. Thank you.
- I guess, again, when you look at the
- 19 initial approach to the project, we are closely
- 20 following the recommendations from the IOM looking
- 21 at the filtering facepiece respirators, but that's
- 22 not say that eventually a project could evolve to

- 1 look at other categories.
- 2 MR. SELL: Bob Sell, Draeger Safety.
- 3 This is a kind of a two-person question by
- 4 another member of the audience, but will you
- 5 evaluate the effect on the electrostatic charge on
- 6 some of these filtering facepieces after the
- 7 decontamination?
- 8 MR. SZALAJDA: Well, the approach that we
- 9 currently have defined is to look at doing the
- 10 particulate challenges using sodium chloride that is
- 11 currently done, you know, for the certification of
- 12 filtering facepiece respirators.
- 13 So we will look at the contamination --
- 14 we'll do the contamination/decontamination, and then
- 15 measure the filtration efficiency following that,
- 16 and then make a determination of the delta between
- 17 the untested -- or the unchallenged filtering
- 18 facepiece and then the challenged.
- 19 Great. Well, thank you very much.
- 20 I guess what I would like to do before --
- 21 while Les is in the process of coming up, somewhere
- 22 in your pamphlet, there is another survey to be

- 1 filled out.
- 2 And if you can take 30 seconds and fill
- 3 that out and start filling that out while Les is
- 4 doing his concluding remarks, I don't think he will
- 5 mind.
- 6 Thank you very much.
- 7 MR. SHAFFER: Let's thank Jon for his
- 8 talk.
- 9 CLOSING REMARKS
- MR. BOORD: Jon, thanks for that last
- 11 comment. That was the first thing on my list.
- 12 So, yes, if you could fill out the
- 13 customer satisfaction surveys, we would greatly
- 14 appreciate that.
- And, again, remember that the lower
- 16 left-hand corner has the date. There were two
- 17 surveys; one for yesterday and one for today. So if
- 18 you do that, we would greatly appreciate it.
- And keeping true to schedule, we promised
- 20 to conclude by 11:30, so after I take my one hour,
- 21 we will be...
- 22 So I just have a few closing comments.

- 1 First of all, we certainly want to thank
- 2 all of you for attending this meeting. We hope that
- 3 the information that's been presented can be of some
- 4 use to you, and we also hope that the result of the
- 5 discussions and presentations have given you a
- 6 greater awareness and understanding for, first of
- 7 all, NIOSH, the institute, and some of the future
- 8 directions and activities for the institute relative
- 9 to the sector based program portfolio; the role that
- 10 NPPTL has within the institute, and some of our
- 11 programs and projects; and our operational
- 12 strategies and focus for the laboratory.
- 13 And then, finally, the concepts and the
- 14 ideas that we have and are building for the greater
- 15 picture of the personal protective technology
- 16 cross-sector for the institute.
- 17 The programs and the projects that we
- 18 presented yesterday and today are a really good
- 19 representation of the activities at the laboratory,
- 20 but that's not everything.
- 21 There are projects and programs that have
- 22 not been discussed during this meeting, but I think

- 1 they do give a very good cross-section of our
- 2 activities.
- 3 I would encourage you to periodically
- 4 visit our website for updates on various concept
- 5 papers, concept -- standards development concept
- 6 updates, and for other information relative to our
- 7 research programs and ongoing activities.
- 8 You are certainly welcomed and encouraged
- 9 to make contact with any of the researchers, program
- 10 managers, or others from within the laboratory to
- 11 share your ideas.
- 12 Yesterday, during the discussions, we
- 13 mentioned the dockets. And I think in your
- 14 information package, you have the listing of all of
- 15 the open dockets that we have for the laboratory.
- 16 And there will be additional docket
- 17 numbers added for the PPT cross-sector and perhaps
- 18 for some of our ongoing research activities.
- 19 So, again, I would encourage you to visit
- 20 our website to stay familiar with our programs.
- 21 And, finally, I would just like to mention
- 22 that, from our perspective, I think the meeting has

- 1 been very useful.
- 2 It is always good for us to -- you know,
- 3 it is good to go through the motions to say you have
- 4 outreach. It's good to get out there and try to do
- 5 things.
- 6 But I think that for me, it has really
- 7 been a very good experience to have the opportunity
- 8 to share with you the things we are doing and to
- 9 have the side bar conversations and discussions to
- 10 further facilitate the information exchange.
- I would look to trying to do a similar
- 12 type meeting on an annual basis. I think, as I
- 13 explained yesterday, our systematic way for
- 14 strategically moving the organization forward is
- 15 based on the federal fiscal year.
- 16 We go through our systematic strategic
- 17 planning, and we kick off the year in the first of
- 18 October. And if there changes made to our programs,
- 19 new programs added, that's the time when it really
- 20 takes effect.
- 21 So I think there would be benefit to
- 22 having a similar meeting to this on an annual basis

```
1 to keep you informed of what we are doing, of our
2 new programs, and our activities.
             So your customer satisfaction surveys are
 3
 4 very important to help us make that decision.
             With that, I think we can adjourn this
 5
6 meeting. And, again, thank you for your time and
7 your attention and your ideas.
             Thank you.
 8
             (Whereupon, the proceedings in the
10 above-captioned matter were concluded at 11:33 a.m.)
11
12
13
14
15
16
17
18
19
20
```

21

22

| 1  | CERTIFICATE OF REPORTER                              |
|----|------------------------------------------------------|
| 2  | I, Joseph A. Inabnet, do hereby certify              |
| 3  | that the transcript of the foregoing proceedings was |
| 4  | taken by me in Stenotype and thereafter reduced to   |
| 5  | typewriting under my supervision; that said          |
| 6  | transcript is a true record of the proceedings; that |
| 7  | I am neither counsel for, related to, nor employed   |
| 8  | by any of the parties to the action in which these   |
| 9  | proceedings were taken; and further, that I am not a |
| 10 | relative or employee of any attorney or counsel      |
| 11 | employed by the parties thereto, nor financially or  |
| 12 | otherwise interested in the outcome of the action.   |
| 13 |                                                      |
| 14 |                                                      |
| 15 |                                                      |
|    | Joseph A. Inabnet                                    |
| 16 | Court Reporter                                       |
| 17 |                                                      |
| 18 | -                                                    |
| 19 |                                                      |
| 20 |                                                      |
| 21 |                                                      |
| 22 |                                                      |