National Personal Protective Technology Laboratory

Evaluation of High-Flow Filter Efficiency Testers for PAPR

Policy and Standards Development Branch

Gary Walbert

December 2, 2008 Docket 008A

- **Project Description Planned Activities**
- and TSI, Inc. (TSI) Model 3120 High-Flow Filter Efficiency efficiency level determination testing Evaluate Air Techniques International (ATI) Model TDA-500P Testers for use in PAPR95 and PAPR100 particulate filter
- the required testing Identify High-Flow Filter Efficiency Tester(s) acceptable for
- Formulate Standard Test Procedure for Particulate Filter Operating Procedure(s) for acceptable High-Flow Filter Efficiency Tester(s) Efficiency Level Determination Testing for PAPR and

- Project Goals Specific Testing for Each High-Flow Filter Efficiency Tester
- Verify high-flow filter efficiency testers conform to advertised specifications and PAPR Standard
- rates ranging from 100 to 500 Lpm Determine DOP aerosol loading as a function of time at flow
- Determine the time required to load 1000 mg of DOP aerosol
- rates ranging from 100 to 500 Lpm Determine the DOP aerosol particle size distribution at flow
- Identify lab technician issues

- Operating requirements for ATI and TSI High-Flow Filter Efficiency Testers
- Additional compressed air required to accommodate higher flow rates
- Compressed Air Requirements:
- ATI: 18 scfm at 80 psig
- TSI: 25 scfm at 100 psig

- Operating requirements for ATI and TSI High-Flow Filter Efficiency Testers (cont.)
- Vacuum pump required to overcome higher pressure drop flow rates across filter test bed and DOP discharge filter due to higher
- Vacuum Requirements:
- ATI: 22.5 acfm at 19 inches Hg
- TSI: 25 acfm at 7.5 inches Hg

- Operating requirements for ATI and TSI High-Flow Filter Efficiency Testers (cont.)
- Higher exhausting capabilities required due to higher flow
- DOP Aerosol Exhaust Requirements:

ATI: 48 scfm

TSI: 25 scfm

aerosol carryover venting ATI exhaust requirements higher than TSI due to DOP

ATI TDA-500P High-Flow Filter Efficiency Tester

TSI 3120 High-Flow Filter Efficiency Tester

- **DOP Aerosol Loading Measurements**
- inches in diameter enlargement of the filter test bed to approximately 8-1/2 Determination of DOP aerosol loadings required an
- Reduce the pressure drop at the higher flow rates
- Collect sufficient DOP aerosol to obtain accurate change in weight measurements
- used for collection of the DOP aerosol Type A/E glass fiber filters, 265-mm in diameter, are being
- prevent filter blowout inch thick lattice is being used to support the filter and A support grid, with $\frac{1}{2}$ -inch X $\frac{1}{2}$ -inch openings and a $\frac{1}{16}$ -

- ATI TDA-500P High-Flow Filter Efficiency Tester
- 8-1/2-inch in diameter filter test bed with support grid

- Flow Rate Effect on DOP Aerosol Loading
- flow rate Initial testing indicates DOP aerosol loading is dependent on
- to run consistency of DOP aerosol loading measurements from run Recent testing employing a hand valve to control the flow rate resulted in an improvement in the repeatability and
- Mass flow controllers installed in place of existing mass flow meters would improve aerosol loading stability

Flow Rate Effect on DOP Aerosol Loading - No Flow Control

Flow Rate Effect on DOP Aerosol Loading – Flow Control

- Vacuum Pump Noise Generation
- With the vacuum pump close coupled to high-flow filter efficiency tester, noise level in test lab is high
- Vacuum pump should be located remotely for commercial models
- Vacuum pump noise may be mitigated by sizing the vacuum the PAPR test application pump to final PAPR standard gas flow rate requirements and

Waste Gas Venting

- ventilation system such as a ventilated hood Higher flow rates result in higher waste gas flow rates that need to be exhausted from the test area through a controlled
- before venting gas is filtered upstream of vacuum pump to remove DOP ATI and TSI High-Flow Filter Efficiency Tester aerosol carrier
- aerosol generator vent, resulting in higher waste gas venting exhaust to balance excess DOP aerosol generation from ATI High-Flow Filter Efficiency Tester requires secondary requirements
- TSI High-Flow Filter Efficiency Tester vents directly from aerosol generator

