National Personal Protective Technology Laboratory

Powered Air-Purifying Respirator Work Rate Evolution (PAPR)

Policy and Standards Development Branch

Rich Vojtko

December 2, 2008 Docket 008A

Stages of PAPR Work Rate Evolution

- Current Approval Method
- Constant flow requirement
- Work Rates Proposed in December 21, 2007 Draft of PAPR Standard
- work rate Positive pressure at maximum manufacturer specified
- **Additional Work Rates Now Under Consideration**
- Breath Assisted and Positive Pressure PAPR classifications
- Approval requirement to be determined for Breath Assisted class

Current PAPR Airflow Requirements

- Minimum constant airflow required for approval
- Respiratory inlet covering mounted on headform in sealed chamber with blower outside
- Vacuum blower removes air from chamber to maintain zero pressure differential between chamber and atmosphere
- Vacuum blower flow monitored with dry test meter

Current PAPR Airflow Requirements

Currently Approved Minimum Flow Rates

Loose-fitting PAPR	Tight-fitting PAPR
170 Lpm	115 Lpm

In most cases, these flows are capable of work rate corresponding to 40 Lpm breathing rate zone of the PAPR respiratory inlet covering at a maintaining positive pressure in the breathing

- Original objectives of multiple work rate approvals
- Improved protection
- Sufficient airflow
- Positive pressure
- Flexibility
- Comfort
- Cost savings

Proposed NIOSH Work Rates (Sinusoidal Waveform) Expressed as Respiration Rates

Work Rate	Minute Volume	Tidal Volume and Respirations	Peak Flow
Low	25 liters	25 liters 1.30 liters @ 19.2 per minute	78.54 Lpm
Moderate	40 liters	40 liters 1.67 liters @ 24 per minute	125.66 Lpm
High	57 liters	1.95 liters @ 29.1 per minute	179.07 Lpm

Projected test protocol

- Manufacturer specifies highest work rate from table for intended use of PAPR
- PAPR must maintain positive pressure in breathing specified work rate mounted on a breathing machine operating at the zone of respiratory inlet covering while properly

- Additional criteria for fully evaluating PAPR performance at specified work rate
- Appropriate airflow for particulate and gas/vapor challenge testing
- Minimum constant airflow required to maintain respiratory inlet covering positive pressure in the breathing zone of the
- Required flows experimentally determined for and for all three work rates for loose-fitting PAPR moderate and high work rates for tight-fitting PAPR

PAPR Bench Test Constant Airflow Requirements Based on Positive Pressure Tests With Single Speed Units

	Flow Asso	Flow Associated with Each Work Rate	h Work Rate
Type	Low Work Rate	Moderate Work Rate	High Work Rate
Tight-fitting	Not Applicable	115 Lpm	170 Lpm
Loose-fitting	115 Lpm	170 Lpm	235 Lpm

- Experimental determination of constant airflows required to maintain positive pressure in breathing zones of PAPR respiratory inlet coverings
- PAPRs designed to operate at desired constant flow rates not commercially available
- Flow rates of several samples of two blower models equipped with both tight and loose-fitting respiratory inlet coverings controlled by varying input voltage through external power supply in lieu of manufacturer battery packs

Calibration of airflow versus voltage

- Vary voltage and record airflow for each PAPR sample
- Measure airflow for each sample using both a dry test meter and a mass flow meter
- Plot data and correlate using second order polynomial fit
- Voltages required to obtain desired test flows can now be predicted
- Flow at voltage required to maintain positive pressure can be calculated

Mfr. 2 Composite Tight Fitting PAPR Flow vs Voltage Data

- Positive pressure breathing machine test
- Mount PAPR respiratory inlet covering on torso coupled to a variable frequency and tidal volume breathing machine
- Monitor and record breathing zone pressure and canister pressure drop
- Plot pressure profile, flow profile calculated from canister ∆P and average PAPR flow

PAPR Flow —— Average Flow —— Mask Pressure

- Conclusions from positive pressure PAPR breathing machine tests
- Flow versus voltage correlations were similar meter used to determine flow regardless of whether dry test meter or mass flow
- Excellent repeatability between different samples of same mode
- Excellent agreement of predicted flow with average of flow calculated from canister pressure drop

- Conclusions from positive pressure PAPR breathing machine tests (cont.)
- Flow required to maintain positive pressure at both work rates for tight-fitting PAPR similar for both models tested
- Flow required to maintain positive pressure at all three work rates for loose-fitting PAPR similar for both models tested

Work Rates Under Consideration for Inclusion in PAPR Standard

Two PAPR classes

- Breath assisted
- Positive pressure
- Additional work rates (expressed as respiration rates)
- Sedentary (11Lpm)
- Extremely high (78 Lpm, 99 Lpm or both)
- Based on International Technical Specification ISO/TS 16976-1:2007, Classes 1, 7 and 8 for the ISO standard man (body surface of 1.8m²)

Work Rates Under Consideration for Inclusion in PAPR Standard

- Characterization of proposed work rates
- Sedentary rate
- Sinusoidal ventilation profile
- Undefined tidal volume and frequency
- Extremely high work rate(s)
- Undefined ventilation profile
- Undefined tidal volume and frequency

Work Rates Under Consideration for Inclusion in PAPR Standard

