National Personal Protective Technology Laboratory

Concepts for PAPR Gas/Vapor **Certification Evaluation**

Hyatt Regency Pittsburgh Airport Hotel

W. P. King, NPPTL

December 2, 2008

Docket 008A

Proposed Changes for PAPR Gas/Vapor **Test Requirements**

- Discontinue equilibration (pre-conditioning) requirements
- Only as-received cartridge/canister samples tested
- Two tests are performed:
- Three as-received samples at 25%RH challenge air humidity
- Three as-received samples at 80%RH challenge air humidity
- Cyclohexane used for organic vapor tests

Proposed Changes for PAPR Gas/Vapor **Test Requirements**

- Minimum test capacity, maximum breakthrough each gas/vapor. concentration and challenge concentration specified for
- Generally unchanged from as-received service life requirements currently in 42 CFR Part 84
- approvals where minimum required test times are halved Discontinue the current allowance for multiple gas type (Table 11, 42 CFR part 84)
- Tests performed to assess multiple work rates
- Samples can be tested at different test flow rates

Examples of Cartridge Test Capacities, Maximum **Breakthrough and Challenge Concentrations**

Unlisted contaminant****	Cyclohexane	Chlorine dioxide	Chlorine	Carbon monoxide*	Ammonia	Gas/Vapor
4 x IDLH	800	250	300	4800	800	Test Concentration (ppmv)
REL	5	0.1	1	35**	20	Maximum Break Through (ppmv)
0.0408xIDLH (in ppmv)	8.2	2.6	3.1	49	8.2	Minimum Capacity ***(Liters)
60	60	60	60	60	60	Minimum Allowable Service Life at 170Lpm Test flow rate (minutes)

Examples of Canister Test Capacities, Maximum Breakthrough and Challenge Concentrations

Chlorine dioxide	Chlorine	Carbon monoxide**	Ammonia	Gas/Vapor*
5000	5000	10000	5000	Test Concentration (ppmv)
10	10	500***	10	Maximum Break- through (ppmv)
6.9	6.9	59	6.9	Minimum Capacity ***(Liters)
12	12	00	12	Minimum Allowable Service Life at 115Lpm Test flow rate (minutes)

Test Air Flow Rates

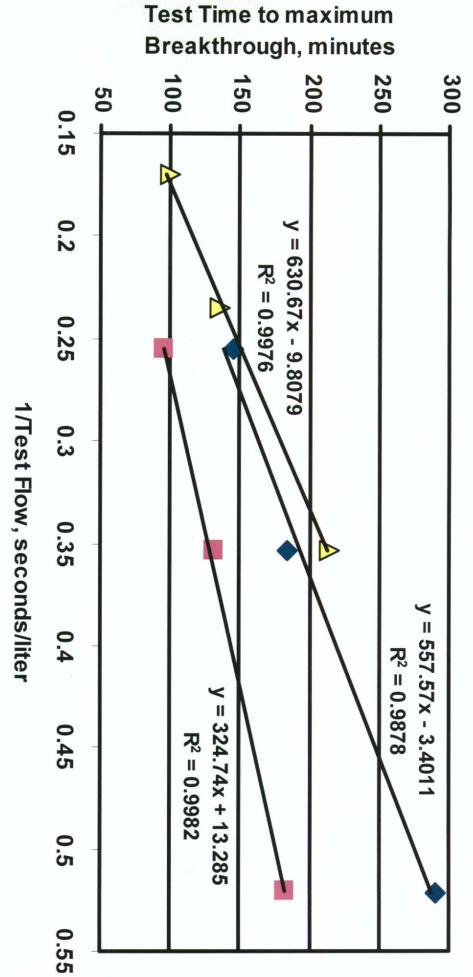
PAPR Bench Test Constant Air Flow Rate Requirements

115 Lpm	Low Rate
170 Lpm	Moderate Rate
235 Lpm	High Rate

Flow Rate Effects

Time to breakthrough , $t_{
m b}$, is inversely proportional to flow rate, Q:

$$t_b = \frac{A}{C_0} \cdot \frac{1}{Q} - \frac{B \ln(C_0/C_x)}{C_0}$$


Wheeler Equation

Jonas et. al. J. Phys. Chem. 75:3526-3531 (1971)

Flow Rate Effects

Wheeler Relationship for PAPR Cartridges Tested with Cyclohexane 800 ppmv 25%RH 25°C

Test Air Flow Rates

Capacity for PAPR Cartridges from Wheeler Results

C			B			A			Sample		
352	170	155	235	170	115	235	170	115	Lpm	rate	Test flow
28.1	29.1	27.6	17.8	17.7	16.7	27.3	25.0	26.8	Liters	Capacity	
	28.2			17.4	8		26.4		Liters	Capacity	Average

Capacity estimates can be made from samples tested at different flow rates.

Cyclohexane for Organic Vapor Tests

Organic Vapor Test Life for Cyclohexane versus Carbon Tetrachloride:

С		В			Þ		Sample
80	25	80	25	80	25	%RH	Test Condition
128	209	86	136	114	186	minutes	Average test life with cyclohexane
88	131	142	236	120	203	minutes	Test life with carbon tetrachloride
-4.43	3.57	-8.05	-11.25	-5.96	-8.73	%CTC	Cyclohexane difference from CTC

Observe the same differential that has generally been seen (Terry and Murray 2005).

Conclusions

- Current requirements are conserved as proposed capacities
- use compared to equilibration approach Cartridge/canister test plan reflects current respirator
- Can apply accepted method of assessing effect of flow
- Cyclohexane can replace carbon tetrachloride.

Quality Partnerships Enhance Worker Safety & Health

Visit Us at: http://www.cdc.gov/niosh/npptl

Disclaimer:

agency determination or policy. Safety and Health and should not be construed to represent any formally disseminated by the National Institute for Occupational The findings and conclusions in this presentation have not been

Thank you

