DAJ ALMA GUER DANT/MIOSH 09/25/02

NIOSH Perchloroethylene (PCE) Vapor Degreaser Study

Daniel Almaguer, Keith Crouch, Amir Khan, Dan Farwick

PCE Vapor Degreaser Study

OSHA asked NIOSH to study PCE vapor degreasing to determine:

- Vapor degreasing technology available.
- Associated engineering controls.
- Exposure levels associated with the different types of vapor degreasers.

Preliminary Study

- Literature search
- Halogenated Solvents Industry Alliance (HSIA)
- Institute for Research and Technical Assistance (IRTA)
- Degreaser manufacturers
- PCE Distributors

PCE USAGE

- 1991 EPA estimated 2070 PCE vapor degreasers in use in the United States.
- 1998 HSIA estimates 34 million pounds of PCE used for vapor degreasing.

Study Design Factors

- Industrial sectors
- Geographic Areas
- Degreaser equipment manufacturers
- Types of PCE vapor degreasers
- Size of units
- Vapor degreaser options

What Industries Use Vapor Degreasers?

Vapor degreasing is a small, essential part of many manufacturing and maintenance processes.

- Aircraft manufacturing
- Aircraft maintenance
- Medical devices
- Electronic circuitry
- Screws, nuts, bolts

Why use Vapor Degreasing?

- Parts cleaning
- Remove oils, dirt, polishing compounds or other surface contaminants prior to painting, welding or other manufacturing processes.
- Often solvents are used in place of water to prevent rusting or to clean difficult to reach areas, such as, interior surfaces.

Solvent Vapor Degreasing Process

- Solvent heated in a tank to near boiling point to generate vapor.
- Parts are placed in the vapor zone within the degreaser tank.
- Warm solvent vapor condenses on the cold part.
- Liquid condensate flushes contaminants from the part surface.
- Clean part is removed from the degreaser unit.

Types of Vapor Degreasing

Three types of vapor degreasers

- In-line degreasers (continuous)
- Open-top (batch)
- Airless vacuum (batch)

Study Included

- Open-top vapor degreasers (OTVD)
- Vacuum or airless/airtight vapor degreasers
- Continuous degreasers not included
 - Unable to identify a plant where this equipment was being used.

Open Top Vapor Degreasers Components

- Solvent tank solvent heated to a boil.
- Vapor zone area immediately above solvent tank where vaporized solvent is present.
- Condensation coils located above vapor zone. Forms a sharply defined interface between the solvent and air above the coils.
- Freeboard area between the condensation coils and the top of the degreaser. Provides additional control.

Auxiliary Equipment

- Water separators
- Solvent recovery stills
- Refrigerated freeboards
- Super heat coils
- Carbon absorption filters
- Handheld spray lances

Airless/Airtight Vacuum Vapor Degreaser Components

- Cleaning chamber parts placed here, chamber sealed.
- Vacuum pumps system pressure reduced from 760 torr (atmospheric) to the operating pressure of less than 5 torr.
- Solvent storage tanks kept at ambient temperature.
- Vapor supply tank maintained at operating temperature.
- **Distillation** jacketed pressure vessel, increases recovery of the cleaning solvent.
- Condenser cools vapor, condensing to the liquid for spraying parts, keeps solvent storage tank at ambient temperature.

Sites Studied

- Site #1 Aircraft manufacturer
- Site #2 Heat exchangers and cooling systems
- Site #3 Aircraft maintenance
- Site #4 Parts cleaning, job shop

SITE #1 – Vapor Degreasers

Manufacturer	Туре	Options
Serec	Vacuum	Solvent Still
		Carbon filter
Durr	OTVD	Solvent Still
Greco	OTVD	Manual
		Spray Lance

SITE #2 – #4, Vapor Degreasers

Manufacturer	Туре	Options
Site #2 - Finishing	OTVD	Solvent Still
Equipment		Automated
		Enclosed
Site #3 – Detrex	OTVD	Solvent Still
		Spray Lance
Site #4 – Serec	Vacuum	Solvent Still
		Carbon Filter

Sampling Methods

- Charcoal tubes and passive badge samples.
- Collected in workers breathing zone.
- Area samples collected near degreasers.
- Charcoal tubes were attached via Tygon tubing to battery-operated sampling pumps.
- Charcoal tubes and passive badges were analyzed by NIOSH Method 1003.

PCE RESULTS

Site/Equipment	Personal BZ (ppm)	General Area (ppm)
1 - Serec	0.08 - 0.4	0.15 - 1.5
Durr	0.55 - 2.8	0.51 - 0.99
Greco	0.09 - 0.76	8, 14
2 - Finish Equip.	23.8 – 37.8	NA
3 - Detrex	0.12 - 15.6	0.3, 1.9
4 - Serec	0.052 - 0.18	NA

What Affected Worker Levels?

- Amount of time working at unit.
- Equipment maintenance.
- Ventilation (natural and general).
- Drafts (air movement) at loading station.
- Drag out removing parts from degreaser, dragging PCE laden air with them.
- Parts and baskets coming out wet.
- Use of handheld spray lance.

Time Working at Degreaser

Site No./Degreaser Type	Time Spent in Degreaser Area
1 – Vacuum (Large) 2 – Open-top (Large) 4 – Vacuum (Medium)	Entire shift. (~90-100%)
1 – Open-top (Small) 3 – Open-top (Medium)	Only during cleaning cycle. (~10-25%)
1 – Open-top (Large)	Operator Loaded unit and left degreaser area (<5-10%)

EQUIPMENT MAINTENANCE

- A problem with both OTVD and Vacuum.
- Equipment often down, not usable due to malfunctioning equipment (e.g., chillers).
- At one site, OTVD unit down 64 days over a one year period and the first day of our visit.
- Vacuum unit down the entire site visit.
- Result in elevated employee exposures and productions delays.

SUMMARY

- Vacuum degreasers conc. <1ppm
- OTVD capable of conc. ~ 10
 - With proper maintenance
 - Good general ventilation
 - Good work practices
- OTVD conc. > 30 ppm
 - Without proper maintenance
 - Good general ventilation
 - Good work practices.

