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1 INTRODUCTION 

Among the threats to validity of conclusions from a 
health survey is the bias who can result from differences 
between people who respond to the survey and people 
that do not respond. When respondents and 
nonrespondents have very different characteristics and 
the proportion of nonrespondents is at least moderately 
large, unadjusted survey estimates are often severely 
biased. Thus, it is important to evaluate the effect of 
nonresponse bias on the survey estimates. 

Brick and Kalton1 indicate that the most common 
method for adjusting for nonresponse bias in health 
surveys is by using “adjustment cells.” In many 
national health surveys adjustment cells are defined by 
demographic and socioeconomic factors. Ezzati and 
Khare2 discuss an example of this approach. More 
recently Smith et al.3,4 give an example in which 
adjustment cells are formed using response propensities. 
Potter et al.5  apply estimated response propensities 
directly to sampling weights. This approach is 
equivalent to choosing as many adjustment cells as there 
are respondents with complete data. 

Regardless of the method used to form cells, a natural 
question is, “How well did the method work in reducing 
nonresponse bias?” This paper describes a statistical 
method for making this evaluation. The approach arises 
from further research on the statistical methods that the 
National Immunization Survey (NIS) uses to (i) 
evaluate the extent of nonresponse bias and (ii) reduce 
this potential bias. 

The design of the NIS has two phases of sampling: a 
list-assisted random-digit-dialing (RDD) survey of 
households and a mail survey of vaccination providers 
of eligible children in sampled households. The RDD 
phase uses simple random sampling in each of 78 
Immunization Action Plan (IAP) areas, which comprise 
the 50 states and 28 large metropolitan areas, including 
the District of Columbia. Each IAP area forms a stratum 
of the sampling design, and within these strata the NIS 
samples independently. The target population for the 
NIS is all children living in the 78 IAP areas who are 
between 19 and 35 months of age at the time of the 
RDD interview. More complete descriptions of the 

sample design are given by Smith et al.3, Ezzati-Rice et 
al.6, and Zell et al.7 

In the RDD phase, the respondent in a sampled 
household with eligible children is asked to report each 
child’s vaccination history (including the date of each 
shot, if a “shot card” is available), as well as 
demographic and socioeconomic information. Parents 
and guardians are asked for consent to contact the 
children’s vaccination providers to obtain vaccination 
histories. If verbal consent is obtained, the providers are 
mailed a vaccination history questionnaire. Data 
obtained from responding providers include information 
on whether the children received the recommended 
number of doses of four vaccines: diphtheria and tetanus 
toxoids and pertussis vaccine (DTP), poliovirus vaccine 
(polio), measles-containing vaccine (MCV), and 
Haemophilus influenzae type b vaccine (Hib). A child is 
said to be “4:3:1 up-to-date” if he/she has received 4 or 
more doses of DTP, 3 or more doses of polio, and 1 or 
more doses of MCV. A child who has also received 3 or 
more doses of Hib is said to be “4:3:1:3 up-to-date.” 
Percentages of children who are up-to-date are referred 
to in immunization research as vaccination coverage 
rates. 

For a variety of reasons the NIS is unable to obtain any 
vaccination history from providers for some children 
who have a completed household interview. In 1998 the 
NIS completed RDD interviews for 32,511 children. 
Among these, adequately detailed provider-verified 
vaccination histories from which children’s up-to-date 
vaccination status could be determined were obtained 
from 21,827 (67.1%) children. In the remainder of this 
paper “provider nonresponse” refers to the absence of 
adequate provider-verified vaccination histories. 

Official estimates of vaccination coverage rates in the 
NIS adjust for provider nonresponse using adjustment 
cells based on response propensities.3 More specifically, 
the NIS estimates each child’s response propensity (i.e., 
the probability that the child has adequate provider 
response)  and uses the quintiles of those response 
propensities to define five adjustment cells within each 
stratum. 

The present paper explores variations on that method by 
allowing the data to guide the choice of the number of 
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cells and the choice of the measure on which the cells 
are based. Specifically, we illustrate our approach by 
evaluating how well nonresponse bias is reduced for 
estimates of 4:3:1 vaccination coverage rates (obtained 
by using 5 adjustment cells based on propensities). For 
the comparison alternative estimates use adjustment 
cells based on response propensities and predictive 
probabilities of being 4:3:1 up-to-date. To determine the 
most suitable number of cells, we examine the 
incremental decrease in bias obtained by increasing the 
number of cells. 

In an econometric application, David et al.8 describe the 
use of adjustment cells based only on the use of 
response propensities. Little9 describes the merits of 
using either response propensities alone or predictive 
probabilities alone. Eltinge and Yansaneh10 give a 
method for determining the number of adjustment cells 
when they are formed using either response propensities 
or predictive probabilities, but not both. Empirical 
results from our research indicate that the reduction in 
bias depends upon whether response propensities or 
predictive probabilities are chosen to form adjustment 
cells. None of these authors give recommendations on 
how to choose between response propensities or 
predictive probabilities for forming adjustment cells, 
however. The methods that we describe use both 
response propensities and predictive probabilities to 
form adjustment cells and provide a way of evaluating 
whether to use response propensities, predictive 
probabilities, or a combination of the two. 

ADJUSTMENT FOR PROVIDER 
NONRESPONSE 

2.1 Rationale for the Adjustment 

Empirical results suggest that children with adequate 
provider response have characteristics that are believed 
to be associated with a greater likelihood of being 4:3:1 
up-to-date, compared to children with provider 
nonresponse. Specifically, children with adequate 
provider response are more likely to live in households 
that have higher total incomes, to have a white mother, 
and to live outside a central city of a Metropolitan 
Statistical Area. These factors are believed to be 
associated with higher vaccination rates. Also, children 
with provider nonresponse are less likely to live in the 
state where they were born and less likely to come from 
a household whose respondent could locate a written 
record of the child’s vaccination history (i.e., a shot 
card). Both of these factors indicate a potential lack of 
continuity of health care, and have been shown to 
correlate with lower vaccination rates.11 If no 
adjustment is made for these differences, estimated 
vaccination coverage rates may be too high. Then 

immunization program managers may misjudge the 
success of their efforts to increase vaccination coverage 
rates and not realize that improvements in their 
programs are warranted. 

In forming cells to adjust for provider nonresponse in 
the NIS, the aim is to group together children, within 
each IAP area, who have similar patterns of vaccination 
coverage. Because a number of background variables 
are associated with both provider nonresponse and 
vaccination coverage, we combine the variables in a 
model for the child’s response propensity (similar to the 
method in current use) and, separately, in a model for 
the predictive probability of being 4:3:1 up-to-date. 
Children who have similar response propensities and 
similar predictive probabilities of being 4:3:1 up-to-date 
will also be similar with respect to the background 
variables that are predictive for these two measures. 
Thus, within each IAP area, we group children into 
adjustment cells according to (i) the similarity of their 
response propensities or (ii) the similarity of their 
predictive probabilities or (iii) a combination of these 
two measures. 

Within the context of using adjustment cells to reduce 
nonresponse bias, all of the children within a cell are 
represented by those who have adequate provider data. 
For a specific variable, y, the extent of the reduction in 
bias depends on the degree to which children are 
comparable with respect to the measures used to 
construct the adjustment cells, as well as how closely 
those measures are associated with y. 

When adjustment cells are defined by the estimated 
quantiles of the distributions of estimated response 
propensities and estimated predictive probabilities of y, 
nonresponse bias is reduced to an extent that depends on 
the number of adjustment cells and on how the 
adjustment cells combine the estimated response 
propensities and the estimated predictive probabilities. 

2.2 Adjustment with a Fixed Number of Cells 

We describe our approach in two stages. First, we take 
the number of adjustment cells as fixed. That is, we fix 
both the number of quantiles of response propensity 
( k ) and the number of quantiles of the predictive 1

probability ( k ). Thus, the focus is simply on forming 2 
the cells, and not on the number of cells. Subsections 
2.2.1 through 2.2.4 describe how the estimated response 
propensities and predictive probabilities are obtained, 
how they are used to form adjustment cells, and the 
raking that is conducted as a further measure to control 
bias. Then, Section 2.3 varies both the total number of 



× 2cells ( k k ) and, within that, the values of k1  and 1 

k , and uses the incremental reductions in estimated 2 

bias to choose the “best” combination of ( k k ).1, 2 

2.2.1	 Estimated Response Propensities 
As a first step in forming adjustment cells, a response 
propensity model was developed using logistic 
regression. In this model the outcome variable for each 
child was an indicator variable of whether the child had 
adequate provider data. The candidates for predictors 
were categorical variables that have been found to be 
associated with vaccination status in other CDC 
research and are listed in Table 1. A forward stepwise 
procedure selected the actual predictors from these 
candidates. 

At each step of the selection process, the logistic 
regression examined all possible first-order predictors as 
candidates for inclusion in the model. Also, after adding 
a predictor to the model, predictors added previously 
were considered for removal. Akaike’s12 information 
criterion (AIC) was used for choosing the optimal set of 
candidate predictors at each step. Table 2 gives the 
analysis-of-deviance table13 for the selection process 
and lists the predictors selected for the response 
propensity model. All children with a completed RDD 
interview received an estimated response propensity. 

2.2.2	 Estimated Predictive Probabilities 
Following the same stepwise process as described 
above, the predictive probability model  used the data 
from children with adequate provider response in a 
logistic regression of the indicator of whether the child’s 
provider(s) indicated he/she was 4:3:1 up-to-date. Table 
3 gives the analysis-of-deviance table for the selection 
process and lists the predictors selected for the 
predictive probability model. All children with a 
completed RDD interview received an estimated 
predictive probability. 

2.2.3	 Forming the Adjustment Cells and 
Adjusting for Provider Nonresponse 

One goal was to have approximately the same 
unweighted sample count in each adjustment cell. Thus, 
to produce k k2  adjustment cells ( k =1, 2,...  and 1 ×	 1 

k = 1, 2,... ), we divided the distribution of estimated 2 

response propensities into k  equal parts and then, 1
within each of those, divided the conditional distribution 
of estimated predictive probabilities into k equal parts. 2 
To adjust for provider nonresponse, within each 
adjustment cell, children with adequate provider data 
were assigned a revised weight by dividing their RDD-

phase sampling weight by the cell-specific weighted 
provider response rate.  (From the RDD phase each 
child with a household interview has a sampling weight, 
which incorporates an adjustment for unit nonresponse, 
an adjustment for noncoverage of nontelephone 
households, and poststratification on race/ethnicity of 
mother, education of mother, and age of child. Battaglia 
et al.14 provide a more detailed description of the 
adjustments made to the sampling weights.) 

2.2.4	 Raking to Control Bias and to Maintain the 
Adjustment 

As mentioned in Section 2.1, by dividing the RDD-
phase sampling weights of children who have adequate 
provider data by their adjustment-cell-specific weighted 
provider response rate, these children more fairly 
represent all the children in the cell. However, the 
revised weights may not match the poststratification 
totals used to construct the RDD-phase sampling 
weights. Also, the revised weights may not match the 
RDD-phase sample-weighted totals of variables that are 
known to be important predictors of being up-to-date. 
To reduce bias attributable to these differences, we use 
iterative ratio adjustment15 to rake the revised weights to 
match poststratification totals, outcome predictor totals, 
and variable totals that are required to maintain the face 
validity of the survey. Equally important, we rake to the 
adjustment-cell-specific RDD-phase sampling weight 
totals to maintain the effect of the nonresponse 
adjustment. The variables used in this process are 
education of the mother, race of the child, age group of 
the child, sex of the child, first-born status, MSA status, 
and the indicator for the adjustment cell. 

2.3	 A Sequential Method for Choosing the Total 
Number of Adjustment Cells and ( k k ) Pair1, 2 

To choose k1  and k , we form cells using both 2 
response propensities and predictive probabilities. We 
proceed in stages (within each IAP area). At stage n, n = 
2,…, we seek a “best pair”  ( k k ) among all values 1, 2 

of k1 and k2 such that k k2 = n . The search begins ×1 
by calculating each pair’s estimated adjusted rate. 
Letting ( ,′ ′  ) denote the best pair at stage n-1 and k k21 

( ,k k2 ) denote any one of the pairs at stage n, the 1 

estimated incremental reduction in bias of , Ŷ 
k k

relative to Ŷ 
k k  is′ ′,1 2

ˆ ˆ 
, , ′ ′  . (1)∆̂ 

k k 	= Yk k − Yk k,1 2  1 2 1 2  

1 2



ˆ ˆWe obtain its estimated standard error, σ (∆ , ) , byk k1 2

using a Taylor-series approximation.16 As discussed in 
Section 1, estimates of vaccination coverage that are not 
adjusted for provider nonresponse may be too high. 
Thus, we are particularly interested in adjusted 

estimates Ŷ 
k k  that yield negative values of ∆̂ 

k k . , ,1 2 1 2

When n = 2,  equation (1) measures the extent to which 

the positive bias of the unadjusted estimator Ŷ1,1  can be 
reduced by using only 2 adjustment cells. 

To evaluate the statistical significance of the estimated 
incremental bias reduction for each ( ,k k )  pair, we 1 2 
compute one-sided p-values 

 ,1 2p , = Φ

 

ˆ 
∆̂
ˆ 
k k  

k k1 2   σ (∆ , ) 
 . 

 k k  1 2  

Here Φ ⋅( ) denotes the standard normal cumulative 
distribution function.  At stage n we determine the 
( ,k k2 ) pair that yields the most statistically 1 
significant reduction in estimated incremental bias (1) 
obtainable by using n adjustment cells compared to n-1 
adjustment cells. This pair corresponds to the smallest 
value of p ,k k , and we refer to this pair as the “best” 

1 2

( ,k k )  pair at stage n. At stage n we let Ŷ  denote 1 2 n

the estimated coverage rate associated with the best 

( ,k k2 )  pair.  Also, we let ∆̂ 
n  and p  denote the 1 n

corresponding estimated reduction in bias and its p-
value. 

To choose n, we examine the sequence of p , n = 2,…, n

and define the “best” value of n as the smallest value 
n′  such that p ≤ 0.05 , l = 2,..., n′  and l

p > 0.05 . If no value of n satisfies these relations, n′+1 

no bias reduction is required, and the unadjusted 

estimate Ŷ1,1 is used to estimate the vaccination 
coverage rate. 

3  ILLUSTRATION OF THE METHOD 

Table 4 illustrates the strategy of selecting the best 
( ,k k ) pair for the 4:3:1 series for one IAP area, 1 2 
Oregon. At stage 2 the (1, 2) pair produces a statistically 
significant reduction in bias, and so does using 3 
adjustment cells (the (1, 3) pair) and 4 adjustment cells 
(the (1, 4) pair). However, the (5, 1) pair does not yield 

a statistically significant further reduction in bias. In this 
instance k1 = 1 for all “best” pairs; that is, the sets of 
adjustment cells that achieve the most significant 
reductions in bias use only predictive probabilities. 
Starting from no adjustment, the actual reductions in 
nonresponse bias are 0.39 percentage point for 
( ,k k ) = (1, 2), 0.45 percentage point for (1, 3), and 1 2 
0.34 percentage point for (1, 4). Thus the total reduction 
in bias from provider nonresponse is 1.18 percentage 
points. 

Among the 78 IAP areas the “best” ( ,k k ) pairs 1 2 
contain at most 4 adjustment cells, and 53 IAP areas 
have k1 = 1 and k2 > 1. A total of 7 IAP areas have k1 > 

1 and k2 = 1. For 18 IAP areas the best choice is no 
adjustment, (1,1). Among the 60 IAP areas with some 
adjustment, only 6 have a bias reduction greater than 1 
percentage point, and the median reduction is 0.51 
percentage point. Thus, the estimates of 4:3:1 coverage 
for most IAP areas require little adjustment to reduce 
bias attributable to differences between children who 
have adequate provider data and those who do not have 
adequate provider data. In this regard, the threat to 
validity in the NIS posed by provider nonresponse 
seems small. 

In describing the use of stratification to control bias in 
observational studies, Cochran17 reported results of an 
empirical investigation showing that bias is reduced by 
90% when as few as 5 adjustment cells are used. This 
empirical finding has led to the common belief that 5 is 
a good choice for the number of adjustment cells to 
reduce bias. Also, Rosenbaum and Rubin18 have shown 
the advantages of constructing adjustment cells using 
estimated response propensities. Thus, for the 50 States 
and the District of Columbia, we also compared the 
estimate using 5 cells based on response propensities 
( k = 5, k = 1) to the estimate based on the best choice 1 2 

of ( ,k k ) . For both of these methods, the estimated 1 2 
total reduction in bias was obtained by comparing the 
adjusted coverage rate to the unadjusted coverage rate, 

Ŷ1,1 . Results for the 1998 NIS data indicated that the 
estimated total reductions in the bias for the two 
methods differed significantly in only 3 states. 

4 CONCLUSIONS 
As noted by Little, use of response propensities to form 
adjustment cells may reduce the bias, but not 
necessarily the variance, of adjusted rates. Also, when 
adjustment cells are formed using predicted 



probabilities, reduced bias and variance are expected. In 
this regard, the variance of adjusted estimates is 
expected to be larger when response propensities are 
used to form adjustment cells than when predictive 
probabilities are used. As a consequence, one would 
expect that the statistical power to detect reductions in 
incremental bias by using more adjustment cells would 
be smaller when using response propensities (only) than 
when using predictive probabilities or a “best” 
combination of both predictive probabilities and 
response propensities. Empirical results reported by 
Smith et al.,3  using data from the 1998 NIS, show that 
when response propensities (only) were used to form 
cells, the “best” choice of the number of adjustment 
cells was 1 for 58 of the 78 IAP areas. In comparison, 
in this paper we show that, when adjustment cells are 
formed using a “best” combination of both predictive 
probabilities and response propensities, the number of 
adjustment cells is greater than 1 in 60 of the 78 IAP 
areas. 

This potential reduction in statistical power sheds 
further light on the result that the difference in bias 
reduction between using 5 adjustment cells based on 
response propensities and using a “best” combination of 
both predictive probabilities and response propensities 
was statistically significant in only 3 states. Because 
estimates adjusted using response propensities (only) 
are expected to have higher variance, this may lead to 
reduced power in making this specific statistical 
comparison. 

As noted previously, many other national health 
surveys use adjustment cells that are defined by 
demographic and socioeconomic factors. This approach 
is equivalent to an implicit model for major survey 
outcomes. One would anticipate that those implicit 
models would not be as predictive as explicitly defined 
models that enable the importance of factors used to 
form adjustment cells to be evaluated in a formal 
significance-testing framework. If so, one might expect 
that cells formed using implicit models would not 
necessarily reduce bias adequately. Regardless of the 
method of forming adjustment cells for adjusting for 
nonresponse bias, it makes sense to evaluate how well 
bias was reduced. This paper provides a method that 
tailors adjustment cells to obtain a “best” reduction in 
bias according to the definition described in Section 2.3. 
In this regard, it may be used to evaluate the 
effectiveness of other methods of forming adjustment 
cells in reducing nonresponse bias. 
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Table 1. Predictors offered to model selection for 
response propensity and predictive probability 
models. 
abbreviation description 
shotcard   "shot" card used during RDD interview 
all4shot HH report: up-to-date on 4:3:1:3 
full.cpo   HH report: up-to-date on varicella 
full.hep   HH report: up-to-date on hepatitis B 
racemom mother’s race 
educ1 mother’s educational status 
marital marital status of the mother 
m.agegrp   maternal age group 
racekid   race of the child 
agegrp   age group of the child 
sex   sex of the child 
frstbrn   first-born status of the child 
childnm # children < 18 years in the HH 
incpov1   poverty status 
mobil mobility status 
msa   metropolitan statistical area designation 
c5 respondent: mother, father, or other 

Table 2. Analysis-of-deviance table from stepwise 
construction of the logistic regression model for 
response propensity.  The dependent variable is the 
indicator y: having adequate provider-reported 
vaccination information. 
Step Df  Deviance        AIC
 1 41172
 2 + incpov1 -3 -725.6    40452
 3 + shotcard -1 -474.8       39979
 4 + c5 -3 -271.5    39714
 5 + mobil -1 -161.4    39555
 6 + msa -2 -112.8    39446
 7 + full.hep -2 -71.0     39379
 8 + racemom -5 -61.4     39327
 9 + childnm -2 -23.2     39308 
10 + m.agegrp -2 -19.9      39292 
11 + all4shot -2 -13.7     39282 
12 + educ1 -3 -16.1     39272 
13 + full.cpo -2 -11.5     39265 
14 + sex -1 -3.2 39264 

Table 3.  Analysis-of-deviance table from stepwise 
construction of the logistic regression model for 
predictive probability.  The dependent variable is the 
indicator y: whether a child is up-to-date on the 
4:3:1 vaccination series. 
Step Df Deviance   AIC 
1 20803 
2 + all4shot -2 -590.9    20216 
3 + childnm -2 -169.0    20052 



--------------------------------------------------

4 + agegrp -2 -160.0    19896 
5 + educ1 -3 -114.6    19787 
6 + full.cpo -2 -96.3     19695 
7 + full.hep -2 -72.7     19626 
8 + shotcard -1 -40.3     19588 
9 + mobil -1 -35.9     19554 
10 + racemom -5 -44.3     19519 
11 + frstbrn -1 -14.7     19507 
12 + m.agegrp -2 -20.3     19490 
13  + msa -2 -9.7 19485 
14 + marital -2 -7.0 19482 

Table 4. Illustration of the strategy of selecting the 
best ( k k  ) pair for estimating vaccination coverage 1, 2 
with the 4:3:1 series for the Oregon IAP area.

 n ( ,k k2 ) Ŷ ∆̂ 
n pn1 n

 2 1,2 76.20 -0.39   0.04 

3 1,3 75.75     -0.45  0.00 

4 1,4 75.41     -0.34   0.05 

5 5,1 75.48     +0.07 0.55
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