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Mathematical models incorporate various data sources and 
advanced computational techniques to portray real-world dis-
ease transmission and translate the basic science of infectious 
diseases into decision-support tools for public health. Unlike 
standard epidemiologic methods that rely on complete data, 
modeling is needed when there are gaps in data. By combining 
diverse data sources, models can fill gaps when critical deci-
sions must be made using incomplete or limited information. 
They can be used to assess the effect and feasibility of different 
scenarios and provide insight into the emergence, spread, and 
control of disease. During the past decade, models have been 
used to predict the likelihood and magnitude of infectious 
disease outbreaks, inform emergency response activities in 
real time (1), and develop plans and preparedness strategies 
for future events, the latter of which proved invaluable dur-
ing outbreaks such as severe acute respiratory syndrome and 
pandemic influenza (2–6). Ideally, modeling is a multistep 
process that involves communication between modelers and 
decision-makers, allowing them to gain a mutual understand-
ing of the problem to be addressed, the type of estimates that 
can be reliably generated, and the limitations of the data. As 
models become more detailed and relevant to real-time threats, 
the importance of modeling in public health decision-making 
continues to grow.

Predicting the Likelihood, Timing, and Magnitude 
of Infectious Disease Outbreaks

Federal agencies and academic partners are working to 
produce models with short- and long-term projections of 
when and where outbreaks will occur (7). For example, the 
“Predict the Influenza Season” challenge, started in 2013, 
moved influenza forecasting forward by engaging the scientific 
community to develop innovative and cost-effective methods 
to predict influenza activity and to more clearly identify areas 
of uncertainty in forecasting flu activity (8). This ongoing 
project encourages participants to predict the timing, peak, 
and intensity of influenza seasons by combining social media 

data (e.g., Twitter, internet search data, web surveys, etc.) and 
data from CDC’s routine influenza surveillance systems (9). As 
part of the Influenza Virologic Surveillance Right Size project, 
a public health-academic partnership developed models that 
determine the minimum weekly number of specimens to be 
screened per public health laboratory to efficiently detect 
emerging viruses and select strains for inclusion in the next 
seasonal influenza vaccine (10).

Providing Real-Time Insight During Public Health 
Emergencies

During public health emergencies, decision-makers need 
to quantify the risk to the public, delineate priorities with a 
clear and narrow focus, and maintain flexibility in considering 
options. During outbreak responses, modelers are asked to 
estimate the size of populations at risk for disease or death and 
the potential impact of interventions on both the timing and 
public health burden of an outbreak (Figure). By facilitating 
dialogue about what data are available and what data are needed 
to answer these questions, modelers can aid decision-makers 
as an outbreak situation evolves (11). Framing and address-
ing such questions via models helps leadership understand 
the appropriate size, type, time frame, and scale of resources 
needed to deploy interventions to maximize their impact. For 
example, one model produced during the Ebola virus disease 
(Ebola) response predicted the likelihood of the spread of Ebola 
from districts with reported Ebola cases to specific districts and 
neighboring countries with no reported cases. This forecast of 
geographic spread of Ebola allowed decision-makers to pri-
oritize where to direct resources to improve surveillance (12).

To provide insight, modelers often must extract and combine 
useful information from diverse data sources, including tradi-
tional surveillance data, laboratory data, and social media, and 
collate them into meaningful information. Early in the West 
African Ebola epidemic, researchers at the University of Texas at 
Austin and Yale University used a combination of viral sequence 
data and case counts reported on the Sierra Leone Ministry of 
Health Facebook page to estimate the rate of spread and the 
clustered nature of Ebola transmission (13). During the 2009 
H1N1 influenza pandemic, CDC modelers provided leaders, 
policy makers, and the public with near real-time modeled 
estimates of cases, hospitalizations, and deaths, corrected for 
underreporting (14,15). Before sufficient epidemiologic data 
existed, the modeled data allowed public health officials to more 
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readily appreciate the magnitude of the disease transmission 
and understand the dynamic of the pandemic as risk patterns 
changed over time. Knowing where influenza is spreading in 
near real time and anticipating the timing and severity of the 
peak can improve clinical practice by facilitating plans for hos-
pital and laboratory surge capacity and the implementation of 
pharmaceutical and nonpharmaceutical interventions (16). This 
insight gives decision-makers more flexibility to match resources 
to needs during public health emergencies.

Modelers have provided critical support for emergency 
response activities by estimating the size and potential growth 
of outbreaks before large amounts of data were available, assess-
ing the potential impact of interventions, identifying impor-
tant data needs (e.g., value of what is known, value of what is 
not known, prioritization of data collection), and developing 
simple decision-support tools for broad dissemination (11)

Looking Back to Plan Ahead
Models can improve preparedness planning for infectious 

disease outbreaks and emergencies by providing critical infor-
mation for quantitative public health decisions, such as those 
related to stockpiling and allocating public health resources and 
medical countermeasures (17). For example, during the Ebola 
response, modelers developed a tool to estimate the resources 
that might have been needed at any one time to treat Ebola 
patients if Ebola became widespread in the United States (18). 
Modelers also produced estimates to answer many post-H1N1 
pandemic questions, including which groups experienced the 
most risk. Building on the modeling developed during that 
pandemic, modelers were able to confirm that influenza-related 
deaths and hospitalizations in children aged <18 years reached 
pandemic levels, when compared with influenza-related deaths 
during nonpandemic influenza seasons (14). Other valuable 
data estimating the number of cases, hospitalizations, and 
deaths averted because of vaccination and the use of influenza 
antiviral drugs can be used to allow public health officials to 
prepare for the next influenza pandemic.

Comparing model predictions with observations of real-
life events can yield improvements in both model structure 
and parameter estimates. In this way, models “learn” from 
past outbreaks to improve data collection, situational aware-
ness, and outbreak prediction. For example, after modelers 
assessed the effects of the 2009–2010 H1N1 influenza virus 
vaccination program by estimating the number of clinical 
cases, hospitalizations, and deaths prevented (19,20), CDC 
implemented a standardized data set and annual assessment 
of estimated seasonal influenza illnesses and hospitalizations 
averted because of vaccination, which can be used to improve 
model predictions.

Facilitating Communication
In addition to offering insight, modeling can assist commu-

nication among the multiple decision-makers involved with 
public health emergencies. Because models should only be used 
for the purpose for which they were intended, the back-and-
forth dialogue required to ensure decision-makers understand 
the limitations of a specific model creates opportunities for 
leaders to articulate public health goals and better understand 
factors contributing to the dynamics of the modeled outbreak. 
These dialogues also allow decision-makers to explore the fea-
sibility of interventions and estimate the resources required to 
implement such options.

Challenges and Limitations
A number of challenges can occur with the use of models for 

emergency response, planning, and preparedness. The techni-
cal challenges modelers typically encounter include a lack of 
quality and real-time data. Many models, such as those that 
predicted case counts of Ebola, are developed for a specific 
purpose, and thus might not be necessary for future planning. 
However, models that can be used repeatedly over time need 
clear plans for maintenance and future availability (20). The 
continued relevance and utility of models also can be impeded 
by evolving operating systems, web software, format of data 
inputs, and practical requirements for direct manipulation by 
model developers.

Other challenges that modelers and decision-makers con-
front relate to a lack of understanding about the modeling 
process and its limitations. The modeling process relies upon 
the questions that direct the development of estimates and 
projections produced (Box). An awareness of these guiding 

FIGURE. Estimated impact of delaying intervention on daily number 
of Ebola virus disease (Ebola) cases — Ebola Response modeling tool, 
Liberia, 2014–2015*
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questions helps decision-makers better interpret and under-
stand the limitations of models.

Models can help frame decision choices, but will seldom tell 
decision-makers which specific choices to make. Like every 
other tool, models can be misused, intentionally or uninten-
tionally. Models are stylized representations of the world oper-
ating under specific assumptions; therefore, models capture 
only a part of the world’s complexity. Decision-makers should 
be careful not to draw conclusions outside of the problem areas 
the model was designed to address.

Looking Ahead
Mathematical models are valuable decision-support tools 

that reveal outbreak dynamics, improve planning and prepared-
ness, and aid communication between modelers and decision-
makers. Future modeling possibilities are broad; for example, 
real-time genomic and antigenic virus fitness forecasting for 
selection of the best vaccine virus candidates is a possibility. 
As data availability and the accuracy of predictions improve, 
models will continue to provide valuable information to 
guide public health decision-makers. However, to sustain and 
advance modeling, attention and resources must be dedicated 
to improving data access, codifying best practices, and improv-
ing the nation’s capacity to do modeling work. Modeling serves 
as an increasingly valuable resource for decision-makers in the 
emergence, spread, and control of outbreaks, and continued 
investments will pay large dividends over the long-term.
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BOX. Ten questions to guide model development, assessment, and 
improvement

1. What question or problem will the model address?
2. What information is needed to address the problem?
3. What information is already available?
4. What can be assumed?
5. What perspective will be used (e.g., societal, insurer/

payer, employer)?
6. What will the model predict?
7. How will model predictions be used?
8. How will the predictions be tested?
9. Are the predictions valid?

10.   Can the model be improved?
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