Morbidity and Mortality Weekly Report www.cdc.gov/mmwr Weekly August 15, 2008 / Vol. 57 / No. 32 ### Malaria in Refugees from Tanzania — King County, Washington, 2007 Recent immigrants and refugees constitute a substantial proportion of malaria cases in the United States, accounting for nearly one in 10 imported malaria cases involving persons with known resident status in 2006 (1). This report describes three cases of *Plasmodium falciparum* malaria and two cases of Plasmodium ovale malaria that occurred during June 27-October 15, 2007 in King County, Washington. The infections were diagnosed in Burundian refugees who had recently arrived in the United States from two refugee camps in Tanzania. Since 2005, CDC has recommended presumptive malaria treatment with artemisinin-based combination therapy (ACT) (e.g., artemether-lumefantrine) for refugees from sub-Saharan Africa before their departure for the United States (2). Rising levels of resistance to the previous mainstays of treatment, chloroquine and sulfadoxine-pyrimethamine, prompted CDC to make this recommendation. Implementation has been delayed in some countries, including Tanzania, where predeparture administration of presumptive ACT for refugees started in July 2007. The cases in this report highlight the need for health-care providers who care for recently arrived Burundian and other refugee populations to be vigilant for malaria, even among refugees previously treated for the disease. Washington state law requires health-care providers, hospitals, and laboratories to report malaria and certain other conditions to the local health department.* This report summarizes the findings from five cases reported to the local health department by health-care providers and laboratories (Table). After these cases were reported, the patients' medical records were obtained from two local hospitals and reviewed to assist in case investigations. Initial investigations were limited to case investigation forms completed by public health officials based on available medical records. Case 1. A female aged 3 years was diagnosed with P. falciparum malaria in May 2007 while in Tanzania. At that time, she was placed on a quinine-based regimen (formulation, date of administration, and method of administration unknown) and clinically recovered. During an overseas predeparture exam, a requirement for entry into the United States, she received presumptive malaria treatment, with a course of sulfadoxine-pyrimethamine. She arrived in the United States on June 12, 2007, and became ill on June 25, 2007, with fevers, chills, and cough. On June 27, 2007, she was admitted to the local children's hospital. A blood smear revealed 7% hyperparasitemia (>5% = hyperparasitemia) with P. falciparum. Other laboratory findings included anemia, thrombocytopenia, and elevated aspartate aminotransferase. She received oral atovaquone-proguanil, clinically improved, and was discharged July 2, 2007 after 5 days in the hospital. Case 2. A female aged 9 years arrived in the United States on July 23, 2007. Before leaving Tanzania, she received presumptive 3-day treatment of twice daily artemether-lumefantrine; the last doses were administered on July 19, 2007. She became ill on August 11, 2007, with fever, head-ache, malaise, and cough. She was evaluated in the local county hospital emergency department on August 14, 2007. Blood smear (percent parasitemia unknown) and polymerase chain reaction (PCR) test results were positive for *P. ovale*. Other ### **INSIDE** - 872 Syphilis Testing Algorithms Using Treponemal Tests for Initial Screening — Four Laboratories, New York City, 2005–2006 - 875 Infection Control Requirements for Dialysis Facilities and Clarification Regarding Guidance on Parenteral Medication Vials - 876 Notice to Readers - 877 QuickStats ^{*}Notifiable conditions. Ch. 246-101, Washington Administrative Code. Available at http://apps.leg.wa.gov/wac/default.aspx?cite=246-101. The MMWR series of publications is published by the Coordinating Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333. **Suggested Citation:** Centers for Disease Control and Prevention. [Article title]. MMWR 2008;57:[inclusive page numbers]. ### **Centers for Disease Control and Prevention** Julie L. Gerberding, MD, MPH *Director* > Tanja Popovic, MD, PhD Chief Science Officer James W. Stephens, PhD Associate Director for Science Steven L. Solomon, MD Director, Coordinating Center for Health Information and Service Jay M. Bernhardt, PhD, MPH Director, National Center for Health Marketing Katherine L. Daniel, PhD Deputy Director, National Center for Health Marketing ### **Editorial and Production Staff** Frederic E. Shaw, MD, JD Editor, MMWR Series Susan F. Davis, MD (Acting) Assistant Editor, MMWR Series Teresa F. Rutledge Managing Editor, MMWR Series Douglas W. Weatherwax Lead Technical Writer-Editor Donald G. Meadows, MA Jude C. Rutledge Writers-Editors Peter M. Jenkins (Acting) Lead Visual Information Specialist Malbea A. LaPete Stephen R. Spriggs Visual Information Specialists Kim L. Bright, MBA Quang M. Doan, MBA Erica R. Shaver Information Technology Specialists ### **Editorial Board** William L. Roper, MD, MPH, Chapel Hill, NC, Chairman Virginia A. Caine, MD, Indianapolis, IN David W. Fleming, MD, Seattle, WA William E. Halperin, MD, DrPH, MPH, Newark, NJ Margaret A. Hamburg, MD, Washington, DC King K. Holmes, MD, PhD, Seattle, WA Deborah Holtzman, PhD, Atlanta, GA John K. Iglehart, Bethesda, MD Dennis G. Maki, MD, Madison, WI Sue Mallonee, MPH, Oklahoma City, OK Patricia Quinlisk, MD, MPH, Des Moines, IA Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC John V. Rullan, MD, MPH, San Juan, PR William Schaffner, MD, Nashville, TN Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA laboratory findings included anemia, elevated alanine and aspartate aminotransferase, and hypoalbuminemia. The patient recovered after outpatient treatment with mefloquine and primaquine. Case 3. A male aged 6 years arrived in the United States on July 23, 2007. Before leaving Tanzania, he received presumptive 3-day treatment of twice daily artemether-lumefantrine, with last doses given on July 19, 2007. He became ill on August 13, 2007, with fever, headache, and malaise. He was evaluated in the local county hospital emergency department on August 15, 2007. Laboratory evaluation revealed anemia and *P. ovale* on blood smear (percent parasitemia unknown) and by PCR. He was treated with chloroquine and primaquine as an outpatient and recovered. Case 4. A male aged 6 years arrived in the United States on September 28, 2007. He received presumptive treatment of artemether-lumefantrine before departure from Tanzania. The last doses were administered on September 24, 2007. He became ill on October 1, 2007, with fever, cough, and decreased energy. He was admitted to a local children's hospital on October 15, 2007. A blood smear revealed *P. falciparum* with 6.3% hyperparasitemia. Anemia was the other notable laboratory finding. The patient received quinidine and clindamycin, recovered, and was transitioned to atovaquone-proguanil before discharge. He was discharged on October 19, 2007 after spending 4 days in the hospital. Case 5. A female aged 2 years arrived in the United States on September 28, 2007. She received artemether-lumefantrine as presumptive treatment before departure from Tanzania, with the last doses administered on September 24, 2007. She became ill on October 8, 2007, with fever, vomiting, and nonbloody diarrhea. She worsened clinically over the following week, eventually developing respiratory distress and lethargy. She was admitted to the intensive care unit of a local children's hospital on October 15, 2007. Her blood smear revealed 7.4% hyperparasitemia with *P. falciparum*. Other laboratory findings included anemia, thrombocytopenia, and elevated alanine and aspartate aminotransferase. The patient was treated with quinidine and clindamycin, recovered, and was transitioned to atovaquone-proguanil before discharge on October 19, 2007. She spent a total of 4 days in the hospital. Blood smears from cases 2 through 5 were sent to CDC for confirmation of test results. In cases 2 and 3, blood smears were positive for *Plasmodium spp.* (without percent parasitemia noted), and PCR was positive for *P. ovale.* In case 4, the blood smear was notable for a 10% *P. falciparum* hyperparasitemia. In case 5, the blood smear was negative, but PCR was positive for *P. falciparum*. **Reported by:** JS Duchin, MD, TS Kwan-Gett, MD, MPH, S McKeirnan, MPH, M Grandjean, M Ohrt, MPH, S Randels, Public TABLE. Clinical findings, laboratory results, and treatment of malaria in Burundian refugees from Tanzania — King County, Washington, June 27, 2007—October 15, 2007 | Characteristic | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | |------------------------------------|---------------------------|---------------------------------|----------------------------|---|---| | Patient age (yrs) | 3 | 9 | 6 | 6 | 2 | | Sex | Female | Female | Male | Male | Female | | Arrival in United States | June 12, 2007 | July 23, 2007 | July 23, 2007 | September 28, 2007 | September 28, 2007 | | Symptom onset | June 25, 2007 | August 11, 2007 | August 13, 2007 | October 1, 2007 | October 8, 2007 | | Signs/Symptoms | Fever, chills, cough | Fever, headache, malaise, cough | Fever, headache, malaise | Fever, cough | Fever, vomiting,
diarrhea, respiratory
distress, lethargy | | Laboratory findings
Blood smear | Plasmodium falciparum | Plasmodium spp. | Plasmodium spp. | P. falciparum | P. falciparum | | % Parasitemia | 7% | _ | _ | 6.3%* | 7.4% [†] | |
Polymerase chain reaction (PCR) | N/A | Plasmodium ovale | P. ovale | N/A | P. falciparum | | Hematocrit | 29% | 30% | 34% | 32% | 18% | | Platelets | 59,000 | 210,000 | 160,000 | 202,000 | 29,000 | | Aspartate aminotransferase | 68 | 118 | 31 | _ | 122 | | Alanine aminotransferase | 43 | 150 | 18 | _ | 61 | | $P_aO_2^{\S}$ | 49 | _ | _ | _ | 24 | | Treatment | | | | | | | Predeparture | sulfadoxine pyrimethamine | artemether-lumefantrine | artemether-lumefantrine | artemether-lumefantrine | artemether-lumefantrine | | In the United States | atovaquone-proguanil | mefloquine and primaquine | chloroquine and primaquine | quinidine and clindamycin, followed by atovaquone-proguanil | quinidine and clindamycin, followed by atovaquone proguanil | ^{*} Confirmation at CDC revealed 10% hyperparasitemia. Health–Seattle and King County, Communicable Disease Epidemiology and Immunization Section, Washington. PM Arguin, MD, Malaria Branch, Div of Parasitic Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases; CR Phares, PhD, Immigrant, Refugee, and Migrant Health Branch, Div of Global Migration and Quarantine, National Center for Preparedness, Detection, and Control of Infectious Diseases; MP Hanson, MD, EIS Officer, CDC. Editorial Note: CDC recommends presumptive treatment of P. falciparum malaria in United States-bound refugees at high risk for infection rather than waiting for development of symptoms and risking severe complications or death after arrival in the United States (2). To be considered adequate presumptive therapy, the regimen must be completed no sooner than 3 days before departure (2). This approach reduces the risk for malaria-related morbidity and mortality among these refugees. Refugees are typically a medically underserved population with difficulty accessing care, which can lead to delays in diagnosis and treatment. Even if refugees are able to obtain care, health-care providers in the United States might not be familiar with recommended malaria treatment regimens. For example, the patient in case 1 did not receive adequate treatment for severe infection with *P. falciparum.* Instead, she received oral atovaquone-proguanil, which would have been appropriate for uncomplicated malaria. The recommended regimens for severe infection with *P. falciparum* include either intravenous quinidine or artesunate (3). The latter is available from CDC via an investigational new drug protocol. Presumptive predeparture treatment for malaria in a geographically clustered population of refugees, as in a refugee camp, is easier logistically and less costly than treatment of symptomatic cases dispersed throughout the United States after arrival. Presumptive treatment also can reduce the risk for reintroduction of malaria into the United States. Reintroduction is a concern given that the malaria vector, the female *Anopheles* mosquito, is widespread in the United States. A recent malaria outbreak in the Caribbean resulting from reintroduction is an example of this possibility (4). The International Organization for Migration (IOM) is an intergovernmental agency that screens and treats most refugees bound for the United States. This is done at the request of the United States in an effort to reduce the incidence of infectious disease among refugees after they reach the United States. IOM administers presumptive treatment against *P. falciparum* malaria (and intestinal parasites) to refugees resettling from Tanzania before departure for the United States. In 2005, CDC Smear negative, but PCR test positive at CDC. [§] Partial pressure of oxygen in arterial blood. recommended ACT as presumptive *P. falciparum* treatment for refugees resettling in the United States from sub-Saharan Africa. However, presumptive *P. falciparum* malaria treatment using sulfadoxine-pyrimethamine was used for Tanzanian refugees until July 7, 2007. CDC surveillance data indicate that among 1,805 Burundian refugees from Tanzania who resettled to 34 U.S. states during May 4-July 7, 2007, 29 symptomatic cases of malaria were identified in 12 states, including Washington. Twenty-six of these refugees (including the patient in case 1) were infected with P. falciparum alone, and two had mixed infections (P. falciparum and P. ovale or Plasmodium malariae). Speciation was not performed for the remaining case. Twenty-four of the 29 (82%) patients were hospitalized; none died (CDC, unpublished data). These 29 refugees departed for the United States before July 7, 2007, the date when IOM implemented the CDC recommendations that refugees from Tanzania receive presumptive treatment with 6-dose artemether-lumefantrine within 3 days before departure for the United States. Instead, they all received sulfadoxine-pyrimethamine before departure; high rates of resistance to sulfadoxine-pyrimethamine have been reported (5), but the artemether-lumefantrine regimen has been effective in field settings in Africa (6). Two of the patients in this report who were infected with P. falciparum, the patients in cases 4 and 5, were resettled to the United States after July 7, 2007, the date when IOM instituted the change to artemether-lumefantrine treatment. These two patients received a complete artemetherlumefantrine presumptive treatment course before departure from Tanzania, yet both were diagnosed with P. falciparum after arrival in the United States. Possible explanations include incomplete treatment or nonadherence to the medication regimen (only 3 of 6 doses were directly observed in these two patients, and in the patients in cases 2 and 3), poor medication absorption, reinfection after treatment, or treatment during a time in the parasite's lifecycle when it would be unaffected by this regimen. In response to such continuing cases, IOM now directly observes all 6 doses of artemether-lumefantrine treatment and provides milk with each dose to improve absorption. Current IOM policy targets infection with *P. falciparum* only. However, cases 2 and 3 in this series involved relapses of *P. ovale* after arrival in the United States. Infection with *P. ovale* (or *Plasmodium vivax*) generally results in less severe disease than infection with *P. falciparum*. Hypnozoites of *P. ovale* or *P. vivax* can remain dormant in the liver for months or years before causing relapse, and primaquine is the only agent available that can eliminate malaria parasites at this stage of their life cycle (7,8). However, predeparture presumptive treatment with primaquine to prevent relapse of *P. ovale* or *P. vivax* currently is not recommended because the cost, logistics of implementing a 14-day medication course, and risk for severe hemolytic anemia in glucose-6-phosphate dehydrogenase (G6PD)—deficient patients outweigh the potential benefit of avoiding a small number of non-*P. falciparum* malaria cases Up to 10,000 Burundian refugees from Tanzania will have been resettled in the United States during 2007–2008 (9). Health-care providers in the United States caring for refugee populations resettling from malarial regions should remain aware of the possibility of malaria in these groups, regardless of prior treatment. ### References - 1. CDC. Malaria surveillance—United States, 2006. MMWR 2008;57 (No. SS-05):24–39. - 2. CDC. Presumptive treatment of *P. falciparum* malaria in refugees relocating from sub-Saharan Africa to the United States. Atlanta, GA: US Department of Health and Human Services, CDC; 2008. Available at http://www.cdc.gov/ncidod/dq/refugee/rh_guide/domestic.htm. - 3. CDC. Guidelines for treatment of malaria in the United States. Atlanta, GA: US Department of Health and Human Services; 2007. Available at http://www.cdc.gov/malaria/pdf/treatmenttable.pdf. - CDC. Malaria—Great Exuma, Bahamas, May–June 2006. MMWR 2006;55(37):1013–16. - World Health Organization. The use of antimalarial drugs. Geneva, Switzerland: World Health Organization; 2001. Available at http://rbm. who.int/cmc_upload/0/000/014/923/am_toc.htm. - 6. Piola P, Fogg C, Bajunirwe F, et al. Supervised versus unsupervised intake of six-dose artemether-lumefantrine for treatment of acute, uncomplicated *Plasmodium falciparum* malaria in Mbarara, Uganda: a randomised trial. Lancet 2005;365:1467–73. - 7. Baird JK, Hoffman SL. Pimaquine therapy for malaria. Clin Infect Dis 2004;39:1336–45. - Hill DR, Baird JK, Parise ME, Lewis LS, Ryan ET, Magill AJ. Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I. Am J Trop Med Hyg 2006;75:402–15. - 9. US Department of State. U.S. accepting approximately 10,000 refugees from Burundi. October 17, 2006. Available at http://usinfo.state.gov/xarchives/display.html?p=washfile-english&y=2006&m=october&x=20061017183816esnamfuak0.9061396. ### Syphilis Testing Algorithms Using Treponemal Tests for Initial Screening — Four Laboratories, New York City, 2005–2006 In the United States, testing for syphilis traditionally has consisted of initial screening with an inexpensive nontreponemal test, then retesting reactive specimens with a more specific, and more expensive, treponemal test. When both test results are reactive, they indicate present or past infection. However, for economic reasons, some high-volume clinical laboratories have begun using automated treponemal tests, such as automated enzyme immunoassays (EIAs) or immunochemoluminescence tests, and have reversed the testing sequence: first screening with a treponemal test and then retesting reactive results with a nontreponemal test. This approach has introduced complexities in test interpretation that did not exist with the traditional sequence. Specifically, screening with a treponemal test sometimes identifies persons who are reactive to the treponemal test but nonreactive to the nontreponemal test. No formal recommendations exist regarding how such results derived from this new testing sequence should be interpreted, or how patients with such results should be managed. To begin an assessment
of how clinical laboratories are addressing this concern, CDC reviewed the testing algorithms used and the test interpretations provided in four laboratories in New York City. Substantial variation was found in the testing strategies used, which might lead to confusion about appropriate patient management. A total of 3,664 (3%) of 116,822 specimens had test results (i.e., reactive treponemal test result and nonreactive nontreponemal test result) that would not have been identified by the traditional testing algorithms, which end testing if the nontreponemal test result is nonreactive. If they have not been previously treated, patients with reactive results from treponemal tests and nonreactive results from nontreponemal tests should be treated for late latent syphilis. Four New York City laboratories that routinely conduct syphilis testing using EIA treponemal screening tests were able to provide their testing algorithms, test volume, and test results for a convenience sample of specimens. Each laboratory used a slightly different testing algorithm and tested approximately 26,000–130,000 specimens for syphilis per year. CDC reviewed test results from a convenience sample of 116,822 specimens tested at these four laboratories during October 1, 2005–December 1, 2006. In all four laboratories, no further testing was done on specimens that were nonreactive with the treponemal screening EIA. In all four laboratories, specimens considered reactive by EIA test were next tested with a rapid plasma reagin (RPR) test. However, the approach to follow-up testing then differed. At two laboratories, specimens that were reactive with EIA and nonreactive with RPR were retested using a different treponemal test: *Treponema pallidum* particle agglutination (TP-PA) or fluorescent treponemal antibody (FTA-ABS). At a third laboratory, specimens that were reactive to both the EIA test and the RPR test were retested using a different treponemal test (i.e., FTA-ABS or TP-PA). At the fourth laboratory, no further testing was done after the EIA and RPR tests. FIGURE. Composite results of syphilis testing algorithms using treponemal tests for initial screening and likely interpretations* — four laboratories, New York City, October 1, 2005–December 1, 2006[†] - * One laboratory provided limited interpretation of the test results; the other three summarized the results without interpretation. No formal recommendations exist regarding the interpretation of results derived from testing algorithms using treponemal tests as the initial test. - [†] Using a convenience sample of 116,822 specimens. The four laboratories used different testing algorithms. Data shown are a composite of results from all four laboratories. - § Enzyme immunoassay. - ¶ Reactive with EIA treponemal test but nonreactive with RPR test. - ** Using Treponema pallidum particle agglutination or fluorescent treponemal antibody tests. Of the 116,822 specimens included in the convenience sample, 6,587 (6%) were initially reactive to the EIA test (Figure). When 6,548 of the EIA-reactive specimens were tested with an RPR test, 2,884 (44%) were reactive and 3,664 (56%) were nonreactive to the RPR test. Further testing with FTA-ABS or TP-PA tests on 2,512 of the specimens reactive to the EIA test but nonreactive to the RPR test found 2,079 (83%) specimens reactive to the second treponemal tests (i.e., FTA-ABS or TP-PA). In addition, the one laboratory that performed TP-PA testing on specimens that were reactive to both the EIA and RPR tests found 78 of 80 (98%) specimens were reactive to the TP-PA test. One laboratory provided limited interpretation of the various permutations of syphilis test results. The other three laboratories gave providers an objective summary of the test results (e.g., EIA reactive, RPR reactive, or EIA reactive and RPR nonreactive) with no interpretation. No additional information was available from the four laboratories regarding patient treatment. **Reported by:** T Peterman, MD, J Schillinger, MD, S Blank, MD, S Berman, MD, R Ballard, PhD, D Cox, PhD, R Johnson, MD, S Hariri, PhD, N Selvam, PhD, Div of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC. Editorial Note: In the four New York City laboratories studied, reversing the traditional order of screening and confirmatory tests for syphilis resulted in 3,664 (3%) of 116,822 specimens with test results (i.e., reactive treponemal test result and nonreactive nontreponemal test result) that would not have been identified by the traditional testing algorithm. The importance of these test results is unclear because no specific prognostic information exists to guide patient evaluation and treatment. Treponemal tests detect antibodies specific to *T. pallidum*. In addition to *T. pallidum pallidum*, which causes syphilis, other treponemal subspecies (e.g., *pertenue*, which causes yaws, and *carateum*, which causes pinta) also can produce reactive results to treponemal tests, but these subspecies are rare in the United States (1). A reactive treponemal test result indicates that treponemal infection has occurred at some point in the past but cannot distinguish between treated and untreated infections. As such, treponemal tests, such as the *T. pallidum* EIA test, TP-PA test, and FTA-ABS test, can produce reactive results for life, even after adequate treatment for syphilis. Nontreponemal tests, such as the RPR test and venereal disease research laboratory (VDRL) test, detect antibodies to cardiolipin and are not specific for treponemal infection. Nontreponemal tests are more likely than treponemal tests to produce nonreactive results after treatment; therefore, reactive results from nontreponemal tests are more reliable indicators of untreated infection. Quantitative nontreponemal tests also are used to monitor responses to treatment or to indicate new infections. False-positive nontreponemal tests occur in 1%–2% of the U.S. population, and have been associated with multiple conditions, including pregnancy, human immunodeficiency virus (HIV) infection, intravenous drug use, tuberculosis, rickettsial infection, spirochetal infection other than syphilis, bacterial endocarditis, and disorders of immunoglobulin production (2,3). Nontreponemal test results might be falsely negative in longstanding latent infection (4). Both treponemal and nontreponemal tests can produce nonreactive results when the infection has been acquired recently; approximately 20% of test results are negative when patients have primary syphilis (4). The four New York City laboratories in this report used various algorithms to evaluate specimens that were reactive to treponemal tests and nonreactive to nontreponemal tests. The different algorithms might lead to confusion in the interpretation of test results and, in turn, in the management and treatment of patients. Test results that would not have been identified by the traditional algorithm were obtained for 3% of the specimens tested for syphilis; thus, such results might be expected to occur several thousand times per year in New York City alone. When results are reactive to both treponemal and RPR tests, persons should be considered to have untreated syphilis unless it is ruled out by treatment history. Persons who were treated in the past are considered to have a new syphilis infection if quantitative testing on an RPR test or another nontreponemal test reveals a four fold or greater increase in titer (health departments maintain registries of past positive tests). When results are reactive to the treponemal test but nonreactive to the RPR test, persons with a history of previous treatment will require no further management. For persons without a history of treatment, a second, different treponemal test should be performed (5). If the second treponemal test is nonreactive, the clinician may decide that no further evaluation or treatment is indicated, or may choose to perform a third treponemal test to help resolve the discrepancy. If the second treponemal test is reactive, clinicians should discuss the possibility of infection and offer treatment to patients who have not been previously treated. Unless history or results of a physical examination suggest a recent infection, such patients are unlikely to be infectious and should be treated for late latent infections, even though they do not meet the surveillance case definition (7). Treatment can prevent severe (i.e., tertiary) complications that can result from untreated syphilis, although the probability of such complications occurring without treatment, while unknown, likely is small (6) Treatment also allows patients to report that they have been treated for syphilis if they ever receive similar results from future treponemal screening tests. Public health departments determine their own priorities for partner notification and other prevention activities; however, because late infections are unlikely to be infectious, they would likely be considered low priority for health department intervention activities. Reversal of the traditional syphilis screening sequence has been driven by economics. For high-volume laboratories, an automated treponemal test can be less expensive than using an RPR test for the initial screening. An important consequence of this reversal is the identification of a combination of reactive and nonreactive test results that would not otherwise have been identified. The clinical interpretation of these results is complicated by the lack of standardized follow-up testing algorithms among the four laboratories, and by the lack of an evidence base with which to judge the merits of each algorithm. Consequently, use of a reversed sequence of syphilis testing might result in overdiagnosis and overtreatment of syphilis in some clinical settings. The recommendations in this report might not be appropriate in countries with different patterns of seroreactivity, systems of health
care, and epidemiology of disease. Furthermore, additional analyses are needed that further elucidate the use and total costs of these alternative screening approaches for syphilis, given the anticipated increase in use of treponemal tests for screening in the United States. #### References - Egglestone SI, Turner AJ. Serological diagnosis of syphilis. PHLS Syphilis Serology Working Group. Commun Dis Public Health 2000;3:158–62. - Hernandez-Aguado I, Bolumar F, Moreno R, et al. False-positive tests for syphilis associated with human immunodeficiency virus and hepatitis B virus infection among intravenous drug abusers. Valencian Study Group on HIV Epidemiology. Eur J Clin Microbiol Infect Dis 1998;17:784–7. - Golden MR, Marra CM, Holmes KK. Update on syphilis: resurgence of an old problem. JAMA 2003;290:1510–4. - 4. Larsen SA, Steiner BM, Rudolph AH. Laboratory diagnosis and interpretation of tests for syphilis. Clin Microbiol Rev 1995;8:1–21. - CDC. Sexually transmitted diseases treatment guidelines. MMWR 2006;55(No. RR-11). - Wöhrl S, Geusau A. Neurosyphilis is unlikely in patients with late latent syphilis and a negative blood VDRL-test. Acta Derm Venereol 2006:86:335–9 - CDC. Sexually transmitted disease surveillance, 2006. Atlanta, GA: US Department of Health and Human Services, CDC, 2007. Available at http://www.cdc.gov/std/stats. # Infection Control Requirements for Dialysis Facilities and Clarification Regarding Guidance on Parenteral Medication Vials In April 2008, the Centers for Medicare and Medicaid Services (CMS) published in the Federal Register its final rule on Conditions for Coverage for End-Stage Renal Disease (ESRD) Facilities (1). The rule establishes new conditions dialysis facilities must meet to be certified under the Medicare program and is intended to update CMS standards for delivery of quality care to dialysis patients. CDC's 2001 Recommendations for Preventing Transmission of Infections among Chronic Hemodialysis Patients (2) have been incorporated by reference into the new CMS conditions for coverage. Thus, effective October 14, 2008, all ESRD facilities are expected to follow the CDC recommendations as a condition for receiving Medicare payment for outpatient dialysis services. In recent years, outbreak investigations in dialysis and other health-care settings have demonstrated that mishandling of parenteral medication vials can contribute to the risk for hepatitis C virus (HCV) infection and bacterial and other infections (3-7). In 2002, a CDC communication to CMS suggested that reentry into single-use parenteral medication vials (i.e., to administer medication to more than one patient), when performed on a limited basis and under strict conditions in hemodialysis settings, likely would result in low risk for bacterial infection (8). However, the 2002 communication did not address risks for bloodborne viral infections (e.g., HCV and hepatitis B virus infection). This report is intended to clarify and restate CDC's recommendation on parenteral medication to include bloodborne viral infections. The recommendations in this report supersede the 2002 CDC communication to CMS. To prevent transmission of both bacteria and bloodborne viruses in hemodialysis settings, CDC recommends that all single-use injectable medications and solutions be dedicated for use on a single patient and be entered one time only. Medications packaged as multidose should be assigned to a single patient whenever possible. All parenteral medications should be prepared in a clean area separate from potentially contaminated items and surfaces. In hemodialysis settings where environmental surfaces and medical supplies are subjected to frequent blood contamination, medication preparation should occur in a clean area removed from the patient treatment area. Proper infection control practices must be followed during the preparation and administration of injected medications (9). This is consistent with official CDC recommendations for infection control precautions in hemodialysis (2) and other health-care settings (9). Health departments and other public health partners should be aware of the new CMS conditions for ESRD facilities. All dialysis providers are advised to follow official CDC recommendations regarding Standard Precautions and infection control in dialysis settings (2,9). Specifically, CDC has recommended the following: "Intravenous medication vials labeled for single use, including erythropoietin, should not be punctured more than once. Once a needle has entered a vial labeled for single use, the sterility of the product can no longer be guaranteed" (2). Additional guidance on safe injection practices can be found in the *Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings* 2007 (9). Dialysis providers also should be aware of their responsibility to report clusters of infections or other adverse events to the appropriate local or state public health authority. Failure to report illness clusters to public health authorities can result in delays in recognition of disease outbreaks (10) and implementation of control measures. Additional information regarding the new CMS Conditions for Coverage for End-Stage Renal Disease Facilities is available at http://www.cms.hhs.gov/cfcsandcops/13_esrd.asp. ### References - US Department of Health and Human Services. Centers for Medicare and Medicaid Services. Medicare and Medicaid programs; conditions for coverage for end-stage renal disease facilities. 42 CFR Parts 405, 410, 413, 414, 488, and 494. Available at http://www.cms.hhs.gov/ cfcsandcops/downloads/esrdfinalrule0415.pdf - CDC. Recommendations for preventing transmission of infections among chronic hemodialysis patients. MMWR 2001;50(No. RR-5). - 3. Thompson N, Bialek S. Hepatitis C virus transmission in the hemodialysis setting: importance of infection control practices and aseptic technique [Abstract]. In: programs and abstracts of the National Kidney Foundation Spring Meeting; April 3, 2008; Grapevine, TX. - CDC. Acute hepatitis C virus infections attributed to unsafe injection practices at an endoscopy clinic—Nevada, 2007. MMWR 2008;57: 513–7. - 5. Williams IT, Perz JF, Bell BP. Viral hepatitis transmission in ambulatory health care settings. Clin Infect Dis 2004;38:1592–8. - 6. Alter MJ. Healthcare should not be a vehicle for transmission of hepatitis C virus. J Hepatol 2008;48:2–4. - Grohskopf LA, Roth VR, Feikin DR, et al. Serratia liquefaciens bloodstream infections from contamination of epoetin alfa at a hemodialysis center. N Engl J Med 2001;344:1491–7. - Department of Health and Human Services. Centers for Medicare and Medicaid Services. CDC revised recommendations for single-use intravenous medication vials in end-stage renal disease (ESRD) facilities, 2002. Available at http://www.cms.hhs.gov/surveycertificationgen info/downloads/scletter02-43.pdf. - Siegel JD, Rhinehart E, Jackson M, Chiarello L, and the Healthcare Infection Control Practices Advisory Committee. Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings 2007. Atlanta, GA: US Department of Health and Human Services, CDC; 2007. Available at http://www.cdc.gov/ncidod/ dhqp/gl_isolation.html. - CDC. Acute allergic-type reactions among patients undergoing hemodialysis—multiple states, 2007–2008. MMWR 2008;57:124–5. ### Notice to Readers ## Preventive Medicine Residency Application Deadline — October 1, 2008 CDC's Preventive Medicine Residency (PMR) program is accepting applications from physicians with public health and applied epidemiology experience. Application materials must be postmarked by October 1, 2008 for the 12-month program that begins in mid-June 2009. The PMR prepares physicians for leadership roles in public health at federal, state, and local levels through instruction and supervised practical experiences focused on translating epidemiology to public health practice, management, and policy and program development. Residents spend the practicum year at CDC or in a state or local health department. PMR alumni occupy leadership positions at CDC, at state and local health departments, in academia, and in private-sector agencies. Completion of the residency, which is accredited by the Accreditation Council for Graduate Medical Education for 12 months of practicum training, qualifies graduates to apply for certification by the American Board of Preventive Medicine in Public Health and General Preventive Medicine. Additional information regarding the residency, eligibility criteria, and application process is available at http://www.cdc.gov/epo/dapht/pmr/pmr.htm or by calling 404-498-6140. ### Erratum: Vol. 57, No. SS-6 In the MMWR Surveillance Summary (Vol. 57, No. SS-6), "Epilepsy Surveillance Among Adults — 19 States, Behavioral Risk Factor Surveillance System," 2005, an error occurred on page 1 in the fourth sentence of the second paragraph of the Results/Interpretation. The sentence should read, "Among adults with active epilepsy with recent seizures, 16.1% reported not currently taking their epilepsy medication, and 65.1% reported having had more than one seizure in the past 3 months." ### **QuickStats** ### FROM THE NATIONAL CENTER FOR HEALTH STATISTICS ### Age-Adjusted Death Rates* by Race and Sex — United States, 2006† ^{*} Per 100,000 standard population. In 2006, age-adjusted death rates were higher for males (924.6 per 100,000 population) than females (657.8 per 100,000 population) overall and within black and white populations. By race, death rates were higher for blacks than for whites. **SOURCE:** Heron MP, Hoyert DL, Xu JQ, Scott C, Tejada-Vera B. Deaths: preliminary data for 2006. Natl Vital Stat Rep 2008;56(16). Available at http://www.cdc.gov/nchs/data/nvsr/nvsr56/nvsr56_16.pdf and http://www.cdc.gov/nchs/data/statab/hist001r.pdf. [†] Preliminary data. TABLE I. Provisional cases of infrequently reported
notifiable diseases (<1,000 cases reported during the preceding year) — United States, week ending August 9, 2008 (32nd Week)* | | Current | Cum | 5-year
weekly | Total | cases rep | orted for | previou | s years | | |--|--------------|------|--------------------------------|-------|-----------|-----------|---------|---------|---| | Disease | Current week | 2008 | weekiy
average [†] | 2007 | 2006 | 2005 | 2004 | 2003 | States reporting cases during current week (No.) | | Anthrax | _ | _ | | 1 | 1 | _ | _ | _ | · · · · · · · · · · · · · · · · · · · | | Botulism: | | | | | | | | | | | foodborne | _ | 6 | 1 | 32 | 20 | 19 | 16 | 20 | | | infant | 1 | 48 | 2 | 85 | 97 | 85 | 87 | 76 | FL (1) | | other (wound & unspecified) | _ | 9 | 1 | 27 | 48 | 31 | 30 | 33 | | | Brucellosis | 1 | 46 | 3 | 131 | 121 | 120 | 114 | 104 | CA (1) | | Chancroid | _ | 24 | 0 | 23 | 33 | 17 | 30 | 54 | | | Cholera | _ | _ | 0 | 7 | 9 | 8 | 6 | 2 | | | Cyclosporiasis§ | 6 | 87 | 4 | 92 | 137 | 543 | 160 | 75 | MD (1), FL (5) | | Diphtheria | _ | _ | _ | _ | _ | _ | _ | 1 | | | Domestic arboviral diseases ^{§,¶} : | | | | | | | | | | | California serogroup | _ | 10 | 6 | 55 | 67 | 80 | 112 | 108 | | | eastern equine | _ | 1 | 1 | 4 | 8 | 21 | 6 | 14 | | | Powassan | _ | _ | 0 | 7 | 1 | 1 | 1 | _ | | | St. Louis | _ | 5 | 1 | 9 | 10 | 13 | 12 | 41 | | | western equine | _ | _ | _ | _ | _ | _ | _ | _ | | | Ehrlichiosis/Anaplasmosis§,**: | | | | | | | | | | | Ehrlichia chaffeensis | 25 | 312 | 20 | 828 | 578 | 506 | 338 | 321 | OH (3), MN (4), MO (2), MD (2), VA (2), GA (1), TN (11) | | Ehrlichia ewingii | _ | 3 | _ | _ | _ | _ | _ | _ | | | Anaplasma phagocytophilum | 9 | 134 | 20 | 834 | 646 | 786 | 537 | 362 | MN (9) | | undetermined | 4 | 33 | 5 | 337 | 231 | 112 | 59 | 44 | MO (1), TN (3) | | Haemophilus influenzae,†† | | | | | | | | | | | invasive disease (age <5 yrs): | | | | | | | | | | | serotype b | _ | 16 | 0 | 22 | 29 | 9 | 19 | 32 | | | nonserotype b | _ | 103 | 2 | 199 | 175 | 135 | 135 | 117 | | | unknown serotype | 3 | 136 | 4 | 180 | 179 | 217 | 177 | 227 | NY (1), PA (1), TN (1) | | Hansen disease§ | _ | 39 | 2 | 101 | 66 | 87 | 105 | 95 | | | Hantavirus pulmonary syndrome§ | _ | 7 | 0 | 32 | 40 | 26 | 24 | 26 | | | Hemolytic uremic syndrome, postdiarrheal§ | 4 | 89 | 7 | 292 | 288 | 221 | 200 | 178 | TN (2), CA (2) | | Hepatitis C viral, acute | 4 | 474 | 16 | 849 | 766 | 652 | 720 | 1,102 | OH (1), CO (1), WA (1), CA (1) | | HIV infection, pediatric (age <13 yrs)§§ | _ | _ | 4 | _ | _ | 380 | 436 | 504 | | | Influenza-associated pediatric mortality ^{§,¶¶} | _ | 87 | 0 | 77 | 43 | 45 | _ | N | | | Listeriosis | 5 | 322 | 22 | 808 | 884 | 896 | 753 | 696 | NY (1), MD (1), VA (1), FL (1), CA (1) | | Measles*** | _ | 123 | 1 | 43 | 55 | 66 | 37 | 56 | | | Meningococcal disease, invasive†††: | | | | | | | | | | | A, Č, Y, & W-135 | 2 | 182 | 4 | 325 | 318 | 297 | _ | _ | IN (2) | | serogroup B | 2 | 109 | 2 | 167 | 193 | 156 | _ | _ | IN (2) | | other serogroup | _ | 22 | 0 | 35 | 32 | 27 | _ | _ | • | | unknown serogroup | 3 | 415 | 8 | 550 | 651 | 765 | _ | _ | NY (1), MO (1), NC (1) | | Mumps | 1 | 259 | 14 | 800 | 6,584 | 314 | 258 | 231 | CA (1) | | Novel influenza A virus infections | _ | _ | 0 | 1 | N | N | N | N | | | Plague | _ | 1 | 0 | 7 | 17 | 8 | 3 | 1 | | | Poliomyelitis, paralytic | _ | _ | _ | _ | _ | 1 | _ | _ | | | Poliovirus infection, nonparalytic§ | _ | _ | _ | _ | N | N | N | N | | | Psittacosis§ | _ | 6 | 0 | 12 | 21 | 16 | 12 | 12 | | | Q fever ^{§,§§§} total: | _ | 63 | 3 | 171 | 169 | 136 | 70 | 71 | | | acute | _ | 58 | _ | _ | _ | _ | _ | _ | | | chronic | _ | 5 | _ | _ | _ | _ | _ | _ | | | Rabies, human | _ | _ | 0 | 1 | 3 | 2 | 7 | 2 | | | Rubella ^{¶¶¶} | 1 | 9 | 0 | 12 | 11 | 11 | 10 | 7 | AZ (1) | | Rubella, congenital syndrome | _ | _ | _ | _ | 1 | 1 | _ | 1 | | | SARS-CoV ^{§,****} | _ | _ | _ | _ | _ | _ | _ | 8 | | - —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. - * Incidence data for reporting years 2007 and 2008 are provisional, whereas data for 2003, 2004, 2005, and 2006 are finalized. - † Calculated by summing the incidence counts for the current week, the 2 weeks preceding the current week, and the 2 weeks following the current week, for a total of 5 preceding years. Additional information is available at http://www.cdc.gov/epo/dphsi/phs/files/5yearweeklyaverage.pdf. - Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 and 2008 for the domestic arboviral diseases and influenza-associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm. - Includes both neuroinvasive and nonneuroinvasive. Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ArboNET Surveillance). Data for West Nile virus are available in Table II. ** The names of the reporting categories changed in 2008 as a result of revisions to the case definitions. Cases reported prior to 2008 were reported in the categories: - ** The names of the reporting categories changed in 2008 as a result of revisions to the case definitions. Cases reported prior to 2008 were reported in the categories: Ehrlichiosis, human monocytic (analogous to *E. chaffeensis*); Ehrlichiosis, human granulocytic (analogous to *Anaplasma phagocytophilum*), and Ehrlichiosis, unspecified, or other agent (which included cases unable to be clearly placed in other categories, as well as possible cases of *E. ewingii*). †† Data for *H. influenzae* (all ages, all serotypes) are available in Table II. - §§ Updated monthly from reports to the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. Implementation of HIV reporting influences the number of cases reported. Updates of pediatric HIV data have been temporarily suspended until upgrading of the national HIV/AIDS surveillance data management system is completed. Data for HIV/AIDS, when available, are displayed in Table IV, which appears quarterly. - 11 Updated weekly from reports to the Influenza Division, National Center for Immunization and Respiratory Diseases. Eighty-five cases occurring during the 2007–08 influenza season have been reported. - *** No measles cases were reported for the current week. - ††† Data for meningococcal disease (all serogroups) are available in Table II. - §§§ In 2008, Q fever acute and chronic reporting categories were recognized as a result of revisions to the Q fever case definition. Prior to that time, case counts were not differentiated with respect to acute and chronic Q fever cases. - The one rubella case reported for the current week was unknown. - **** Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases. TABLE I. (*Continued*) Provisional cases of infrequently reported notifiable diseases (<1,000 cases reported during the preceding year) — United States, week ending August 9, 2008 (32nd Week)* | | Current | Cum | 5-year
weekly | Total | cases rep | orted for | previou | s years | | |---|---------|------|----------------------|-------|-----------|-----------|---------|---------|--| | Disease | week | 2008 | average [†] | 2007 | 2006 | 2005 | 2004 | 2003 | States reporting cases during current week (No.) | | Smallpox§ | _ | | _ | | | | _ | _ | | | Streptococcal toxic-shock syndrome§ | _ | 94 | 1 | 132 | 125 | 129 | 132 | 161 | | | Syphilis, congenital (age <1 yr) | _ | 113 | 7 | 430 | 349 | 329 | 353 | 413 | | | Tetanus | 1 | 6 | 1 | 28 | 41 | 27 | 34 | 20 | FL (1) | | Toxic-shock syndrome (staphylococcal)§ | 1 | 40 | 2 | 92 | 101 | 90 | 95 | 133 | PA (1) | | Trichinellosis | _ | 5 | 0 | 5 | 15 | 16 | 5 | 6 | | | Tularemia | 2 | 55 | 4 | 137 | 95 | 154 | 134 | 129 | ND (1), AR (1) | | Typhoid fever | _ | 208 | 9 | 434 | 353 | 324 | 322 | 356 | | | Vancomycin-intermediate Staphylococcus au | reus§ — | 6 | 0 | 28 | 6 | 2 | _ | N | | | Vancomycin-resistant Staphylococcus aureus | § | _ | _ | 2 | 1 | 3 | 1 | N | | | Vibriosis (noncholera Vibrio species infections | s)§ 14 | 174 | 10 | 447 | N | N | N | N | MD (1), VA (1), FL (4), TN (1), CA (7) | | Yellow fever | _ | _ | _ | _ | _ | _ | _ | _ | | ^{—:} No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals August 9, 2008, with historical data ^{*} No measles cases were reported for the current 4-week period yielding a ratio for week 32 of zero (0). † Ratio of current 4-week total to mean of 15 4-week totals (from previous, comparable, and subsequent 4-week ## Notifiable Disease Data Team and 122 Cities Mortality Data Team Patsy A. Hall Deborah A. Adams Rosaline Dhara William A. Hall Deborah A. Adams Willie J. Anderson Lenee Blanton Rosaline Dhara Michael S. Wodajo Pearl C. Sharp ^{*} Incidence data for reporting years 2007 and 2008 are provisional, whereas data for 2003, 2004, 2005, and 2006 are finalized. [†] Calculated by summing the incidence counts for the current week, the 2 weeks preceding the current week, and the 2 weeks following the current week, for a total of 5 preceding years. Additional information is available at http://www.cdc.gov/epo/dphsi/phs/files/5yearweeklyaverage.pdf. Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 and 2008 for the domestic arboviral diseases and influenza-associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at
http://www.cdc.gov/epo/dphsi/phs/infdis.htm. Ratio of current 4-week total to mean of 15 4-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals. TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending August 9, 2008, and August 11, 2007 (32nd Week)* | | | | Chlamyd | ia† | | | Coccid | ioidomy | cosis | | | Cryp | tosporid | liosis | | |---|---|--|---|--|--|---------------------------------------|-----------------------------------|---|--|---|---------------------------------------|--|---|--|--| | | Current | | vious | Cum | Cum | Current | | vious | Cum | Cum | Current | | vious
veeks | Cum | Cum | | Reporting area | Current
week | Med | veeks
Max | Cum
2008 | Cum
2007 | week | Med | veeks
Max | Cum
2008 | Cum
2007 | week | Med | Max | Cum
2008 | Cum
2007 | | United States | 9,944 | 21,171 | 28,892 | 633,996 | 665,187 | 99 | 125 | 341 | 3,988 | 4,610 | 90 | 93 | 975 | 2,541 | 3,001 | | New England
Connecticut
Maine [§]
Massachusetts
New Hampshire
Rhode Island [§]
Vermont [§] | 704
274
—
295
32
64
39 | 673
198
49
320
39
55
16 | 1,516
1,093
67
660
73
98
44 | 21,343
5,989
1,465
10,587
1,222
1,699
381 | 21,261
6,296
1,571
9,623
1,250
1,903
618 | N
N
N
— | 0
0
0
0
0
0 | 1
0
0
0
1
0 | 1
N
N
N
1
- | 2
N
N
N
2
— | 2
2
—
—
— | 5
0
0
2
1
0 | 20
18
5
11
4
3
4 | 151
18
16
48
37
4
28 | 171
42
23
55
29
5 | | Mid. Atlantic
New Jersey
New York (Upstate)
New York City
Pennsylvania | 2,015
228
467
769
551 | 2,768
408
564
1,012
805 | 5,066
523
2,177
3,134
1,048 | 89,291
11,591
16,621
35,146
25,933 | 86,145
13,077
15,611
30,862
26,595 | N
N
N
N | 0
0
0
0 | 0
0
0
0 | N
N
N
N | N
N
N
N | 20

9

11 | 13
0
5
2
6 | 120
8
20
8
95 | 362
10
121
51
180 | 520
20
81
45
374 | | E.N. Central
Illinois
Indiana
Michigan
Ohio
Wisconsin | 1,177
6
236
538
113
284 | 3,531
1,014
385
775
843
369 | 4,453
1,711
656
1,225
1,530
615 | 104,435
28,456
12,285
27,051
25,853
10,790 | 109,263
31,750
12,851
23,196
29,426
12,040 | 1
N
N
—
1
N | 1
0
0
0
0 | 3
0
0
2
1
0 | 30
N
N
22
8
N | 20
N
N
15
5
N | 24

4
1
17
2 | 23
2
3
5
6
8 | 134
13
41
11
60
60 | 681
53
99
132
181
216 | 642
78
37
96
137
294 | | W.N. Central
lowa
Kansas
Minnesota
Missouri
Nebraska [§]
North Dakota
South Dakota | 495
—
1
353
94
—
47 | 1,225
159
163
263
470
94
34
54 | 1,700
238
529
373
572
250
65
81 | 38,602
5,057
5,504
7,514
14,726
3,083
1,028
1,690 | 38,248
5,306
4,958
8,145
14,054
3,244
1,029
1,512 | N N N N N N N N N N N N N N N N N N N | 0
0
0
0
0
0 | 77
0
0
77
1
0
0 | | 6 | 15
1
-
5
6
3
- | 18
4
1
5
3
2
0
1 | 125
61
15
34
14
24
51 | 435
105
32
108
94
61
3 | 487
178
41
71
63
46
2
86 | | S. Atlantic Delaware District of Columbia Florida Georgia Maryland [§] North Carolina South Carolina [§] Virginia [§] West Virginia | 2,524
40
117
1,271
1
398
—
43
639
15 | 3,884
65
131
1,311
612
466
183
463
524
58 | 7,609
150
216
1,556
1,338
683
4,783
3,057
1,062
96 | 112,640
2,244
4,458
42,146
7,530
13,668
5,901
16,007
18,813
1,873 | 130,948
2,185
3,624
33,632
26,173
12,867
18,044
17,096
15,401
1,926 | | 0
0
0
0
0
0
0 | 1
0
1
0
0
1
0
0
0 |
 | 3
1
N
N
2
N
N
N
N | 12
—
11
—
—
—
1 | 17
0
0
8
4
0
0
1
1 | 65
4
2
35
14
4
18
15
6
5 | 432
9
3
206
122
8
16
24
34 | 512
5
1
233
117
17
50
45
39
5 | | E.S. Central
Alabama [§]
Kentucky
Mississippi
Tennessee [§] | 714
—
172
—
542 | 1,528
472
231
358
510 | 2,394
605
361
1,048
782 | 47,599
12,750
6,885
11,422
16,542 | 50,322
15,528
4,507
13,474
16,813 | N
N
N
N | 0
0
0
0 | 0
0
0
0 | N
N
N
N | N
N
N
N | 5
4
1
— | 4
1
1
0 | 64
14
40
11
18 | 81
35
17
7
22 | 151
33
67
27
24 | | W.S. Central
Arkansas [§]
Louisiana
Oklahoma
Texas [§] | 382
290
92
— | 2,728
258
391
222
1,829 | 4,426
455
729
416
3,923 | 86,821
8,729
12,443
6,348
59,301 | 73,992
5,436
12,101
7,889
48,566 | | 0
0
0
0 | 1
0
1
0
0 | 1
N
1
N
N | 1
N
1
N | 1
1
—
— | 5
1
0
1
3 | 37
8
4
11
28 | 113
15
11
26
61 | 151
18
33
41
59 | | Mountain
Arizona
Colorado
Idaho [§]
Montana [§]
Nevada [§]
New Mexico [§]
Utah
Wyoming [§] | 264
138
60
16
36
14
— | 1,365
449
278
60
50
183
143
122 | 1,836
679
488
259
363
416
561
209
34 | 33,830
11,249
5,429
2,263
1,842
5,603
3,967
3,466
11 | 45,208
15,061
10,729
2,258
1,702
5,892
5,624
3,187
755 | 78
77
N
N
N
1 | 89
85
0
0
1
0
0 | 170
168
0
0
0
7
3
7 | 2,681
2,623
N
N
N
37
16
4 | 2,944
2,852
N
N
N
38
16
36 | 11
6
2
2
—
—
1
— | 10
1
2
2
1
0
2
1 | 567
8
26
71
7
6
8
484 | 241
42
52
37
29
8
46
19
8 | 291
26
54
16
30
8
66
70
21 | | Pacific
Alaska
California
Hawaii
Oregon [§]
Washington | 1,669
75
1,594
— | 3,334
94
2,849
109
180
0 | 4,676
129
4,115
151
402
498 | 99,435
2,810
87,694
3,273
5,545
113 | 109,800
3,043
85,691
3,528
5,836
11,702 | 20
N
20
N
N | 31
0
31
0
0 | 217
0
217
0
0
0 | 1,275
N
1,275
N
N
N | 1,634
N
1,634
N
N | _
_
_
_ | 2
0
0
0
2
0 | 20
1
0
4
16
0 | 45
2
—
1
42
— | 76
3

4
69 | | American Samoa
C.N.M.I.
Guam
Puerto Rico
U.S. Virgin Islands | 272
— | 0

9
117
19 | 22
—
26
612
42 | 73
—
103
4,400
678 | 73
522
4,340
117 | N

N | 0
0
0
0 | 0
0
0
0 | N
—
N | N
—
N
— | N
—
N
— | 0
0
0
0 | 0
0
0
0 | N
—
N
— | N
—
N
— | C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Incidence data for reporting years 2007 and 2008 are provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly. Chlamydia refers to genital infections caused by *Chlamydia trachomatis*. Scontains data reported through the National Electronic Disease Surveillance System (NEDSS). TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 9, 2008, and August 11, 2007 (32nd Week)* | | | | Giardiasi | s | | | | onorrhe | а | | Hae
 | All age | s, all ser | <i>zae</i> , invas
otypes [†] | sive | |--|----------|----------|---------------|--------------|--------------|------------|--------------|-----------------|-----------------|-----------------|---------|---------|----------------|---|------------| | | Current | | rious
eeks | Cum | Cum | Current | 52 | evious
weeks | Cum | Cum | Current | 52 v | vious
veeks | Cum | Cum | | Reporting area | week | Med | Max | 2008 | 2007 | week | Med | Max | 2008 | 2007 | week | Med | Max | 2008 | 2007 | | United States | 316 | 301 | 1,158 | 8,958
697 | 9,585 | 2,837 | 6,171 | 8,913 | | 213,404 | 17 | 48 | 173 | 1,635 | 1,602 | | New England
Connecticut | <u>5</u> | 24
6 | 58
18 | 178 | 755
192 | 100
68 | 96
46 | 227
199 | 2,998
1,333 | 3,373
1,271 | _ | 3
0 | 12
9 | 105
23 | 119
29 | |
Maine§
Massachusetts | 4 | 4
10 | 10
26 | 86
254 | 93
336 |
21 | 2
41 | 7
127 | 54
1,316 | 77
1,635 | _ | 0
2 | 3
5 | 9
49 | 8
59 | | New Hampshire | 1 | 2 | 4 | 63 | 14 | 1 | 2 | 6 | 68 | 95 | _ | 0 | 1 | 8 | 14 | | Rhode Island§
Vermont§ | _ | 1
3 | 15
9 | 46
70 | 31
89 | 9
1 | 7
1 | 13
5 | 209
18 | 256
39 | _ | 0
0 | 2 | 9
7 | 7
2 | | Mid. Atlantic | 53 | 58 | 131 | 1,632 | 1,679 | 516 | 631 | 1,028 | 20,086 | 22,087 | 5 | 10 | 31 | 328 | 315 | | New Jersey
New York (Upstate) | —
36 | 6
23 | 15
111 | 132
630 | 234
571 | 80
107 | 111
130 | 174
545 | 3,213
3,735 | 3,700
3,749 | _
1 | 1
3 | 7
22 | 46
95 | 48
88 | | New York City | 2 | 16 | 29 | 448 | 502 | 165 | 170 | 522 | 6,158 | 6,621 | _ | 2 | 6 | 57 | 62 | | Pennsylvania E.N. Central | 15
79 | 15
46 | 29
96 | 422
1.396 | 372
1,574 | 164
391 | 231
1,309 | 394
1,626 | 6,980
36,590 | 8,017
44,338 | 4 | 4
8 | 9
28 | 130
257 | 117
241 | | Illinois | _ | 12 | 34 | 308 | 511 | 2 | 358 | 589 | 9,264 | 11,761 | _ | 2 | 7 | 74 | 79 | | Indiana
Michigan | N
6 | 0
11 | 0
21 | N
302 | N
372 | 74
207 | 155
299 | 296
657 | 4,986
10.027 | 5,397
9,537 | _ | 1
0 | 20
3 | 52
14 | 33
21 | | Ohio | 30 | 16 | 36 | 499 | 423 | 33 | 322 | 685 | 9,320 | 13,536 | _ | 2 | 6 | 96 | 69 | | Wisconsin W.N. Central | 43
25 | 10
29 | 26
621 | 287
1,062 | 268
618 | 75
138 | 116
325 | 214
435 | 2,993
9,832 | 4,107
12,199 | _
1 | 1
3 | 4
24 | 21
127 | 39
89 | | Iowa | 2 | 6 | 24 | 172 | 135 | — | 30 | 53 | 841 | 1,210 | | 0 | 1 | 2 | 1 | | Kansas
Minnesota | 2 | 3
0 | 11
575 | 71
343 | 80
6 | _ | 41
61 | 130
92 | 1,334
1,722 | 1,415
2,074 | _ | 0
0 | 4
21 | 14
34 | 9
35 | | Missouri | 16 | 9 | 23 | 284 | 264 | 97 | 159 | 216 | 4,844 | 6,348 | 1 | 1 | 6 | 51 | 31 | | Nebraska [§]
North Dakota | 5
— | 4
0 | 8
36 | 117
14 | 73
10 | 32 | 26
2 | 47
7 | 854
57 | 929
68 | _ | 0
0 | 3
2 | 18
8 | 12
1 | | South Dakota | _ | 2 | 8 | 61 | 50 | 9 | 5 | 11 | 180 | 155 | _ | 0 | 0 | _ | _ | | S. Atlantic
Delaware | 65
— | 53
1 | 102
6 | 1,379
25 | 1,658
24 | 915
14 | 1,318
21 | 3,072
44 | 38,347
695 | 49,446
867 | 7 | 11
0 | 29
2 | 369
6 | 408
5 | | District of Columbia |
34 | 1
24 | 5
47 | 24
699 | 40
713 | 44
402 | 48
472 | 104
564 | 1,647
14,274 | 1,444
13,930 | | 0 | 1
10 | 5
120 | 2 | | Florida
Georgia | 21 | 11 | 29 | 321 | 361 | 1 | 216 | 561 | 2,808 | 10,591 | 1 | 3 | 9 | 93 | 110
77 | | Maryland [§]
North Carolina | 5
N | 1
0 | 18
0 | 28
N | 148
N | 119 | 121
98 | 237
1,949 | 3,711
2,638 | 3,975
7,950 | 4 | 1
1 | 3
9 | 7
49 | 62
43 | | South Carolina§ | _ | 3 | 7 | 67 | 53 | 28 | 188 | 833 | 5,862 | 6,418 | _ | 1 | 7 | 34 | 36 | | Virginia [§]
West Virginia | 5 | 8
0 | 39
8 | 187
28 | 299
20 | 302
5 | 150
15 | 486
34 | 6,275
437 | 3,700
571 | _ | 1
0 | 6
3 | 41
14 | 57
16 | | E.S. Central | 11 | 9 | 23 | 251 | 293 | 265 | 556 | 945 | 17,248 | 19,456 | 2 | 2 | 8 | 85 | 92 | | Alabama [§]
Kentucky | 5
N | 5
0 | 11
0 | 144
N | 148
N | —
73 | 190
89 | 287
161 | 5,069
2,698 | 6,732
1,688 | _ | 0
0 | 2
1 | 15
2 | 21
6 | | Mississippi
Tennessee§ | N
6 | 0
4 | 0
16 | N
107 | N
145 |
192 | 131
166 | 401
294 | 4,216
5,265 | 5,069
5,967 | | 0
2 | 2
6 | 11
57 | 7
58 | | W.S. Central | 3 | 7 | 41 | 160 | 206 | 125 | 1,010 | 1,355 | 29,873 | 30,793 | _ | 2 | 29 | 77 | 70 | | Arkansas§ | 3 | 3 | 11 | 73 | 76 | 87 | 84 | 167 | 2,860 | 2,537 | _ | 0 | 3 | 6 | 7 | | Louisiana
Oklahoma | _ | 1
3 | 14
35 | 23
64 | 60
70 | 38 | 189
85 | 297
171 | 5,510
2,397 | 7,072
3,007 | _ | 0
1 | 2
21 | 5
60 | 4
53 | | Texas§ | N | 0 | 0 | N | N | _ | 646 | 1,102 | 19,106 | 18,177 | _ | 0 | 3 | 6 | 6 | | Mountain
Arizona | 19
3 | 31
3 | 68
11 | 772
69 | 891
107 | 76
26 | 230
74 | 330
130 | 6,014
1,696 | 8,436
3,146 | 2
2 | 5
2 | 14
11 | 203
90 | 173
65 | | Colorado | 12 | 11 | 26 | 305 | 279 | 44 | 58 | 91 | 1,747 | 2,083 | _ | 1 | 4 | 38 | 44 | | Idaho [§]
Montana [§] | 3 | 3
2 | 19
9 | 94
45 | 93
56 | | 4
1 | 19
48 | 99
60 | 163
50 | _ | 0
0 | 4
1 | 12
2 | 4 | | Nevada [§]
New Mexico [§] | 1 | 3
2 | 6
5 | 66
47 | 86
71 | 4 | 43
26 | 130
104 | 1,389
725 | 1,435
1,018 | _ | 0
1 | 1
4 | 11
23 | 9
28 | | Utah | _ | 6 | 32 | 132 | 174 | _ | 11 | 36 | 298 | 496 | _ | 1 | 6 | 27 | 20 | | Wyoming§ Pacific | —
56 | 1
56 | 3
185 | 14
1,609 | 25
1,911 | —
311 | 0
605 | 4
809 | 17,023 | 45
23,276 | _ | 0
2 | 1
7 | —
84 | 3
95 | | Alaska | 2 | 2 | 5 | 46 | 39 | 10 | 10 | 24 | 308 | 326 | _ | 0 | 4 | 13 | 7 | | California
Hawaii | 37
1 | 36
1 | 91
5 | 1,075
22 | 1,327
49 | 301 | 542
11 | 683
22 | 15,662
344 | 19,529
406 | _ | 0 | 3
2 | 20
12 | 37
6 | | Oregon§ | 3 | 9 | 19
87 | 261 | 250 | _ | 23 | 63
97 | 692 | 697 | _ | 1 | 4 | 36 | 43 | | Washington
American Samoa | 13 | 9 | 87
0 | 205 | 246 | _ | 0 | 97 | 17
3 | 2,318
3 | _ | 0 | 3
0 | 3 | 2 | | C.N.M.I. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Guam
Puerto Rico | _ | 0
2 | 0
31 | —
58 | 2
185 |
16 | 1
5 | 12
24 | 45
183 | 76
188 | _ | 0 | 1
0 | _ | | | U.S. Virgin Islands | _ | 0 | 0 | _ | _ | | 3 | 12 | 128 | 28 | N | Ő | Ö | N | N | C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Incidence data for reporting years 2007 and 2008 are provisional. Data for *H. influenzae* (age <5 yrs for serotype b, nonserotype b, and unknown serotype) are available in Table I. Contains data reported through the National Electronic Disease Surveillance System (NEDSS). TABLE II. (*Continued*) Provisional cases of selected notifiable diseases, United States, weeks ending August 9, 2008, and August 11, 2007 (32nd Week)* | | | | Α | перац | ilio (vii ai, a | cute), by ty | he. | В | | | | Le | gionello | sis | | |------------------------------------|--------------|--------|---------|-------------|-----------------|-----------------|---------|-------------|-------------|-------------|--------------|---------|--------------|-------------|-------------| | | 0 | Previ | | 0 | 0 | 0 | Prev | | C | 0 | 0 | | vious | 0 | 0 | | Reporting area | Current week | 52 we | Max | Cum
2008 | Cum
2007 | Current
week | Med | eeks
Max | Cum
2008 | Cum
2007 | Current week | Med | veeks
Max | Cum
2008 | Cum
2007 | | United States | 19 | 52 | 171 | 1,526 | 1,701 | 21 | 74 | 259 | 2,020 | 2,612 | 61 | 55 | 117 | 1,452 | 1,293 | | New England | _ | 2 | 7 | 64 | 72 | _ | 1 | 7 | 39 | 77 | _ | 3 | 14 | 65 | 82 | | Connecticut
Maine [§] | _ | 0
0 | 3
1 | 14
4 | 9
2 | _ | 0 | 7
2 | 14
9 | 26
3 | _ | 0 | 4
2 | 15
3 | 18
3 | | Massachusetts | _ | 1 | 5 | 27 | 37 | _ | 0 | 3 | 8 | 32 | _ | 0 | 3 | 11 | 25 | | New Hampshire
Rhode Island§ | _ | 0
0 | 2 | 6
11 | 10
9 | _ | 0 | 1
2 | 4 | 4
11 | _ | 0 | 3
5 | 13
18 | 4
26 | | /ermont [§] | _ | Ō | 1 | 2 | 5 | _ | 0 | 1 | 1 | 1 | _ | Ö | 2 | 5 | 6 | | Mid. Atlantic | 2 | 6 | 18 | 168 | 267 | 4 | 10 | 18 | 276 | 333 | 28 | 15 | 44 | 450 | 404 | | New Jersey
New York (Upstate) | _ | 1
1 | 6
6 | 34
39 | 79
43 | <u> </u> | 3
2 | 7
7 | 82
43 | 97
49 |
17 | 1
4 | 13
16 | 35
145 | 52
108 | | New York City | _ | 2 | 7 | 55 | 92 | _ | 2 | 6 | 50 | 73 | _ | 2 | 10 | 42 | 93 | | Pennsylvania
E.N. Central | 2
1 | 1
6 | 6
16 | 40 | 53 | 3 | 3
7 | 7
18 | 101 | 114 | 11
14 | 6
12 | 30 | 228 | 151 | | Ilinois | | 2 | 10 | 198
59 | 199
79 | 2 | 1 | 6 | 216
49 | 289
95 | 14
— | 12 | 35
16 | 352
19 | 271
60 | | ndiana | _ | 0 | 4 | 12 | 5 | _ | 0 | 8 | 23 | 27 | 1 | 1 | 7 | 27 | 27 | | Michigan
Dhio | 1 | 2
1 | 7
4 | 79
27 | 51
42 | 2 | 2
2 | 6
7 | 72
66 | 71
79 | 1
12 | 3
5 | 13
18 | 99
178 | 88
85 | | Visconsin | _ | 0 | 3 | 21 | 22 | _ | 0 | 1 | 6 | 17 | _ | 1 | 7 | 29 | 11 | | W.N. Central | _ | 5 | 29 | 189 | 107 | _ | 2 | 9 | 61 | 74 | _ | 2 | 8 | 66 | 64 | | owa
Kansas | _ | 1
0 | 7
3 | 82
9 | 30
4 | _ | 0 | 2 | 8
5 | 15
6 | _ | 0 | 2
1 | 8
1 | 9 | | Minnesota | _ | 0 | 23 | 26 | 46 | _ | 0 | 5
4 | 4 | 13 | _ | 0
1 | 4 | 8 | 14 | | ∕lissouri
Nebraska§ | _ | 0
1 | 3
5 | 31
39 | 13
9 | _ | 1
0 | 1 | 38
5 | 26
9 | _ | 0 | 4
4 | 32
16 | 27
5 | | North Dakota | _ | 0 | 2 | _ |
5 | _ | 0 | 1 | 1 | _ | _ | 0 | 2 | _ | _ | | South Dakota | _ | 0 | 1 | 2 | | _ | 0 | 1 | | 5 | _ | 0
7 | 1 | 1 | 3 | | S. Atlantic
Delaware | 8 | 8
0 | 15
1 | 200
6 | 293
3 | 7 | 16
0 | 60
3 | 484
7 | 634
11 | 16
— | 0 | 28
2 | 217
6 | 220
6 | | District of Columbia | _ | 0 | 0 | _ | _ | _ | 0 | 0 | _ | | _ | 0 | 1 | 6 | 8 | | Torida
Georgia | _ | 3
1 | 8
3 | 86
25 | 84
48 | 3
2 | 6
3 | 12
8 | 202
79 | 219
91 | 5 | 3
0 | 10
3 | 88
14 | 80
23 | | /laryland [§] | _ | 0 | 3 | 7 | 49 | 1 | 0 | 6 | 10 | 66 | 9 | 1 | 6 | 41 | 40 | | Iorth Carolina
South Carolina§ | 7 | 0
0 | 9
4 | 42
7 | 35
13 | _ | 0
1 | 17
6 | 52
39 | 79
44 | 2 | 0 | 7
2 | 14
7 | 27
10 | | /irginia [§] | 1 | 1 | 5 | 24 | 56 | 1 | 2
 16 | 66 | 93 | _ | 1 | 6 | 31 | 23 | | Vest Virginia | _ | 0 | 2 | 3 | 5 | _ | 0 | 30 | 29 | 31 | _ | 0 | 3 | 10 | 3 | | E.S. Central
Alabama§ | 1 | 1
0 | 9
4 | 49
8 | 66
15 | _ | 7
2 | 13
5 | 204
56 | 223
76 | _ | 2 | 10
2 | 76
10 | 60
7 | | Kentucky | 1 | 0 | 3 | 17 | 11 | _ | 2 | 5 | 55 | 42 | _ | 1 | 4 | 38 | 29 | | Mississippi
Γennessee§ | _ | 0
1 | 2
6 | 4
20 | 7
33 | _ | 0
2 | 3
8 | 20
73 | 22
83 | _ | 0
1 | 1
5 | 1
27 | 24 | | V.S. Central | _ | 5 | 55 | 156 | 128 | 3 | 15 | 131 | 404 | 536 | _ | 2 | 23 | 39 | 65 | | Arkansas§ | _ | 0 | 1 | 4 | 8 | _ | 1 | 3 | 23 | 47 | _ | 0 | 2 | 7 | 6 | | ₋ouisiana
Oklahoma | _ | 0
0 | 3
7 | 4
7 | 18
3 | _ | 1
2 | 4
37 | 27
63 | 66
27 | _ | 0 | 1
3 | 1
3 | 4 | | Γexas [§] | _ | 5 | 53 | 141 | 99 | 3 | 10 | 107 | 291 | 396 | _ | 1 | 18 | 28 | 51 | | Mountain | 1 | 4 | 9 | 127 | 153 | 1 | 3 | 10 | 118 | 141 | 1 | 2 | 5 | 46 | 56 | | Arizona
Colorado | 1 | 2
0 | 3 | 65
24 | 107
19 | _ | 1
0 | 4
3 | 31
19 | 61
22 | 1 | 0 | 5
2 | 16
3 | 15
13 | | daho§ | _ | 0 | 3 | 15 | 2 | _ | 0 | 2 | 5 | 8 | _ | 0 | 1 | 2 | 4 | | ∕lontana§
Nevada§ | _ | 0
0 | 1
2 |
5 | 6
8 | 1 | 0
1 | 1
3 |
29 | 32 | _ | 0 | 1
2 | 3
6 | 3 | | lew Mexico§ | _ | 0 | 3 | 14 | 5 | _ | 0 | 2 | 8 | 9 | _ | 0 | 1 | 3 | 7 | | Jtah
Vyoming [§] | _ | 0
0 | 2
1 | 2
2 | 4
2 | _ | 0
0 | 5
1 | 23
3 | 5
4 | _ | 0
0 | 3
0 | 13 | 5 | | Pacific | 6 | 12 | 51 | 375 | 416 | 4 | 9 | 30 | 218 | 305 | 2 | 4 | 18 | 141 | 71 | | Alaska | _ | 0 | 1 | 2 | 2 | _ | 0 | 2 | 8 | 4 | _ | 0 | 1 | 1 | _ | | California
Hawaii | 6 | 9 | 42
1 | 308
6 | 367
5 | 1 | 6
0 | 19
2 | 150
4 | 225
8 | 2 | 3
0 | 14
1 | 110
4 | 54
1 | | Oregon§ | _ | 1 | 3 | 24 | 17 | _ | 1 | 3 | 27 | 37 | _ | 0 | 2 | 11 | 6 | | Vashington | _ | 1 | 7 | 35 | 25 | 3 | 1 | 9 | 29 | 31 | | 0 | 3 | 15
N | 10 | | American Samoa
C.N.M.I. | _ | 0 | 0 | _ | _ | _ | 0 | 0 | _ | 14 | N
— | 0 | 0 | N | | | Guam | _ | 0 | 0 | _ | | _ | 0 | 1 | _ | 2 | _ | 0 | 0 | _ | _ | | Puerto Rico
J.S. Virgin Islands | _ | 0
0 | 4
0 | 12
— | 48 | 2 | 1
0 | 5
0 | 24 | 46 | _ | 0 | 1
0 | 1 | 4 | C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Incidence data for reporting years 2007 and 2008 are provisional. * Data for acute hepatitis C, viral are available in Table I. * Contains data reported through the National Electronic Disease Surveillance System (NEDSS). TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 9, 2008, and August 11, 2007 (32nd Week)* | | | | yme disea | ase | | | | Malaria | | | Men | All | serogro | ıse, invasi
ups | ve ^T | |---------------------------------------|----------|--------------|------------|----------------|----------------|---------|--------|----------------|----------|-----------|---------|--------|----------------|--------------------|-----------------| | | Current | Prev
52 w | | Cum | Cum | Current | | rious
reeks | Cum | Cum | Current | | vious
veeks | Cum | Cum | | Reporting area | week | Med | Max | 2008 | 2007 | week | Med | Max | 2008 | 2007 | week | Med | Max | 2008 | 2007 | | United States | 574 | 362 | 1,375 | 11,075 | 17,106 | 9 | 21 | 136 | 509 | 725 | 7 | 19 | 53 | 728 | 726 | | New England | 59 | 55 | 246 | 1,452 | 5,677 | _ | 1 | 35 | 29 | 35 | _ | 0 | 3 | 18 | 35 | | Connecticut
Maine§ | <u> </u> | 0
2 | 87
66 | —
197 | 2,440
110 | _ | 0 | 27
2 | 8 | 1
4 | _ | 0
0 | 1
1 | 1
4 | 6
5 | | Massachusetts | _ | 16 | 113 | 486 | 2,349 | _ | 0 | 2 | 14 | 21 | _ | 0 | 3 | 13 | 17 | | New Hampshire
Rhode Island§ | 4 | 11
0 | 79
77 | 626 | 685
2 | _ | 0 | 1
8 | 3 | 7 | _ | 0
0 | 0
1 | _ | 3 | | Vermont [§] | 13 | 2 | 26 | 143 | 91 | _ | 0 | 1 | 4 | 2 | _ | 0 | 1 | _ | 3 | | Mid. Atlantic
New Jersey | 357 | 170
37 | 755
131 | 7,406
1,329 | 6,697
2,260 | 3 | 5
0 | 18
7 | 111 | 204
40 | 1 | 2 | 6
2 | 85
10 | 88
12 | | New York (Upstate) | 285 | 61 | 453 | 2,561 | 1,620 | 3 | 1 | 8 | 18 | 35 | 1 | 0 | 3 | 23 | 25 | | New York City
Pennsylvania | —
72 | 1
56 | 27
353 | 14
3,502 | 263
2,554 | _ | 3
1 | 9
4 | 72
21 | 110
19 | _ | 0
1 | 2
5 | 19
33 | 18
33 | | E.N. Central | 10 | 8 | 78 | 223 | 1,648 | _ | 2 | 7 | 80 | 87 | 4 | 3 | 10 | 127 | 110 | | Illinois | _ | 0 | 8 | 30 | 122 | _ | 1 | 6 | 35 | 43 | _ | 1 | 4 | 37 | 45 | | ndiana
Michigan | 7 | 0
1 | 7
5 | 15
42 | 29
31 | _ | 0
0 | 2
2 | 4
10 | 7
10 | 4 | 0 | 4
2 | 21
20 | 17
17 | | Ohio | 2 | 0 | 4
57 | 18 | 17 | _ | 0 | 3 | 21 | 16 | _ | 1
0 | 4 | 32 | 25 | | Visconsin V.N. Central | 1
80 | 5
3 | 57
740 | 118
447 | 1,449
297 | _ 2 | 0
1 | 3
9 | 10
36 | 11
23 | _ | 2 | 4
8 | 17
66 | 45
45 | | owa | _ | 1 | 5 | 24 | 100 | _ | 0 | 1 | 2 | 2 | 1 | 0 | 3 | 66
13 | 10 | | Kansas
Minnesota | —
79 | 0 | 1
731 | 1
399 | 8
175 | 1
1 | 0 | 1
8 | 4
18 | 2
11 | _ | 0 | 1
7 | 1
19 | 12 | | Missouri | _ | 0 | 3 | 15 | 7 | | 0 | 4 | 6 | 3 | 1 | 0 | 3 | 22 | 13 | | Nebraska [§]
North Dakota | 1 | 0 | 1
9 | 5
1 | 5
2 | _ | 0 | 2
2 | 6 | 4 | _ | 0
0 | 2
1 | 9
1 | 2 | | South Dakota | _ | Ő | 1 | 2 | _ | _ | ő | 0 | _ | 1 | _ | ő | 1 | 1 | 3 | | S. Atlantic | 59 | 54 | 172 | 1,291 | 2,639 | 1 | 4 | 13 | 113 | 158 | 1 | 3 | 7 | 106 | 115 | | Delaware
District of Columbia | 4 | 12
2 | 37
8 | 507
94 | 478
84 | _ | 0
0 | 1
1 | 1
1 | 3
2 | _ | 0
0 | 1
0 | 1 | 1 | | Florida | 5 | 1 | 4 | 37 | 11 | _ | 1 | 5 | 28 | 31 | _ | 1 | 3 | 40 | 42 | | Seorgia
∕Iaryland§ |
20 | 0
19 | 4
136 | 8
273 | 8
1,494 | _ | 0
1 | 3
4 | 26
9 | 28
41 | _ | 0 | 3
2 | 14
4 | 14
18 | | Iorth Carolina
South Carolina§ | _ | 0 | 8
4 | 7
12 | 30
16 | 1 | 0 | 7
1 | 18
6 | 16
5 | 1 | 0 | 4 | 11
17 | 14
11 | | /irginia [§] | 27 | 12 | 68 | 333 | 479 | _ | 1 | 7 | 24 | 31 | _ | 0 | 2 | 16 | 14 | | West Virginia | _ | 0 | 9 | 20 | 39 | _ | 0 | 0 | _ | 1 | _ | 0 | 1 | 3 | 1 | | E.S. Central
Alabama§ | _ | 1
0 | 5
3 | 30
9 | 34
9 | _ | 0 | 3
1 | 11
3 | 21
3 | _ | 1
0 | 6
2 | 37
5 | 36
7 | | Kentucky | _ | 0 | 1 | 2 | 3 | _ | 0 | 1 | 3 | 4 | _ | 0 | 2 | 7 | 7 | | Mississippi
Tennessee§ | _ | 0 | 1
3 | 1
18 |
22 | _ | 0
0 | 1
2 | 1
4 | 1
13 | _ | 0 | 2 | 9
16 | 10
12 | | W.S. Central | 1 | 1 | 11 | 46 | 45 | _ | 1 | 64 | 28 | 60 | _ | 2 | 13 | 67 | 76 | | Arkansas§
Louisiana | _ | 0 | 1
1 | 1
1 | | _ | 0 | 1
1 | _ |
13 | _ | 0 | 1
3 | 6
14 | 23 | | Oklahoma | _ | 0 | 1 | | _ | _ | 0 | 4 | 2 | 5 | _ | 0 | 5 | 10 | 14 | | Γexas [§] | 1 | 1 | 10 | 44 | 43 | _ | 1 | 60 | 26 | 42 | _ | 1 | 7 | 37 | 31 | | Mountain
Arizona | 1 | 0 | 3
1 | 22
2 | 25
1 | _ | 1
0 | 5
1 | 15
5 | 40
8 | _ | 1
0 | 4
2 | 38
5 | 49
11 | | Colorado | = | 0 | 1 | 3 | _ | _ | 0 | 2 | 3 | 14 | = | 0 | 2 | 9 | 18 | | daho§
Montana§ | <u> </u> | 0 | 2 | 6
3 | 7
1 | _ | 0
0 | 1
0 | _ | 2 | _ | 0
0 | 2
1 | 3
4 | 1 | | Nevada [§] | _ | 0 | 2 | 4 | 7 | _ | 0 | 3 | 4 | 2 | _ | 0 | 2 | 6 | 3 | | New Mexico§
Jtah | _ | 0
0 | 2
1 | 3 | 5
2 | _ | 0
0 | 1
1 | 1
2 | 2
9 | _ | 0
0 | 1
2 | 6
3 | 2 | | Wyoming§ | _ | Ö | 1 | 1 | 2 | _ | Ö | 0 | _ | _ | _ | Ö | 1 | 2 | 2 | | Pacific
Alaska | 7 | 4
0 | 9
2 | 158
3 | 44
3 | 3 | 3 | 10
2 | 86
3 | 97
2 | _ | 4
0 | 17
2 | 184
3 | 172
1 | | California | 7 | 3 | 7 | 129 | 37 | 1 | 2 | 8 | 64 | 65 | _ | 3 | 17 | 132 | 126 | | Hawaii
Oregon§ | N | 0 | 0
4 | N
22 | N
4 | _ | 0 | 1
2 | 2
4 | 2
12 | _ | 0
1 | 2 | 3
25 | 5
24 | | Washington | _ | 0 | 7 | 4 | _ | 2 | 0 | 3 | 13 | 16 | _ | 0 | 5 | 21 | 16 | | American Samoa
C.N.M.I. | N | 0 | 0 | N | N | _ | 0 | 0 | _ | _ | _ | 0 | 0 | _ | _ | | Guam | _ | 0 | 0 | _ | _ | _ | 0 | 1 | 1 | 1 | _ | 0 | 0 | _ | | | Puerto Rico | N | 0 | 0 | N | N | _ | 0
0 | 1
0 | 1 | 3 | _ | 0 | 1 | 2 | 6 | C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Incidence data for reporting years 2007 and 2008 are provisional. * Data for meningococcal disease, invasive caused by serogroups A, C, Y, & W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I. * Contains data reported through the National Electronic Disease Surveillance System (NEDSS). TABLE II. (*Continued*) Provisional cases of selected notifiable diseases, United States, weeks ending August 9, 2008, and August 11, 2007 (32nd Week)* | | | | Pertussi | s | | | | ies, anim | nal | | Ro | <u> </u> | | otted feve | er | |---|----------------|---------|---------------|------------|------------|---------|---------|----------------|-----------|------------|---------|----------|----------------|------------|-----------| | | Current | | rious
eeks | Cum | Cum | Current | | vious
veeks | Cum | Cum | Current | | vious
veeks | Cum | Cum | | Reporting area | week | Med | Max | 2008 | 2007 | week | Med | Max | 2008 | 2007 | week | Med | Max | 2008 | 2007 | | United States | 93 | 147 | 849 | 4,314 | 5,828 | 50 | 80 | 187 | 2,339 | 3,669 | 38 | 29 | 195 | 924 | 1,167 | | New England | _ | 20 | 49 | 379 | 915 | 2 | 7 | 20 | 207 | 336 | _ | 0 | 1 | 2 | 7 | | Connecticut
Maine [†] | _ | 0
0 | 5
5 |
14 | 55
48
 _ | 3
1 | 17
5 | 107
31 | 141
51 | N | 0
0 | 0
0 | N | N | | Massachusetts | _ | 16 | 33 | 315 | 736 | N | 0 | 0 | N | N | _ | 0 | 1 | 1 | 7 | | New Hampshire
Rhode Island [†] | _ | 1
0 | 5
25 | 22
21 | 43
6 | N | 1 | 3
0 | 24
N | 34
N | _ | 0
0 | 1
0 | 1
— | _ | | Vermont [†] | _ | 0 | 6 | 7 | 27 | 2 | 2 | 6 | 45 | 110 | _ | 0 | 0 | _ | _ | | Mid. Atlantic
New Jersey | 24 | 20
0 | 43
9 | 498
4 | 767
133 | 18 | 19
0 | 32
0 | 611 | 627 | _ | 1
0 | 5
2 | 37
2 | 53
18 | | New York (Upstate) | 17 | 6 | 24 | 224 | 369 | 18 | 9 | 20 | 297 | 311 | _ | 0 | 3 | 13 | 6 | | New York City
Pennsylvania | _ 7 | 2
8 | 7
23 | 41
229 | 80
185 | _ | 0
9 | 2
23 | 11
303 | 32
284 | _ | 0 | 2 | 11
11 | 20
9 | | E.N. Central | 7 | 19 | 190 | 753 | 1,040 | 10 | 5 | 53 | 114 | 170 | | 1 | 7 | 48 | 36 | | Illinois | _ | 3 | 8 | 84 | 117 | 5 | 1 | 15 | 42 | 51 | _ | 0 | 6 | 30 | 22 | | Indiana
Michigan | | 0
4 | 12
16 | 28
113 | 40
176 |
5 | 0
1 | 1
32 | 3
44 | 7
76 | _ | 0 | 1
1 | 3
2 | 4 | | Ohio | 5 | 7 | 176 | 488 | 450 | _ | 1 | 11 | 25 | 36 | _ | Ö | 4 | 13 | 6 | | Wisconsin | _ | 2 | 9 | 40 | 257 | N | 0 | 0 | N | N | _ | 0 | 1 | _ | 1 | | W.N. Central
lowa | 9 | 11
1 | 142
5 | 387
35 | 386
116 | 3 | 4
0 | 12
3 | 96
13 | 176
20 | 4 | 4
0 | 27
2 | 230
1 | 237
13 | | Kansas | 1 | 1 | 5 | 28 | 68 | _ | 0 | 7 | _ | 86 | _ | 0 | 2 | _ | 9 | | Minnesota
Missouri | 3
1 | 1
3 | 131
18 | 129
136 | 59
58 | | 0 | 7
5 | 34
25 | 17
27 | 4 | 0
3 | 4
25 |
214 | 1
201 | | Nebraska [†] | 4 | 1 | 12 | 50 | 30 | _ | 0 | 0 | 47 | _ | _ | 0 | 3 | 12 | 9 | | North Dakota
South Dakota | _ | 0
0 | 5
2 | 1
8 | 3
52 | 1 | 0 | 8
2 | 17
7 | 12
14 | _ | 0
0 | 0
1 | 3 | 4 | | S. Atlantic | 10 | 14 | 50 | 407 | 602 | 9 | 35 | 94 | 1,015 | 1,397 | 14 | 8 | 109 | 297 | 547 | | Delaware
District of Columbia | <u> </u> | 0 | 2
1 | 7
3 | 7
8 | _ | 0 | 0 | _ | _ | _ | 0 | 3
2 | 16
6 | 10
2 | | Florida | 9 | 3 | 17 | 147 | 149 | _ | 0 | 77 | 85 | 128 | 3 | 0 | 4 | 11 | 7 | | Georgia
Maryland [†] | _ | 0
1 | 3
6 | 21
20 | 29
71 | 9 | 6
0 | 37
18 | 214
42 | 171
249 | 2
4 | 0 | 6
6 | 30
21 | 50
38 | | North Carolina | _ | 0 | 38 | 77 | 200 | _ | 9 | 16 | 292 | 310 | 2 | 0 | 96 | 127 | 335 | | South Carolina†
Virginia† | _ | 2
2 | 22
8 | 63
65 | 52
74 | _ | 0
11 | 0
27 | 321 | 46
451 | 3 | 0
1 | 4
9 | 17
66 | 38
65 | | West Virginia | _ | 0 | 12 | 4 | 12 | _ | 1 | 11 | 61 | 42 | _ | Ö | 3 | 3 | 2 | | E.S. Central | 3 | 6 | 31 | 152 | 270 | 2 | 2 | 7 | 77 | 103 | 4 | 4 | 19 | 151 | 175 | | Alabama†
Kentucky | _ | 1
1 | 6
5 | 21
31 | 56
14 | | 0 | 0
4 |
27 |
14 | _ | 1
0 | 10
1 | 39
1 | 50
4 | | Mississippi | | 2 | 25 | 60 | 137 | _ | 0 | 1 | 2 | —
89 | | 0
2 | 3 | 4 | 11 | | Tennessee [†] W.S. Central | 3
7 | 1
19 | 4
198 | 40
629 | 63
669 | _
1 | 1
6 | 6
40 | 48
68 | 674 | 15 | 2 | 17
153 | 107
138 | 110
84 | | Arkansas† | _ | 1 | 11 | 40 | 133 | 1 | 1 | 6 | 42 | 23 | 14 | 0 | 155 | 30 | 27 | | Louisiana
Oklahoma | _ | 0 | 3
26 | 9
19 | 14
4 | _ | 0 | 2
32 |
25 | 4
45 | _ | 0 | 1
132 | 2
86 | 4
34 | | Texas [†] | 7 | 17 | 179 | 561 | 518 | _ | 0 | 34 | 1 | 602 | 1 | 1 | 8 | 20 | 19 | | Mountain | 11 | 19 | 37 | 512 | 685 | | 1 | 8 | 38 | 42 | 1 | 0 | 2 | 17 | 25 | | Arizona
Colorado | 3
5 | 3
4 | 10
13 | 127
95 | 155
186 | N
 | 0 | 0
0 | N | N | 1 | 0
0 | 2 | 7
1 | 5
1 | | Idaho† | _ | 0 | 4 | 20 | 31 | _ | 0 | 4 | _ | _ | _ | 0 | 1 | 1 | 3 | | Montana [†]
Nevada [†] | 3 | 1
0 | 11
7 | 64
21 | 34
29 | _ | 0 | 3
2 | 4 | 13
7 | _ | 0 | 1
0 | 3 | 1 | | New Mexico [†] | _ | 1 | 5 | 28 | 53 | _ | 0 | 3 | 21 | 8 | _ | 0 | 1 | 2 | 4 | | Utah
Wyoming [†] | _ | 6
0 | 27
2 | 150
7 | 180
17 | _ | 0 | 2
4 | 2
8 | 6
8 | _ | 0
0 | 0
2 | 3 |
11 | | Pacific | 22 | 21 | 303 | 597 | 494 | 5 | 4 | 12 | 113 | 144 | _ | 0 | 1 | 4 | 3 | | Alaska
California | 6 | 1
8 | 29
129 | 75
233 | 36
282 | | 0 | 4
12 | 12
96 | 36
102 | N | 0 | 0
1 | N
2 | N
1 | | Hawaii | _ | 0 | 2 | 5 | 17 | _ | 0 | 0 | _ | _ | N | Ö | 0 | N | N | | Oregon [†]
Washington | 3
13 | 3
5 | 14
169 | 100
184 | 59
100 | 2 | 0 | 1
0 | 5 | 6 | | 0 | 1
0 | 2
N | 2
N | | American Samoa | _ | 0 | 0 | _ | _ | N | 0 | 0 | N | N | N | 0 | 0 | N | N | | C.N.M.I. | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Guam
Puerto Rico | _ | 0 | 0 | _ | _ | | 0
1 | 0
5 | <u> </u> |
34 | N
N | 0 | 0
0 | N
N | N
N | | U.S. Virgin Islands | _ | 0 | 0 | _ | _ | N | Ö | 0 | N | N | N | 0 | 0 | N | N | C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Incidence data for reporting years 2007 and 2008 are provisional. * Contains data reported through the National Electronic Disease Surveillance System (NEDSS). TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 9, 2008, and August 11, 2007 (32nd Week)* | | | | almonello | osis | | Shiga t | | | E. coli (ST | EC)† | | | Shigellos | sis | | |---|-----------|-----------|---------------|----------------|----------------|----------|---------|----------------|-------------|------------|----------|----------|----------------|--------------|----------------| | | Current | | rious
eeks | Cum | Cum | Current | | vious
veeks | Cum | Cum | Current | | vious
weeks | Cum | Cum | | Reporting area | week | Med | Max | 2008 | 2007 | week | Med | Max | 2008 | 2007 | week | Med | Max | 2008 | 2007 | | United States | 713 | 870 | 2,110 | 22,874 | 25,026 | 78 | 84 | 247 | 2,482 | 2,451 | 254 | 403 | 1,227 | 10,896 | 9,614 | | New England
Connecticut | 2 | 22
0 | 305
276 | 1,039
276 | 1,612
431 | 2 | 3 | 25
22 | 111
22 | 195
71 | _ | 3
0 | 25
23 | 106
23 | 171
44 | | Maine§
Massachusetts | 2 | 2
15 | 14
58 | 92
494 | 69
888 | 1 | 0 | 4
7 | 8
46 | 19
82 | _ | 0 | 4 7 | 11
61 | 13
102 | | New Hampshire | _ | 3 | 7 | 74 | 111 | _ | 1 | 5 | 19 | 11 | _ | 0 | 1 | 1 | 4 | | Rhode Island§
Vermont§ | _ | 1
1 | 13
7 | 52
51 | 59
54 | _
1 | 0 | 3
3 | 7
9 | 5
7 | _ | 0 | 9
1 | 8
2 | 6
2 | | Mid. Atlantic | 55 | 97 | 212 | 2,764 | 3,471 | 11 | 8 | 192 | 440 | 272 | 14 | 29 | 83 | 1,319 | 424 | | New Jersey
New York (Upstate) | —
31 | 15
25 | 48
73 | 400
765 | 765
815 |
8 | 1
4 | 6
188 | 15
322 | 68
90 |
13 | 6
7 | 34
35 | 370
408 | 86
75 | | New York City | 3 | 23 | 48 | 676 | 763 | _ | 1 | 5 | 33 | 28 | 1 | 9 | 35 | 454 | 144 | | Pennsylvania E.N. Central | 21
58 | 32
90 | 83
172 | 923
2,680 | 1,128
3,677 | 3
9 | 2
11 | 9
38 | 70
354 | 86
341 | 86 | 2
74 | 65
145 | 87
2,155 | 119
1,483 | | Illinois | _ | 24 | 62 | 649 | 1,347 | _ | 1 | 11 | 38 | 64 | _ | 20 | 37 | 485 | 345 | | Indiana
Michigan | 18
12 | 8
17 | 52
43 | 341
523 | 383
554 | _ | 1
2 | 12
15 | 37
92 | 42
52 | 15
— | 10
2 | 83
7 | 466
59 | 48
48 | | Ohio
Wisconsin | 27
1 | 26
14 | 65
37 | 792
375 | 799
594 | 9 | 2 | 17
16 | 108
79 | 77
106 | 68
3 | 21
11 | 104
44 | 786
359 | 618
424 | | W.N. Central | 32 | 51 | 137 | 1,569 | 1,607 | 15 | 13 | 48 | 435 | 385 | 2 | 21 | 39 | 541 | 1,297 | | Iowa
Kansas | <u> </u> | 9
7 | 15
31 | 241
228 | 295
239 | 2 | 2 | 16
3 | 106
19 | 86
32 | _ | 3 | 11
2 | 89
11 | 52
18 | | Minnesota | 7 | 13 | 73 | 450 | 390 | 2 | 2 | 22 | 111 | 120 | _ | 4 | 25 | 173 | 151 | | Missouri
Nebraska [§] | 18
3 | 14
5 | 29
13 | 394
147 | 422
139 | 11 | 3
2 | 12
8 | 97
71 | 72
48 | | 8
0 | 33
3 | 156
2 | 953
14 | | North Dakota
South Dakota | _ | 1
2 | 35
11 | 28
81 | 18
104 | _ | 0
1 | 20
5 | 2
29 | 6
21 | _ | 0
1 | 15
9 | 34
76 | 3
106 | | S. Atlantic | 245 | 258 | 442 | 5,579 | 5,935 | 18 | 12 | 32 | 397 | 384 | 26 | 71 | 149 | 1,922 | 2,853 | | Delaware
District of Columbia | 1
— | 3
1 | 9
4 | 85
31 | 89
34 | _ | 0
0 | 2
1 | 8
7 | 10 | _ | 0
0 | 2 | 8
8 | 7
11 | | Florida
Georgia | 133
56 | 109
37 | 181
86 | 2,612
966 | 2,290
974 | 2
1 | 3
1 | 18
7 | 103
49 | 84
52 | 16
1 | 21
26 | 75
49 | 573
733 | 1,550
1,003 | | Maryland§ | 17 | 10 | 44 | 325 | 484 | 9 | 1 | 6 | 47 | 49 | 4 | 1 | 6 | 34 | 63 | | North Carolina
South Carolina§ | 23
5 | 18
21 | 228
52 | 525
479 | 773
532 | _ | 1
0 | 14
3 | 47
21 | 79
7 | 1
3 | 0
8 | 12
32 | 64
391 | 49
70 | | Virginia§
West Virginia | 10 | 18
4 | 49
25 | 463
93 | 655
104 | 6
— | 3
0 | 10
3 | 95
20 | 94
9 | 1 | 4
0 | 14
61 | 103
8 | 93
7 | | E.S. Central | 60 | 63 | 144 | 1,657 | 1,759 | 5 | 6 | 21 | 159 | 155 | 20 | 48 | 178 | 1,221 | 1,000 | | Alabama [§]
Kentucky | 12
11 | 16
10 | 50
21 | 444
264 | 477
319 | 4 | 1
1 | 17
12 | 41
46 | 50
48 | 3
1 | 12
7 | 43
35 | 281
201 | 374
215 | | Mississippi
Tennessee [§] | 25
12 | 18
16 | 57
34 | 536
413 | 478
485 | <u> </u> | 0
2 | 2
12 | 5
67 | 4
53 | 2
14 | 14
14 | 112
32 | 255
484 | 293
118 | | W.S. Central | 93 | 122 | 894 | 2,868 | 2,233
| _ | 4 | 25 | 117 | 156 | 32 | 60 | 748 | 2,338 | 1,156 | | Arkansas§
Louisiana | 33 | 13
9 | 50
44 | 411
175 | 358
466 | _ | 1
0 | 4
1 | 26 | 26
8 | 18 | 4
5 | 27
17 | 332
149 | 58
337 | | Oklahoma | _ | 14 | 72 | 378 | 243 | _ | 0 | 14 | 18 | 14 | _ | 3 | 32 | 68 | 65 | | Texas [§] Mountain | 60
50 | 64
59 | 794
107 | 1,904
1,825 | 1,166
1,522 | 6 | 3
9 | 11
34 | 73
255 | 108
330 | 14
23 | 47
18 | 702
40 | 1,789
488 | 696
484 | | Arizona | 24 | 20 | 41 | 572 | 509 | _ | 1 | 8 | 43 | 67 | 12 | 9 | 30 | 229 | 252 | | Colorado
Idaho§ | 14
2 | 11
3 | 43
13 | 454
100 | 343
78 | 4
1 | 2 | 12
8 | //
51 | 88
75 | 5
1 | 0 | 6
1 | 64
7 | 70
9 | | Montana [§]
Nevada [§] | 4
5 | 2
4 | 10
14 | 62
138 | 58
158 | 1 | 0 | 3 | 21
16 |
18 |
5 | 0 | 1
13 | 4
131 | 15
23 | | New Mexico§ | 1 | 7 | 31 | 325 | 162 | _ | 1 | 6 | 26 | 27 | _ | 1 | 6 | 38 | 71 | | Utah
Wyoming [§] | _ | 4
1 | 17
5 | 152
22 | 166
48 | _ | 1
0 | 9
2 | 17
4 | 43
12 | _ | 1
0 | 5
2 | 12
3 | 16
28 | | Pacific | 118 | 109 | 399 | 2,893 | 3,210 | 12 | 9 | 40 | 214 | 233 | 51 | 30 | 72 | 806 | 746 | | Alaska
California | 3
100 | 1
76 | 5
286 | 31
2,116 | 55
2,406 | 5 | 0
5 | 1
34 | 5
119 | 1
127 | —
49 | 0
26 | 0
61 | 699 | 8
565 | | Hawaii
Oregon [§] | | 5
6 | 15
17 | 154
241 | 167
206 | _ | 0
1 | 5
11 | 10
26 | 24
33 | _ | 1
1 | 3
5 | 25
37 | 61
45 | | Washington | 13 | 12 | 103 | 351 | 376 | 7 | 2 | 13 | 54 | 48 | 2 | 2 | 20 | 45 | 67 | | American Samoa
C.N.M.I. | _ | 0 | 1 | 1 | _ | _ | 0 | 0 | _ | _ | _ | 0 | 1 | 1 | 3 | | Guam | _ | 0 | 2 | 8 | 11 | _ | 0 | 0 | _ | = | _ | 0 | 3 | 14 | 10 | | Puerto Rico | 2 | 10
0 | 44
0 | 229 | 531 | _ | 0 | 1
0 | 2 | _ | 3 | 0 | 2 | 11 | 19 | C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Incidence data for reporting years 2007 and 2008 are provisional. Includes *E. coli* O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped. * Contains data reported through the National Electronic Disease Surveillance System (NEDSS). TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 9, 2008, and August 11, 2007 (32nd Week)* | (32nd Week)* | Stre | ptococca | l disease, | invasive, gr | oup A | Streptococ | cus pneu | | , invasiv
ge <5 ye | | nondrug resistan | t [†] | |--|-----------------|----------|-----------------------|--------------|-------------|------------|----------|--------|-----------------------|-------------|------------------|----------------| | Reporting area | Current
week | | vious
veeks
Max | Cum
2008 | Cum
2007 | Curre | _ | Previo | | Cum
2008 | Cum
2007 | _ | | United States | 44 | 90 | 259 | 3,616 | 3,748 | 6 | | 36 | 166 | 1,013 | 1,139 | | | New England | _ | 6 | 31 | 270 | 292 | _ | | 2 | 14 | 48 | 91 | | | Connecticut
Maine [§] | _ | 0 | 26
3 | 83
20 | 90
21 | _ | | 0 | 11
1 | <u> </u> | 12
1 | | | Massachusetts | = | 3 | 8 | 125 | 142 | = | | 1 | 5 | 37 | 60 | | | New Hampshire
Rhode Island [§] | _ | 0 | 2
8 | 18
14 | 22
2 | _ | | 0 | 1
1 | 7
2 | 8
8 | | | Vermont§ | _ | 0 | 2 | 10 | 15 | = | | 0 | 1 | 1 | 2 | | | Mid. Atlantic | 12 | 17 | 43 | 762 | 720 | _ | | 4 | 19 | 131 | 207 | | | New Jersey
New York (Upstate) | <u> </u> | 3
6 | 11
17 | 128
254 | 132
221 | _ | | 1 | 6
14 | 27
68 | 41
75 | | | New York City | _ | 3 | 10 | 133 | 179 | | | 1 | 12 | 36 | 91 | | | Pennsylvania | 7 | 5 | 16 | 247 | 188 | N | | 0 | 0 | N | N | | | E.N. Central
Illinois | 6 | 19
5 | 63
16 | 789
196 | 748
230 | 1 | | 6
1 | 23
6 | 216
46 | 202
48 | | | Indiana | 3 | 2 | 11 | 102 | 86 | 1 | | 0 | 14 | 25 | 12 | | | Michigan
Ohio | 1
1 | 3
5 | 10
14 | 124
208 | 156
174 | _ | | 1 | 5
5 | 51
36 | 56
44 | | | Wisconsin | 1 | 2 | 42 | 159 | 102 | = | | 1 | 9 | 58 | 42 | | | W.N. Central | 2 | 5 | 39 | 285 | 245 | 1 | | 2 | 16 | 87 | 58 | | | Iowa
Kansas | _ | 0 | 0
6 |
38 |
26 | _ | | 0 | 0
3 |
13 | _ | | | Minnesota | _ | 0 | 35 | 130 | 116 | _ | | 0 | 13 | 33 | 35 | | | Missouri | _ | 2 | 10 | 64 | 65 | 1 | | 1 | 2 | 26 | 15 | | | Nebraska [§]
North Dakota | 2 | 0
0 | 3
5 | 27
10 | 20
11 | _ | | 0 | 3
2 | 6
4 | 7
1 | | | South Dakota | _ | Ö | 2 | 16 | 7 | _ | | Ö | 1 | 5 | <u> </u> | | | S. Atlantic | 17 | 19 | 34 | 622 | 875 | 1 | | 5 | 13 | 128 | 196 | | | Delaware
District of Columbia | _ | 0
0 | 2
2 | 6
15 | 8
16 | _ | | 0 | 0
1 | _
1 | | | | Florida | 6 | 6 | 11 | 177 | 199 | 1 | | 1 | 4 | 40 | 40 | | | Georgia
Maryland§ | 4
4 | 5
0 | 12
6 | 158
13 | 169
153 | _ | | 1 | 5
4 | 21
2 | 43
48 | | | North Carolina | 2 | 2 | 10 | 98 | 119 | N | | 0 | 0 | N | N | | | South Carolina§ | _
1 | 1
3 | 5
12 | 40
92 | 80
111 | _ | | 1 | 4
6 | 35
24 | 25
32 | | | Virginia [§]
West Virginia | | 0 | 3 | 23 | 20 | _ | | 0 | 1 | 5 | 6 | | | E.S. Central | 1 | 4 | 9 | 117 | 156 | _ | | 2 | 11 | 65 | 62 | | | Alabama§ | N | 0 | 0 | N | N | N | | 0 | 0 | N | N | | | Kentucky
Mississippi | N | 1
0 | 3
0 | 26
N | 32
N | N
— | | 0 | 0
3 | N
16 | N
5 | | | Tennessee§ | 1 | 3 | 7 | 91 | 124 | _ | | 2 | 9 | 49 | 57 | | | W.S. Central | 5 | 8 | 85 | 300 | 217 | 1 | | 5 | 66 | 162 | 159 | | | Arkansas [§]
Louisiana | _ | 0 | 2
1 | 4
3 | 17
14 | _ | | 0 | 2
2 | 4
2 | 9
28 | | | Oklahoma | _ | 2 | 19 | 76 | 51 | _ | | 1 | 7 | 48 | 34 | | | Texas [§] | 5 | 6 | 65 | 217 | 135 | 1 | | 3 | 58 | 108 | 88 | | | Mountain
Arizona | 1 | 10
4 | 22
9 | 371
140 | 401
150 | 2 | | 5
2 | 12
8 | 166
83 | 153
73 | | | Colorado | _ | 2 | 8 | 103 | 103 | 1 | | 1 | 4 | 46 | 31 | | | daho [§]
Montana [§] |
N | 0 | 2
0 | 11
N | 9
N | _ | | 0 | 1
1 | 3
4 | 2
1 | | | Nevada§ | 1 | 0 | 2 | 7 | 2 | N | | 0 | 0 | N
N | N | | | New Mexico§ | _ | 2 | 7 | 66 | 68 | _ | | 0 | 3 | 14 | 27 | | | Utah
Wyoming§ | _ | 1
0 | 5
2 | 39
5 | 64
5 | _ | | 0 | 3
1 | 15
1 | 19
— | | | Pacific | _ | 3 | 10 | 100 | 94 | _ | | 0 | 2 | 10 | 11 | | | Alaska | _ | 0 | 5 | 29 | 18 | N | | 0 | 0 | N | N | | | California
Hawaii | _ | 0
2 | 0
10 | | —
76 | N
— | | 0 | 0
2 | N
10 | N
11 | | | Oregon§ | N | 0 | 0 | N | N | N | | 0 | 0 | N | N | | | Washington | N | 0 | 0 | N | N | N | | 0 | 0 | N | N | | | American Samoa
C.N.M.I. | _ | 0 | 12 | 30 | 4 | <u>N</u> | | 0 | 0 | N | N
— | | | Guam | _ | 0 | 3 | _ | 7 | _ | _ | 0 | 0 | _ | _ | | | Puerto Rico | N | 0 | 0 | N | N | N | | 0 | 0 | N | N | | | U.S. Virgin Islands | _ | 0 | 0 | _ | _ | N | | 0 | 0 | N | N | | C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Incidence data for reporting years 2007 and 2008 are provisional. † Includes cases of invasive pneumococcal disease, in children aged <5 years, caused by *S. pneumoniae*, which is susceptible or for which susceptibility testing is not available (NNDSS event code 11717). * Contains data reported through the National Electronic Disease Surveillance System (NEDSS). TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 9, 2008, and August 11, 2007 (32nd Week)* | | | Str | | | <i>oniae</i> , inva | sive diseas | | | | | | | | | | |---|--------------|---------|-------------|-------------|---------------------|--------------|--------|--------------|-------------|-------------|-----------------|---------|--------------|--------------|-------------| | | | | All ages | | | | | e <5 year | s | | Syp | | | d second | ary | | | | Prev | | _ | _ | | | vious | _ | _ | | | vious | _ | _ | | Reporting area | Current week | Med Med | eeks
Max | Cum
2008 | Cum
2007 | Current week | Med | veeks
Max | Cum
2008 | Cum
2007 | Current
week | Med Med | veeks
Max | Cum
2008 | Cum
2007 | | United States | 14 | 51 | 264 | 1,641 | 1,701 | 2 | 9 | 43 | 279 | 328 | 125 | 232 | 351 | 6,877 | 6,434 | | New England | _ | 1 | 41 | 30 | 86 | _ | 0 | 8 | 5 | 12 | 6 | 6 | 14 | 189 | 156 | | Connecticut | _ | 0 | 37 | _ | 51 | _ | 0 | 7 | _ | 4 | 1 | 0 | 6 | 17 | 21 | | Maine [§]
Massachusetts | _ | 0
0 | 2 | 13 | 9 | _ | 0 | 1
0 | 1 | 1
2 | 4 | 0
4 | 2
11 | 8
138 | 4
88 | | New Hampshire | | 0 | 0 | | | | 0 | 0 | _ | _ | 1 | 0 | 2 | 11 | 20 | | Rhode Island§ | _ | 0 | 3 | 7 | 15 | _ | 0 | 1 | 2 | 3 | _ | 0 | 5 | 13 | 21 | | Vermont§ | _ | 0 | 2 | 10 | 11 | _ | 0 | 1 | 2 | 2 | _ | 0 | 5 | 2 | 2 | | Mid. Atlantic
New Jersey | 1 | 3
0 | 10
0 | 148 | 96 | _ | 0 | 2 | 17 | 22 | 27
7 | 32
5 | 45
10 | 1,036
128 | 953
123 | | New York (Upstate) | _ | 1 | 4 | 39 | 31 | _ | 0 | 2 | 6 | 8 | 1 | 3 | 13 | 88 | 83 | | New York City
Pennsylvania | <u> </u> | 0
1 | 5
8 | 48
61 | —
65 | _ | 0 | 0
2 |
11 |
14 | 16
3 | 17
5 | 30
12 | 646
174 | 582
165 | | E.N. Central | 2 | 13 | 50 | 450 | 455 | _ | 2 | 14 | 74 | 74 | 9 | 18 | 31 | 581 | 529 | | Illinois | _ | 2 | 15 | 450
57 | 455
88 | _ | 0 | 6 | 14 | 74
25 | 9 | 7 | 19 | 162 | 280 | | Indiana | 1 | 3 | 28 | 140 | 99 | _ | 0 | 11 | 17 | 15 | 2 | 2 | 6 | 81 | 29 | | Michigan
Ohio | _
1 | 0
7 | 2
15 | 10
243 | 1
267 | _ | 0
1 | 1
4 | 2
41 | 1
33 | 2 | 2
5 | 17
13 |
131
175 | 70
109 | | Wisconsin | | 0 | 0 | _ | _ | _ | Ö | 0 | - | _ | 2 | 1 | 4 | 32 | 41 | | W.N. Central | _ | 3 | 106 | 113 | 114 | _ | 0 | 9 | 8 | 25 | _ | 8 | 15 | 233 | 201 | | lowa | _ | 0
1 | 0
5 | —
51 | <u> </u> | _ | 0 | 0
1 | 3 | <u> </u> | _ | 0 | 2
5 | 11
19 | 12 | | Kansas
Minnesota | _ | 0 | 105 | - 51 | 1 | _ | 0 | 9 | _ | 17 | _ | 1 | 5
5 | 57 | 12
42 | | Missouri | _ | 1 | 8 | 62 | 43 | _ | 0 | 1 | 2 | _ | _ | 5 | 10 | 139 | 128 | | Nebraska§
North Dakota | _ | 0
0 | 0
0 | _ | 2 | _ | 0 | 0 | _ | _ | _ | 0
0 | 2
1 | 7 | 4 | | South Dakota | _ | 0 | 2 | _ | 7 | _ | 0 | 1 | 3 | 4 | _ | 0 | 3 | _ | 3 | | S. Atlantic | 11 | 20 | 41 | 688 | 725 | 2 | 4 | 10 | 129 | 156 | 41 | 51 | 215 | 1,463 | 1,398 | | Delaware | _ | 0 | 1 | 3 | 5 | _ | 0 | 0 | _ | 2 | _ | 0 | 4 | 10 | 7 | | District of Columbia
Florida |
11 | 0
11 | 3
26 | 12
386 | 12
407 | | 0
2 | 0
6 | —
82 | 1
81 | 3
13 | 2
19 | 11
34 | 73
556 | 115
459 | | Georgia | | 7 | 19 | 223 | 253 | _ | 1 | 6 | 41 | 64 | _ | 10 | 175 | 242 | 236 | | Maryland [§]
North Carolina | N | 0 | 0 | N | 1
N | N | 0 | 0 | N | N | 6
2 | 6
5 | 14
18 | 199
163 | 183
205 | | South Carolina | | 0 | 0 | | | _ | 0 | 0 | | _ | 3 | 1 | 5 | 54 | 59 | | Virginia [§] | N | 0 | 0 | N | N | N | 0 | 0 | N | N | 14 | 5 | 17 | 165 | 128 | | West Virginia | _ | 1 | 7 | 64 | 47 | _ | 0 | 2 | 6 | 8 | _ | 0 | 1 | 1 | 6 | | E.S. Central
Alabama§ | N | 5
0 | 14
0 | 166
N | 140
N | N | 1
0 | 4
0 | 33
N | 21
N | 12 | 20
8 | 31
15 | 626
245 | 516
219 | | Kentucky | _ | 1 | 4 | 47 | 17 | _ | 0 | 2 | 9 | 2 | _ | 1 | 7 | 50 | 37 | | Mississippi
Tennessee§ | _ | 0
3 | 5
12 | 1
118 | 36
87 | _ | 0
1 | 0
3 |
24 |
19 |
12 | 3
8 | 15
14 | 91
240 | 66
194 | | W.S. Central | _ | 1 | 5 | 26 | 54 | _ | 0 | 2 | 8 | 7 | 16 | 41 | 62 | 1,260 | 1,050 | | Arkansas§ | _ | 0 | 2 | 9 | 1 | _ | 0 | 1 | 3 | 2 | _ | 2 | 19 | 97 | 70 | | Louisiana | | 0 | 5 | 17 | 53 | | 0 | 2 | 5 | 5 | 16 | 11 | 22 | 300 | 280 | | Oklahoma
Texas§ | N | 0
0 | 0 | N | N | N | 0 | 0 | N | _N | _ | 1
26 | 5
49 | 46
817 | 38
662 | | Mountain | _ | 1 | 6 | 20 | 31 | _ | 0 | 2 | 4 | 9 | 1 | 8 | 29 | 227 | 263 | | Arizona | _ | 0 | Ō | _ | _ | _ | Ō | 0 | _ | _ | | 4 | 21 | 78 | 137 | | Colorado
Idaho§ | | 0 | 0 | | | | 0 | 0 | | | 1 | 2 | 7 | 72 | 28 | | Montana§ | N
— | 0 | 0 | N
— | N | N | 0 | 0 | N | N
— | _ | 0 | 1
3 | 2 | 1 | | Nevada§ | N | 0 | 0 | N | N | N | 0 | 0 | N | N | _ | 2 | 6 | 52 | 59 | | New Mexico [§]
Utah | _ | 0
0 | 1
6 | 1
18 | —
19 | _ | 0 | 0
2 | 4 | <u> </u> | _ | 1
0 | 3
2 | 23 | 27
9 | | Wyoming [§] | _ | 0 | 1 | 1 | 12 | _ | 0 | 1 | | 1 | _ | 0 | 1 | _ | 1 | | Pacific | _ | 0 | 0 | _ | _ | _ | 0 | 1 | 1 | 2 | 13 | 41 | 70 | 1,262 | 1,368 | | Alaska
California | N | 0 | 0 | N | N | N | 0 | 0 | N | N | _ | 0 | 1 | 1 120 | 1 266 | | California
Hawaii | N
— | 0
0 | 0 | N
— | N | N | 0 | 0
1 | N
1 | N
2 | 6 | 38
0 | 59
2 | 1,128
11 | 1,266
5 | | Oregon§ | N | 0 | 0 | N | N | N | 0 | 0 | N | N | _ | 0 | 2 | 9 | 11 | | Washington | N | 0 | 0 | N | N | N | 0 | 0 | N | N | 7 | 3 | 13 | 113 | 80 | | American Samoa
C.N.M.I. | N | 0 | 0 | N | N | N | 0 | 0 | N | N | _ | 0 | 0 | _ | 4 | | Guam | _ | 0 | 0 | _ | _ | _ | 0 | 0 | _ | _ | _ | 0 | 0 | _ | _ | | Puerto Rico | _ | 0 | 0 | _ | _ | _ | 0 | 0 | _ | _ | _ | 3 | 10 | 93 | 93 | | U.S. Virgin Islands | | 0 | 0 | | | | 0 | 0 | | | | 0 | 0 | | | C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. —: No reported cases. N: Not noti U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Incidence data for reporting years 2007 and 2008 are provisional. † Includes cases of invasive pneumococcal disease caused by drug-resistant *S. pneumoniae* (DRSP) (NNDSS event code 11720). * Contains data reported through the National Electronic Disease Surveillance System (NEDSS). TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending August 9, 2008, and August 11, 2007 (32nd Week)* | Pervious | | | Vario | ella (chick | (enpox | | | Neur | oinvasiv | | St NIIE VİR | us disease | | neuroinva | asive§ | | |--|------------------------------------|---------|-------|-------------|----------|----------|---------|------|----------|------|-------------|------------|--------|-----------|--------|-------| | Company Comp | | | | • | спрох) | | | | | | | | | | 23140 | | | New Part | | Current | | | Cum | Cum | Current | | | Cum | Cum | Current | | | Cum | Cum | | New England | Reporting area | week | | | 2008 | 2007 | week | | | 2008 | 2007 | week | Med | Max | 2008 | 2007 | | Connecticut | United States | 85 | 657 | 1,660 | 18,163 | 26,760 | _ | 1 | 143 | 73 | 400 | _ | 2 | 307 | 95 | 1,039 | | Mainef | New England | 4 | | | 334 | | _ | | | _ | - | _ | | | | 2 | | Massachuselts | Connecticut | _ | | | | | _ | | | _ | 1 | | | | 1 | 2 | | New Hampshire | | _ | | | _ | | _ | | | _ | _ | | | | _ | | | Vermont ⁶ 4 6 17 184 267 — 0 0 0 — — 0 0 0 — 0 0 0 — 0 0 0 0 0 | New Hampshire | _ | 6 | 18 | 150 | 232 | _ | 0 | 0 | _ | _ | _ | 0 | | _ | _ | | Mid. Altantic 26 58 117 1,524 3,252 — 0 3 3 1 3 3 — 0 3 — 2 4 New Vork (Upstate) N 0 0 N N N — 0 1 — 1 — 0 0 0 — 2 New York (Upstate) N 0 0 N N N — 0 2 — 1 1 — 0 1 1 — 0 1 3 — 2 New York (Upstate) N 0 0 N N N N — 0 2 — 1 1 — 0 1 3 — 2 New York (Upstate) N 0 0 N N N N — 0 2 — 1 1 — 0 1 3 — 2 New York (Upstate) N 0 0 N N N N — 0 2 — 1 1 — 0 1 3 — 2 New York (Upstate) N 0 0 N N N N N — 0 2 — 1 1 — 0 1 3 — 2 New York (Upstate) N 0 0 N N N N — 0 2 — 1 1 — 0 1 2 — 1 1 — 0 1 3 — 2 New York (Upstate) N 0 N N N N N — 0 2 — 1 1 — 0 1 2 — 1 1 1 — 0 1 3 — 2 New York (Upstate) N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Rhode Island [¶] | | | | 404 | | _ | | | _ | _ | | | | _ | _ | | New York (Upstate) | | | | | | | _ | | | _ | | | | | _ | | | New York Clipstate N | | | | | | | | | | | | | | | | | | Pennsylvania | New York (Upstate) | N | 0 | 0 | N | N | _ | 0 | 2 | _ | | | 0 | 1 | _ | _ | | EM. Central 20 164 378 4.351 7.650 0 19 1 15 0 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | | _ | | Illinois | • | | | | | | _ | | | | | _ | | | | | | Indiana | Illinois | | | | | | _ | | | | | _ | | | | 4 | | Dho | Indiana | | | | | _ | | | | _ | | | | 2 | | 4 | | Misconsin | | | | | | | _ | | | | | | | | | _ | | N. Central 7 | Wisconsin | | | | | | _ | | | | - | | | | | 1 | | Sansas | W.N. Central | 7 | 23 | 145 | 764 | | _ | 0 | | 7 | 102 | _ | 0 | 118 | 27 | 359 | | Wilnesola | lowa | | 0 | | | N | _ | | | 1 | 6 | _ | | 2 | _ | 6 | | Missouri | | | | | | | _ | | | | | | | | _ | 7 | | North Dakota | Missouri | | | | | | _ | | | | | | | | | 4 | | South Dakota | Nebraska [¶] | | | | | N | _ | | | 1 | | | | | 1 | 63 | | S.Atlantic 9 92 166 2,991 3,462 - 0 12 1 13 - 0 6 - 15 Delaware - 1 6 35 30 - 0 1 1 0 0 0 - 15 Delaware - 1 6 35 30 - 0 1 1 0 0 0 10 Delaware - 1 6 35 30 - 0 1 1 0 0 0 10 Delaware - 1 6 35 30 - 0 1 1 0 0 0 10 Delaware - 1 6 35 30 - 0 1 1 0 0 0 3 Delaware - 1 6 35 30 - 0 1 0 0 0 0 3 Delaware - 1 6 35 30 - 0 1 0 0 0 0 3 Delaware - 1 6 35 30 - 0 1 0 0 0 0 3 Delaware - 1 6 35 30 - 0 1 0 0 0 0 3 Delaware - 1 8 7 29 87 1,154 795 - 0 0 0 3 Delaware - 1 8 7 29 87 1,154 795 - 0 1 0 1 - 0 1 - 0 1 0 1 Delaware - 1 8 101 66 557 703 - 0 2 1 - 0 0 1 0 0 1 Delaware - 1 8 101 828 339 - 0 1 1 - 1 - 0 0 1 0 0 1 Delaware - 1 8 101 828 339 - 0 1 1 8 26 - 0 1 1 0 0 0 0 Delaware - 1 8 101 828 339 - 0 1 1 8 26 - 0 1 1 1 0 0 1 0 0 1 Delaware - 1 8 101 828 339 - 0 1 1 - 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 | | | | | | | _ | | | | | | | | | | | Delaware — 1 6 35 30 — 0 1 — — — 0 0 — — — 10 1 6 35 30 — 0 1 — — — 0 0 0 — — — 10 10 10 10 10 10 10 10 10 10
10 10 10 | | | | | | | | | | | | | | | | | | Clorida | Delaware | | | | | | | | | | | _ | | | | _ | | Seorgia | District of Columbia | | | | | | | | | | | | | | | _ | | Maryland ¹ N 0 0 N N - 0 2 - 1 - 0 2 - 1 O 0 2 - 1 O 0 1 O ONTh Carolina N 0 0 N N - 0 1 1 - 1 - 0 1 - 0 1 O 0 Couth Carolina ¹ 1 16 66 557 703 - 0 1 - 2 - 0 0 1 - 2 O 1 - 2 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O | | | | | | | | | | | | | | | | - 6 | | South Carolina! | Maryland [¶] | | | | | | _ | | | | | | | | | 1 | | \text{Virginia}^1 | North Carolina | | | | | | _ | | | | | _ | | | | 2 | | West Virginia | | | | | | | | | | | | | | | | 2 | | Alabama* — 18 101 819 338 — 0 2 — 8 — 0 1 1 7 6 6 10 6 — 0 12 11 20 6 6 6 110 0 0 N N N — 0 1 1 — 1 — 1 — 0 0 0 — 12 11 20 11 | West Virginia | 1 | | | | | _ | | | 1 | | | | | _ | _ | | Kentucky N 0 0 N N N — 0 1 — 1 — 0 0 — — — Mississippi — 0 2 9 1 — 0 7 6 16 — 0 12 11 2/2 1 — 0 2 1 1 — 0 2 11 2/2 1 — 0 2 1 1 2/2 1 — 0 2 11 2/2 1 — 0 2 1 1 2/2 1 — 0 2 1 1 2/2 1 — 0 2 1 1 2/2 1 — 0 2 1 1 2/2 1 — 0 2 1 1 2/2 1 — 0 2 1 1 2/2 1 — 0 2 1 1 — 0 2 1 1 2/2 1 — 0 2 1 1 2/2 1 — 0 2 1 1 2/2 1 — 0 2 1 1 2/2 1 — 0 2 1 1 2/2 1 1 — 0 2 1 1 2/2 1 1 — 0 2 1 1 2/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | E.S. Central | _ | | | | | _ | | | 8 | | _ | | | | 26 | | Mississippi — 0 2 9 1 — 0 7 6 16 — 0 12 11 2 16 Pennessee ¹ N 0 0 N N N — 0 1 2 1 — 0 2 1 1 — 0 2 1 1 2 1 | | | | | | | | | | | | | | | | 1 | | Fennessee [†] N 0 0 N N N — 0 1 2 1 — 0 2 1 M.S. Central 13 183 886 6,014 7,373 — 0 36 11 63 — 0 19 10 44 Arkansas [†] 1 10 39 403 551 — 0 5 4 5 — 0 2 — | Mississippi | | | | | | | | | | | | | | | 24 | | Arkansas ⁴ 1 10 39 403 551 — 0 5 4 5 — 0 2 — 30 2 — 30 2 — 30 20 20 3 3 95 — 0 5 — 5 — 0 3 2 — 30 3 3 95 — 0 5 — 5 — 0 7 3 3 14 7 2 12 166 852 5,578 6,727 — 0 19 5 41 — 0 11 5 22 46 — 0 17 — 0 30 — 4 22 142 292 — 0 8 — 11 — 0 3 1 2 22 4 2 29 — 0 8 — 4 — 0 9 2 2 14 2 292 — 0 8 — 11 — 0 6 — 6 4 2 2 142 292 — 0 8 — 11 — 0 3 1 4 8 8 4 4 5 4 4 4 5 4 4 5 4 4 4 5 4 4 4 5 4 4 4 4 5 4 | Tennessee [¶] | N | 0 | | | N | _ | 0 | 1 | | | _ | 0 | | 1 | 1 | | Designar Couisiana Couis | W.S. Central | | | | | | _ | | | | | _ | | | | 44 | | Oklahoma N 0 0 N N — 0 11 2 12 — 0 7 3 1. Fexas¹ 12 166 852 5,578 6,727 — 0 19 5 41 — 0 11 5 22 Mountain 6 40 105 1,305 1,833 — 0 36 8 103 — 0 148 24 453 Arizona — 0 0 — — — 0 8 5 16 — 0 10 — 13 222 Colorado 6 17 43 581 709 — 0 17 1 33 — 0 67 13 222 daho¹¹ N 0 0 N N — 0 10 — 17 — 0 3 1 — | | | | | | | _ | | | 4 | | | | | | | | Mountain 6 40 105 1,305 1,833 — 0 36 8 103 — 0 148 24 455 Arizona — 0 0 — — — 0 8 5 16 — 0 10 — — 2 2 0 17 1 33 — 0 67 13 223 2 0 17 1 33 — 0 67 13 223 0 66 1 7 77 40 0 10 — 17 — 0 16 7 77 77 40 0 10 — 17 — 0 30 — 44 — 0 16 7 77 40 80 8 — 11 — 0 30 — 44 — 0 30 — 14 9 80 8 < | Oklahoma | | | | | | _ | | | 2 | | | | | | 14 | | Arizona — 0 0 0 — — — 0 8 5 16 — 0 10 — 27 | Texas [¶] | 12 | 166 | 852 | 5,578 | 6,727 | _ | 0 | 19 | 5 | 41 | _ | | 11 | 5 | 25 | | Colorado 6 17 43 581 709 — 0 17 1 33 — 0 67 13 223 daho¹ N 0 0 N N N — 0 3 1 4 — 0 16 7 77 N Nortana¹ — 5 27 207 284 — 0 10 — 17 — 0 30 — 48 Nevada¹ N 0 0 N N N — 0 1 1 1 1 — 0 3 1 4 N Nortana¹ — 4 22 142 292 — 0 8 — 11 — 0 6 — 6 144 Nortana¹ — 9 55 369 529 — 0 8 — 11 — 0 6 — 6 144 Nortana¹ — 0 9 55 369 529 — 0 8 — 4 — 0 9 9 2 8 Nortana¹ — 0 9 6 19 — 0 3 — 17 — 0 34 1 8 Nortana¹ — 0 9 6 19 — 0 18 36 74 — 0 20 19 125 Nortana — 0 1 5 42 25 — 0 18 36 74 — 0 20 19 125 Nortana — 0 6 10 21 — 0 18 36 72 — 0 20 19 115 Nortana — 0 6 10 21 — 0 18 36 72 — 0 20 19 115 Nortana — 0 6 10 21 — 0 18 36 72 — 0 20 19 115 Nortana — 0 6 10 21 — 0 18 36 72 — 0 20 19 115 Nortana — 0 6 10 21 — 0 18 36 72 — 0 20 19 115 Nortana N N N N N N N N N N N N N N N N N N | Mountain | | | | 1,305 | 1,833 | _ | | | | | | | | | 453 | | daho¹ N 0 0 N N — 0 3 1 4 — 0 16 7 72 Montana¹ — 5 27 207 284 — 0 10 — 17 — 0 30 — 44 New Ada¹¹ N 0 0 N N — 0 1 1 1 — 0 30 — 44 New Mexico¹¹ — 4 22 142 292 — 0 8 — 11 — 0 6 — 0 6 — 0 6 — 0 8 — 11 — 0 6 — 0 8 — 4 — 0 9 2 8 Pacific — 1 7 52 46 — 0 18 36 74 — 0 0 <td></td> <td></td> <td></td> <td></td> <td>
581</td> <td>709</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | |
581 | 709 | _ | | | | | | | | | | | Montana® — 5 27 207 284 — 0 10 — 17 — 0 30 — 44 Nevada® N 0 0 N N — 0 1 1 1 — 0 30 — 44 New Mexico® — 4 22 142 292 — 0 8 — 11 — 0 6 — 0 6 — 0 8 — 11 — 0 6 — 0 8 — 11 — 0 9 2 8 Nyoming® — 0 9 6 19 — 0 3 — 17 — 0 34 1 88 Pacific — 1 7 52 46 — 0 18 36 74 — 0 20 19 129 | Idaho [¶] | | 0 | 0 | N | N | _ | 0 | 3 | | | _ | 0 | 16 | | 72 | | New Mexico ¹ — 4 22 142 292 — 0 8 — 11 — 0 6 — 6 14th — 9 55 369 529 — 0 8 — 4 — 0 9 2 8 15th — 0 9 6 19 — 0 3 — 17 — 0 34 1 88 1 | Montana [¶] | | | | | | | | | | | | | | | 45 | | Utah — 9 55 369 529 — 0 8 — 4 — 0 9 2 8 Nyoming¹ — 0 9 6 19 — 0 3 — 17 — 0 34 1 88 Pacific — 1 7 52 46 — 0 18 36 74 — 0 20 19 125 Alaska — 1 5 42 25 — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — | | | | | | | | | | | | | | | | 6 | | Pacific — 1 7 52 46 — 0 18 36 74 — 0 20 19 125 Alaska — 1 5 42 25 — 0 0 — — 0 0 — — 0 0 — — — 0 0 — — — 0 0 19 117 11 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — 0 0< | Utah | | | 55 | | | | 0 | | _ | 4 | | | | 2 | 8 | | Alaska — 1 5 42 25 — 0 0 — — 0 0 — — 1 6 10 11 11 11 11 11 11 11 11 11 11 11 11 | Wyoming [¶] | _ | | | | | | | | | | _ | | | | 88 | | California — 0 0 — — 0 18 36 72 — 0 20 19 117 Hawaii — 0 6 10 21 — 0 0 — — 0 0 — — — 0 0 — — — — 0 0 — — — — 0 3 — 12 — 0 3 — 12 — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — — 0 0 — — — — 0 0 — — — — 0 0 — — — — 0 0 — — — 0 0 — — — 0 0 — — <td< td=""><td>Pacific</td><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>129</td></td<> | Pacific | _ | - | | | | | | | | | | | | | 129 | | Hawaii — 0 6 10 21 — 0 0 — — — 0 0 — — — 0 0 — — — 0 12 — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 0 — — 0 0 0 — 0 0 0 — 0 | California | _ | | | | | | | | | | | | | | 117 | | Washington N 0 0 N N — 0 0 — — 0 0 — — — — 0 0 — — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — — 0 0 — 0 0 — 0 | Hawaii | _ | 0 | 6 | | | _ | 0 | 0 | _ | _ | | 0 | 0 | _ | _ | | American Samoa N 0 0 N N — 0 0 — — 0 0 — — 2 2.N.M.I. — — — — — — — — — — — — — — — — — — | Oregon [¶] Washington | | - | | | | | | | _ | | | | | | 12 | | C.N.M.I. — — — — — — — — — — — — — — — — — — | - | | - | | | | | - | | | | | | | | | | Guam — 2 17 55 192 — 0 0 — — — 0 0 — —
Puerto Rico 1 9 20 281 510 — 0 0 — — — 0 0 — — | C.N.M.I. | | _ | _ | | | | _ | _ | _ | | | _ | _ | _ | _ | | | Guam | _ | 2 | | | | _ | | | _ | _ | | | | _ | _ | | | Puerto Rico
U.S. Virgin Islands | 1 | 9 | 20
0 | 281
— | 510
— | _ | 0 | 0
0 | _ | _ | _ | 0
0 | 0
0 | _ | _ | C.N.M.I.: Commonwealth of Northern Mariana Islands. U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum. * Incidence data for reporting years 2007 and 2008 are provisional. * Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ArboNET Surveillance). Data for California serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I. * Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 for the domestic arboviral diseases and influenzances and application model in the condition of the condition is not notifiable. associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm. Contains data reported through the National Electronic Disease Surveillance System (NEDSS). | TABLE III. Deaths | TABLE III. Deaths in 122 U.S. cities,* week ending August 9, 2008 (32nd Week) All causes, by age (years) All causes, by age (years) | | | | | | | | | | | | | | | |------------------------------------|---|-------------|----------|-----------|---------|---------|----------|---|----------------------------|-------------|-----------|----------|------------------|---------|----------| | | All | All C | auses, D | y age (ye | aisj | | P&I† | | All causes, by age (years) | | | | P&I [†] | | | | Reporting Area | Ages | <u>≥</u> 65 | 45-64 | 25-44 | 1-24 | <1 | Total | Reporting Area | Ages | <u>≥</u> 65 | 45-64 | 25-44 | 1-24 | <1 | Total | | New England
Boston, MA | 440
134 | 298
86 | 91
30 | 32
11 | 11
4 | 8 | 35
13 | S. Atlantic
Atlanta, GA | 950
73 | 571
45 |
246
20 | 66
2 | 32
5 | 34
1 | 53 | | Bridgeport, CT | 15 | 9 | 5 | 1 | _ | _ | _ | Baltimore, MD | 153 | 80 | 47 | 11 | 11 | 4 | 13 | | Cambridge, MA | 10 | 7 | 3 | _ | _ | _ | 1 | Charlotte, NC | 117 | 80 | 21 | 10 | 5 | 1 | 7 | | Fall River, MA | 23 | 16 | 4 | 3 | _ | _
1 | 1 | Jacksonville, FL | U | U | U | ñ | U | U | Ú | | Hartford, CT
Lowell, MA | 43
16 | 31
12 | 9 | 1 | 1
1 | | 6 | Miami, FL
Norfolk, VA | 91
44 | 57
33 | 22
3 | 5
3 | 3
2 | 4 | 6
1 | | Lynn, MA | 12 | 7 | 3 | 1 | 1 | _ | _ | Richmond, VA | 63 | 37 | 17 | 5 | 2 | 2 | 2 | | New Bedford, MA | 18 | 14 | 3 | 1 | | _ | 2 | Savannah, GA | 54 | 34 | 15 | 3 | _ | 2 | _ | | New Haven, CT
Providence, RI | U
56 | U
40 | U
11 | U
3 | U
2 | U | U
4 | St. Petersburg, FL
Tampa, FL | 49
194 | 34
120 | 10
51 | 3
15 | _
3 | 2
5 | 3
16 | | Somerville, MA | 1 | _ | - | 1 | _ | _ | _ | Washington, D.C. | 104 | 44 | 39 | 9 | 1 | 10 | 4 | | Springfield, MA | 32 | 23 | 4 | 5 | _ | _ | 3 | Wilmington, DE | 8 | 7 | 1 | _ | _ | _ | 1 | | Waterbury, CT
Worcester, MA | 26
54 | 14
39 | 9
7 | 1
4 | _ | 2 | 3
2 | E.S. Central | 810 | 527 | 216 | 34 | 18 | 15 | 59 | | | | | | - | | | | Birmingham, AL | 176 | 117 | 44 | 8 | 4 | 3 | 10 | | Mid. Atlantic
Albany, NY | 1,986
49 | 1,340
37 | 448
5 | 141
4 | 23
1 | 33
2 | 92
3 | Chattanooga, TN
Knoxville, TN | 85
80 | 54
51 | 26
22 | 3 | 1
2 | 1
5 | 5
6 | | Allentown, PA | 15 | 14 | 1 | _ | _ | _ | 2 | Lexington, KY | 63 | 45 | 13 | 3 | 1 | 1 | 5 | | Buffalo, NY | 70 | 49 | 15 | 5 | 1 | _ | 4 | Memphis, TN | 134 | 89 | 34 | 5 | 3 | 3 | 14 | | Camden, NJ
Elizabeth, NJ | 38
17 | 21
13 | 7
3 | 4
1 | 3 | 3 | _ | Mobile, AL
Montgomery, AL | 65
59 | 40
42 | 19
11 | 6
5 | _
1 | _ | 5
3 | | Erie, PA | 39 | 30 | 8 | 1 | _ | _ | 3 | Nashville, TN | 148 | 89 | 47 | 4 | 6 | 2 | 11 | | Jersey City, NJ | 28 | 14 | 3 | 7 | 3 | 1 | 2 | W.S. Central | 1,318 | 784 | 340 | 116 | 50 | 27 | 66 | | New York City, NY | 994 | 691 | 221 | 61
6 | 7 | 13
4 | 43 | Austin, TX | 82 | 54 | 16 | 7 | 3 | 2 | 4 | | Newark, NJ
Paterson, NJ | 39
16 | 16
5 | 13
8 | <u> </u> | _ | 1 | _ | Baton Rouge, LA | U | U | U | U | U | U | U | | Philadelphia, PA | 268 | 152 | 74 | 30 | 3 | 9 | 11 | Corpus Christi, TX
Dallas, TX | 38
187 | 28
109 | 9
44 | —
18 |
11 | 1
5 | 4
9 | | Pittsburgh, PA§ | 33 | 19 | 13 | 1 | _ | _ | 2 | El Paso, TX | 83 | 61 | 17 | 3 | 2 | _ | 3 | | Reading, PA
Rochester, NY | 24
108 | 12
88 | 11
16 | 1
4 | _ | _ | 9 | Fort Worth, TX | 170 | 93 | 52 | 16 | 3 | 6 | 8 | | Schenectady, NY | 23 | 20 | 1 | 2 | _ | _ | 1 | Houston, TX | 349 | 175 | 105 | 45
U | 17 | 6 | 13 | | Scranton, PA | 24 | 19 | 2 | 3 | _ | _ | 1 | Little Rock, AR
New Orleans, LA [¶] | U | U
U | U | U | U | U | U
U | | Syracuse, NY
Trenton, NJ | 143
19 | 98
14 | 36
4 | 8 | 1
1 | _ | 7 | San Antonio, TX | 202 | 130 | 51 | 10 | 5 | 6 | 11 | | Utica, NY | 20 | 16 | 2 | _ | | _ | 1 | Shreveport, LA | 76 | 46 | 17 | 9 | 4 | _ | 5 | | Yonkers, NY | 19 | 12 | 5 | 1 | 1 | _ | 1 | Tulsa, OK | 131 | 88 | 29 | 8 | 5 | 1 | 9 | | E.N. Central | 1,904 | 1,215 | 472 | 146 | 31 | 38 | 97 | Mountain
Albuquerque, NM | 956
111 | 628
65 | 200
31 | 76
7 | 26
4 | 26
4 | 52
2 | | Akron, OH
Canton, OH | 54
27 | 35
19 | 13
7 | 4
1 | 1 | 1 | _ | Boise, ID | 49 | 37 | 6 | 5 | 1 | _ | 6 | | Chicago, IL | 264 | 144 | 84 | 26 | 6 | 2 | 15 | Colorado Springs, CO | 40 | 30 | 8 | _ | 1 | 1 | 1 | | Cincinnati, OH | 83 | 42 | 23 | 8 | 3 | 7 | 2 | Denver, CO
Las Vegas, NV | 92
259 | 60
159 | 18
61 | 8
24 |
8 | 6
7 | 2
19 | | Cleveland, OH
Columbus, OH | 221
193 | 152
117 | 52
48 | 12
21 | 3
4 | 2 | 8
13 | Ogden, UT | 30 | 19 | 7 | 4 | _ | _ | 1 | | Dayton, OH | 89 | 66 | 16 | 5 | 2 | _ | 8 | Phoenix, AZ | 81 | 49 | 19 | 9 | 2 | 2 | 6 | | Detroit, MI | 168 | 98 | 47 | 17 | 4 | 2 | 3 | Pueblo, CO
Salt Lake City, UT | 26
128 | 19
91 | 4
19 | 3 |
5 | 4 | 7 | | Evansville, IN
Fort Wayne, IN | 49
77 | 37
52 | 10
19 | 2 | _ | 3 | 7
4 | Tucson, AZ | 140 | 99 | 27 | 7 | 5 | 2 | 8 | | Gary, IN | 15 | 6 | 6 | 2 | _ | 1 | _ | Pacific | 1,263 | 846 | 270 | 86 | 28 | 33 | 123 | | Grand Rapids, MI | 47 | 33 | 6 | 5 | 1 | 2 | 4 | Berkeley, CA | 11 | 8 | 2 | _ | _ | 1 | 1 | | Indianapolis, IN | 198 | 119 | 45 | 21 | 5 | 8 | 12 | Fresno, CA | U | U | U | U | U | U | ñ | | Lansing, MI
Milwaukee, WI | 47
79 | 39
45 | 5
25 | 2
6 | 1 | 3 | _ | Glendale, CA
Honolulu, HI | 24
76 | 21
52 | 3
19 | 3 | 1 | 1 | 5
7 | | Peoria, IL | 49 | 37 | 10 | _ | _ | 2 | 8 | Long Beach, CA | 63 | 43 | 15 | 2 | 1 | 2 | 8 | | Rockford, IL | 64 | 41 | 20 | 3 | _ | _ | 2 | Los Angeles, CA | 252 | 162 | 50 | 20 | 8 | 12 | 34 | | South Bend, IN
Toledo, OH | 52
85 | 38
61 | 10
19 | 2
4 | _
1 | 2 | <u> </u> | Pasadena, CA
Portland, OR | 13
101 | 8
73 | 5
17 | 7 | 3 | _
1 |
10 | | Youngstown, OH | 43 | 34 | 7 | 2 | | _ | 3 | Sacramento, CA | Ü | Ü | Ú | Ú | Ü | Ú | Ü | | W.N. Central | 502 | 313 | 104 | 40 | 22 | 23 | 29 | San Diego, CA | 144 | 99 | 26 | 16 | 2 | 1 | 11 | | Des Moines, IA | 23 | 14 | 4 | 3 | 1 | 1 | 4 | San Francisco, CA
San Jose, CA | 115
180 | 66
125 | 32
41 | 8
9 | 3
2 | 6
3 | 17
16 | | Duluth, MN | 20 | 16 | 4 | _ | _ | _ | 1 | Santa Cruz, CA | 25 | 125 | 7 | <u> </u> | 1 | _ | 1 | | Kansas City, KS
Kansas City, MO | 11
85 | 6
51 | 4
21 | 1
6 |
5 | _ | 1
6 | Seattle, WA | 106 | 74 | 20 | 7 | 3 | 2 | 7 | | Lincoln, NE | 40 | 32 | 7 | 1 | _ | _ | 2 | Spokane, WA | 57 | 36 | 13 | 3 | 1 | 4 | 4 | | Minneapolis, MN | 56 | 30 | 7 | 9 | 1 | 9 | 3 | Tacoma, WA | 96 | 62 | 20 | 11 | 3 | _ | 2 | | Omaha, NE
St. Louis, MO | 77
93 | 56
40 | 16
26 | 4
10 |
12 | 1
5 | 2
5 | Total | 10,129** | 6,522 | 2,387 | 737 | 241 | 237 | 606 | | St. Paul, MN | 93
37 | 26 | 26
6 | 2 | 1 | 2 | 2 | | | | | | | | | | Wichita, KS | 60 | 42 | 9 | 4 | 2 | 3 | 3 | | | | | | | | | U: Unavailable. —:No reported cases. *Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of ≥100,000. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included. † Pneumonia and influenza. § Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks. † Because of Hurricane Katrina, weekly reporting of deaths has been temporarily disrupted. ** Total includes unknown ages. The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, send an e-mail message to listserv@listserv.edc.gov. The body content should read SUBscribe mmwrtoc. Electronic copy also is available from CDC's Internet server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://ftp.cdc.gov/pub/publications/mmwr. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800. Data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Data are compiled in the National Center for Public Health Informatics, Division of Integrated Surveillance Systems and Services. Address all inquiries about the MMWR Series, including material to be considered for publication, to Editor, MMWR Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to mmwrq@cdc.gov. All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated. Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services. References to non-CDC sites on the Internet are provided as a service to MMWR readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in MMWR were current as of the date of publication. ☆U.S. Government Printing Office: 2008-723-026/41116 Region IV ISSN: 0149-2195