- 597 Malaria Deaths Following Inappropriate Malaria Chemoprophylaxis — United States, 2001 - 599 Evaluation of a Regional Pilot Program to Prevent Mother-Infant HIV Transmission — Thailand, 1998–2000 - 603 Hantavirus Pulmonary Syndrome — Vermont, 2000 # Malaria Deaths Following Inappropriate Malaria Chemoprophylaxis — United States, 2001 During January–March 2001, two U.S. citizens died from malaria after taking chloroquine alone or with proguanil for malaria chemoprophylaxis in countries with known chloroquine-resistant *Plasmodium falciparum* malaria. Chloroquine-containing chemoprophylaxis regimens are not recommended by CDC for persons traveling to areas with known chloroquine-resistant *P. falciparum*. This report summarizes the investigation of the two cases and underscores the need for clinicians and travelers to know the recommended options for malaria chemoprophylaxis when traveling to locations with chloroquine-resistant malaria. #### **Case Reports** **Case 1.** On January 11, 2001, a 12-year-old resident of Michigan was taken to a clinic with a 2-day history of fever with chills, malaise, fatigue, cough, and one episode of vomiting. At the clinic, the patient had a temperature of 102 F (39 C). The clinician noted that the patient had returned from Africa on January 6. Upper respiratory tract infection was diagnosed with nausea and vomiting, and the patient was prescribed an oral cephalosporin antibiotic and an antiemetic agent. The symptoms continued, and on January 14, the patient collapsed, was transported to a local hospital, and died in the emergency department shortly thereafter. Examination of a peripheral blood film on stored blood from January 11 and a film from blood taken January 14 demonstrated *P. falciparum* parasites with 0.8% parasitemia and 14.0%, respectively. The patient had been born in Nigeria, had emigrated to the United States in 1991, and had returned to Nigeria for 3 weeks during December 2000–January 2001. The patient and five other family members who had traveled to Nigeria had been prescribed weekly chloroquine for malaria chemoprophylaxis. On December 1, the patient had taken the initial 500 mg dose and subsequently had followed the weekly regimen; the last dose was taken January 11. A blood sample taken postmortem revealed a chloroquine level of 1782 ng/ml whole blood, a level consistent with recent ingestion of chloroquine and sufficient to inhibit *P. falciparum* parasites sensitive to the drug (1,2). The patient's mother also had taken chloroquine for chemoprophylaxis, had *P. falciparum* malaria diagnosed in January, and later recovered. Case 2. On March 7, 2001, a 47-year-old resident of Minnesota returned to the United States after 11 days in east Africa. Chloroquine was taken before and during the trip and proguanil was added on arrival in Africa. On returning to the United States, proguanil was discontinued, and on March 11, the scheduled dose of chloroquine was taken. On Malaria — Continued March 17, the patient developed a persistent headache, and on March 19, sought care for headache and dark urine at a Florida hospital emergency department. On admission, the patient's temperature was 102 F (39 C); physical examination did not reveal any abnormalities. A thick blood film obtained on admission initially was read as *Plasmodium* species (*P. falciparum* versus *P. malariae*), and later was confirmed as *P. falciparum*. The patient was admitted and treated with oral quinine and doxycycline; however, the patient developed cerebral edema and respiratory failure and died 6 days after admission. The patient had traveled to Africa with a group of 13 persons; nine had taken mefloquine for prophylaxis and four had followed the same regimen as the patient. No other malaria cases were reported from the group. Reported by: J Landgraf, Lakeland Hospital, Niles; MG Stobierski, G Stoltman, M Boulton, Michigan Dept of Community Health. S Wiersma, JR South, Florida Dept of Health. D Neitzel, H Hull, K Smith, Minnesota Dept of Health. Malaria Epidemiology Br and Entomology Br, Div of Parasitic Diseases, National Center for Infectious Diseases; and EIS officers, CDC. **Editorial Note**: Seven malaria-related deaths among U.S. citizens who had traveled abroad following inappropriate chemoprophylaxis regimens have been reported to CDC since 1992. In all cases, the travelers received prescriptions for chloroquine compounds to be taken for travel to sub-Saharan Africa, where antimalarial resistance to this drug is widespread. The geographic spread of *P. falciparum* resistance to chloroquine is increasing. Chloroquine resistance exists throughout sub-Saharan Africa, southeast Asia, the Indian subcontinent, and over large portions of South America, including the Amazon basin (3). Among 4685 cases of imported malaria in U.S. civilian travelers during 1992–2001, 893 (19%) took an inappropriate chemoprophylaxis regimen and 2616 (56%) took no chemoprophylaxis. Among 505 persons who took an inappropriate chemoprophylaxis regimen during 1995–2001, 351 (70%) took chloroquine for travel to an area with known chloroquine resistance. Since 1990, CDC has recommended mefloquine as antimalarial prophylaxis in regions with chloroquine-resistant malaria; doxycycline has been the recommended alternative (4). Chloroquine, ideally taken with daily proguanil (an antimalarial not marketed in the United States except in co-formulation with atovaquone), had been recommended only for persons unable to take mefloquine or doxycycline. In July 2000, Malarone* (Glaxo Wellcome Inc., Research Triangle Park, North Carolina), a combination of atovaquone and proguanil, was approved for use in the United States. Since November 2000, CDC has recommended Malarone, mefloquine, or doxycycline as options for malaria chemoprophylaxis in areas with chloroquine-resistant malaria and no longer recommends chloroquine combined with proguanil (5). Travelers and health-care workers who provide medical advice to travelers should be aware that chloroquine is effective for malaria prophylaxis only in a few areas of the world. Recommending and prescribing inappropriate chemoprophylaxis can result in travelers becoming ill or dying from malaria. Information on malaria prevention and chemoprophylaxis is available in *Health Information for International Travel*, CDC's handbook for travelers, which is published biannually and is available and updated online at http://www.cdc.gov/travel. Information also is available by telephoning (877) FYI-TRIP ([877] 394-8747). ^{*}Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services. Malaria — Continued #### References - 1. Hellgren U, Kihamia CM, Mahikwano LF, Björkman A, Eriksson Ö, Rombo L. Response of *Plasmodium falciparum* to chloroquine treatment: relation to whole blood concentrations of chloroquine and desethylchloroquine. Bull World Health Organ 1989;67:197–202. - 2. Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine, and amodiaquine: clinical implications. Clin Pharmacokinet 1996;30:263–92. - 3. CDC. Health information for international travel 1989. Atlanta, Georgia: US Department of Health and Human Services, Public Health Service, 1989. - 4. CDC. Information for health care providers: Malarone for malaria treatment and prophylaxis, October 2000. Available at http://www.cdc.gov/travel/diseases/malaria/malarone.htm. Accessed January 3, 2001. - CDC. Health information for international travel 2001–2002. Atlanta, Georgia: US Department of Health and Human Services, Public Health Service, 2001. ## Evaluation of a Regional Pilot Program to Prevent Mother-Infant HIV Transmission — Thailand, 1998–2000 Worldwide, approximately 2.2 million women and 600,000 infants are infected with human immunodeficiency virus (HIV) each year (1). Extended zidovudine prophylaxis and other antiretroviral and obstetric interventions and the avoidance of breast-feeding have reduced dramatically mother-infant HIV transmission in countries with adequate health-care resources (2,3). However, in developing countries, where the impact of HIV is greatest, implementation has been limited by the complexity and expense of these interventions (4). In Thailand, where approximately 15,000 infants are born to HIVinfected women each year, the Ministry of Public Health (MOPH) has collaborated with other organizations to identify simpler and more cost-effective interventions to reduce mother-infant HIV transmission. In 1998, a placebo-controlled clinical trial in Thailand using a simplified zidovudine regimen from 36 weeks' gestation until delivery reduced the risk for mother-infant transmission by 50% (5). In 1998, MOPH initiated a pilot program to prevent mother-infant HIV transmission in region 7, a rural area in northeastern Thailand with an antenatal HIV prevalence of approximately 1%, to assess program feasibility, effectiveness, and acceptability (Figure 1) (6). This report summarizes an evaluation of the 2-year pilot program, which indicated that acceptance of HIV testing and adherence to zidovudine were high and HIV transmission was reduced. The findings demonstrate the feasibility of implementing programs to prevent mother-infant HIV transmission on a large scale in a developing country. MOPH requested technical assistance from the HIV/AIDS Collaboration (a joint activity of MOPH and CDC) to monitor and evaluate the program. In region 7, routine antenatal counseling and voluntary confidential HIV testing were integrated into public antenatal clinic services by July 1998. HIV-infected pregnant women were offered zidovudine from 36 weeks' gestation and during labor and free powdered infant formula for 12 months. Program coverage was monitored through monthly reports collected from the antenatal and delivery departments in the 90 public hospitals in region 7, and summaries were disseminated regularly to
participating hospitals, program staff, and policymakers. During July 1998–June 2000, 104,393 (86%) of 122,094 new antenatal clinic clients were tested for HIV; 964 (1%) were HIV infected (Table 1). Of 153,598 women who gave birth in the 90 region 7 hospitals during the same period, 151,928 (99%) had received antenatal care, and HIV status was documented in the delivery records of 106,834 (70%). FIGURE 1. Location of pilot program to prevent mother-infant HIV transmission — Region 7, Thailand, July 1998–June 2000 At delivery, of 922 HIV-infected women, 640 (69%) had received antenatal zidovudine prophylaxis. Testing, documentation of HIV results at delivery, and zidovudine use increased significantly during the program period (Table 1). To evaluate the program's coverage, acceptability, and impact, two groups of women were interviewed: those who had given birth within 2 months of the interview and whose delivery record lacked documentation of HIV status and HIV-infected women who had given birth during the 12 months preceding the interview. Women were identified from hospital logs from 11 hospitals where 44% of HIV-infected women had given birth during the preceding year. All HIV-infected women and a random sample of women whose HIV status was not documented were invited by letter to attend a health-care facility. Women who agreed to participate were interviewed during April–May 2000 by trained interviewers who used structured questionnaires. TABLE 1. Number and percentage of women reporting receipt of HIV testing and zidovudine prophylaxis, by location of receipt — Region 7, Thailand, July 1998–June 2000 | | July–
December
1998 | | January–
June
1999 | | July–
December
1999 | | January–
June
2000 | | Tota | <u> </u> | |----------------------------|---------------------------|------|--------------------------|------|---------------------------|------|--------------------------|------|---------|----------| | Location | No. | (%) | | Antenatal clinic | | | | | | | | | | | | New clients | 29,510 | | 31,299 | | 31,811 | | 29,474 | | 122,094 | | | Tested for HIV* | 22,046 | (75) | 26,387 | (84) | 28,489 | (90) | 27,471 | (93) | 104,393 | (86) | | HIV positive | 235 | (1) | 260 | (1) | 233 | (1) | 236 | (1) | 964 | (1) | | Delivery room | | | | | | | | | | | | Deliveries
No antenatal | 38,682 | | 37,062 | | 40,816 | | 37,038 | | 153,598 | | | care | 405 | (1) | 397 | (1) | 449 | (1) | 419 | (1) | 1,670 | (1) | | HIV status
recorded* | 22 210 | /EQ\ | 24 660 | (67) | 20 227 | (74) | 20 610 | (90) | 106 024 | (70) | | | 22,318 | (58) | 24,669 | (67) | 30,237 | (74) | 29,610 | (80) | 106,834 | (70) | | HIV positive
Maternal | 221 | (1) | 192 | (1) | 291 | (1) | 218 | (1) | 922 | (1) | | zidovudine [†] | 132 | (60) | 134 | (70) | 213 | (73) | 161 | (74) | 640 | (69) | ^{*} Chi-square for linear trend: p<0.00001. Of 215 women whose HIV status was not documented at delivery, 117 (54%) reported that they had had an HIV test during pregnancy. In addition, 83 (71%) of the 117 women tested knew their HIV result, and all reported a negative test result. Of 162 HIV-infected women interviewed, 152 (94%) reported an HIV diagnosis before delivery, 159 (98%) reported that they had received posttest counseling, and 128 (79%) reported that they had taken zidovudine prophylaxis. Most women (89%) who had taken zidovudine reported not missing any doses of medication. Two (1%) women refused zidovudine prophylaxis. All HIV-infected women reported using infant formula, and 10 (6%) women reported breast-feeding for a short period. In comparison, 204 (95%) of the 215 women whose HIV status was not documented reported that they breast-fed. Of the 162 HIV-infected women, 146 (90%) reported not wanting another child, and 78 (48%) already had had a tubal ligation. Results from HIV polymerase chain reaction (PCR) tests were used to assess the program's effectiveness in preventing HIV transmission; tests were provided as a service to children born to HIV-infected women during the latter part of the program period. One or more PCR tests were performed on 293 HIV-exposed infants after age 1 month. Of these, 19 (8%) of 229 (95% confidence interval [CI]=5%–13%) infants whose mothers had received zidovudine tested HIV positive, and nine (14%) of 64 (95% CI=7%–25%) infants whose mothers had not received zidovudine tested HIV positive and were considered infected. Overall, risk for mother-infant HIV transmission was estimated at 10% (95% CI=6%–14%). Working groups periodically reviewed program data and developed strategies to strengthen program coverage, acceptability, and impact (6). On the basis of clinical trials and pilot projects in Thailand during 1996–1999, MOPH launched a national program to prevent mother-infant HIV transmission in Thailand in 2000 (5–8). [†] Chi-square for linear trend: p<0.001. Reported by: V Thaineua, S Kanshana, D Thewanda, P Amornwichet, N Kullerk, N Voramongkol, S Akksilp, V Sereesitipitak, A Pensiri, P Nimnakorn, K Chaisit, B Juengsmarn, P Phewruangnonta, S Loiha, S Piyapongkul, T Sarnthima, L Yampiwan, M Saenjai, C Paopha, Ministry of Public Health; A Teeraratkul, T Naiwatanakul, N Skunodom, K Limpakarnjanarat, The HIV/AIDS Collaboration, Nonthaburi, Thailand. Div of HIV/AIDS Prevention, National Center for HIV, STD, and TB Prevention; and an EIS Officer, CDC. **Editorial Note**: The findings in this report indicate that interventions to reduce mother-infant HIV transmission can be implemented successfully on a large scale in Thailand. These interventions, integrated into existing maternal and child health-care services, were acceptable to most women and reduced mother-infant HIV transmission from an estimated 30% to approximately 10% (4,8). This report also highlights the rapid translation of research findings into a national public health prevention program in a developing country. Despite the implementation of antenatal HIV testing, maternal zidovudine prophylaxis, and infant formula in Thailand, these interventions have not been widely implemented in countries with high HIV prevalence. Similar programs have been initiated in several sub-Saharan countries, but acceptance of HIV testing and zidovudine prophylaxis has been low. Limited access to antenatal and HIV-related health care and limited public health infrastructure represent major challenges to large-scale efforts in many countries. The nutritional, health, and social risks associated with the early use of formula also are potential threats to maternal and child health. In settings where breast-feeding is almost universal, women who do not breast-feed may be stigmatized as HIV infected. In poor, unsanitary environments, the use of formula is associated with increased morbidity and mortality from malnutrition, diarrhea, and respiratory infections (9). In recent clinical trials, simpler, less expensive interventions using zidovudine with lamivudine or nevirapine also have prevented mother-infant HIV transmission, and these regimens might help overcome some of these barriers (10). Medications begun intrapartum, particularly nevirapine, have feasibility and cost advantages over more complex regimens and can be given to women who have received suboptimal antenatal care. CDC and other organizations are working with many developing countries to implement simple interventions to prevent mother-infant HIV transmission in other large-scale programs. Such programs will be one component of a U.S. initiative to enhance HIV prevention and care in developing countries. The pilot program in Thailand underscores the importance of monitoring and evaluating to facilitate timely program improvements and optimize the impact and acceptability of these HIV-prevention programs. The simple, focused approach to monitoring and evaluating used in Thailand provides a useful model that minimizes the workload for limited public health personnel. The findings in this report are subject to at least two limitations. First, estimates of program effectiveness are derived from the HIV test results of a nonrandom subset of infants who received tests as part of a clinical service. Second, HIV-infected women interviewed received care at large health-care facilities and responded to a general invitation letter; therefore, the results may not be generalizable to women attending smaller health-care facilities or to the 21% of HIV-infected women who did not respond to the invitation letter and attend an interview. On the basis of the estimated 20% decrease in mother-infant HIV transmission among the 15,000 infants born to HIV-infected women, the Thai national program has the potential to prevent approximately 3000 infant HIV infections each year. If similar programs were implemented worldwide, hundreds of thousands of childhood HIV infections could be prevented. In addition to reducing mother-infant HIV transmission, such programs can improve voluntary counseling and testing services, reduce the sexual transmission of HIV, promote informed decisions about childbearing, and link HIV-infected persons to health and social services. #### References - 1. UNAIDS. UNAIDS epidemic update, December 2000. Available at http://www.unaids.org/wac/2000/wad00/files/WAD_epidemic_report.htm. Accessed July 18, 2001. - Connor EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. N Engl J Med 1994;331:1173–80. - 3. Cooper ER, Charurat M, Burns DN, Blattner W, Hoff R. Trends in antiretroviral therapy and mother-infant transmission of HIV: the Women and Infants Transmission Study Group. J Acquir Immune Defic Syndr 2000;24:45–7. - 4. De Cock KM, Fowler MG, Mercier E, et al. Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. JAMA 2000;283:1175–82. - 5. Shaffer N, Chuachoowong R, Mock PA, et al. Short-course zidovudine for perinatal
HIV-1 transmission in Bangkok, Thailand: a randomised controlled trial. Lancet 1999;353: 773–80. - 6. Kanshana S, Thewanda D, Teeraratkul A, et al. Implementing short-course zidovudine to reduce mother-infant HIV transmission in a large regional pilot program in northeastern Thailand. AIDS 2000;14:1617–23. - 7. Lallemant M, Jourdain G, Le Coeur S, et al. A trial of shortened zidovudine regimens to prevent mother-to-child transmission of human immunodeficiency virus type 1. N Engl J Med 2000;343:982–91. - 8. Thaineua V, Sirinirund P, Tanbanjong A, Lallemant M, Soucat A, Lamboray JL. From research to practice: use of short course zidovudine to prevent mother-to-child HIV transmission in the context of routine health care in northern Thailand. Southeast Asian J Trop Med Public Health 1998;29:429–42. - 9. World Health Organization. Effect of breastfeeding on infant and child mortality due to infectious diseases in less developed countries: a pooled analysis. Lancet 2000;355:451–5. - 10. World Health Organization. New data on the prevention of mother-to-infant transmission of HIV and their policy implications: conclusions and recommendations. Geneva, Switzerland: World Health Organization, October 2000. Available at http://www.unaids.org/publications/documents/mtct/MTCT_Consultation_Report.doc. Accessed July 18, 2001. #### Hantavirus Pulmonary Syndrome — Vermont, 2000 In 1993, an outbreak of an unexplained pulmonary illness occurred in the southwestern United States. This outbreak led to the first description of hantavirus pulmonary syndrome (HPS), a rodentborne hantaviral infection. Hantaviruses have been found in rodents in rural areas throughout the United States, but most infection has occurred in the southwest (1,2). This report describes the first HPS case in Vermont and underscores the importance of preventing exposure to peridomestic rodents and recognizing the signs and symptoms of HPS. On February 17, 2000, a 61-year-old previously healthy Vermont resident was hospitalized following three syncopal episodes and 1 week of chills, fever (\leq 102 F ([\leq 39 C]), Hantavirus Pulmonary Syndrome — Continued nausea, vomiting, anorexia, and right knee pain. Upon admission, the patient's temperature was 99.3 F (37.4 C), pulse rate was 90 beats per minute, and blood pressure was 135/ 90 mm Hg. On examination, the lungs were clear to auscultation, a 2 x 2 cm nontender lymph node was identified at the angle of the left jaw, and a mild effusion was present in the right knee. A complete blood count included a hematocrit of 55.6% (normal: 36%– 52%), a platelet count of 99,000/mm³ (normal: 150,000–400,000/mm³), and a white blood cell count of 6900/mm³ (normal: 4,000-10,000/mm³) with 83% granulocytes, 8.0% lymphocytes, and 8.0% monocytes. Chest radiographs were clear without infiltrates. However, 1 day after admission, the patient's condition deteriorated with onset of respiratory failure, profound hypoxemia, and hypotension requiring mechanical ventilation. Subsequent chest radiographs revealed bilateral interstitial edema consistent with acute respiratory distress syndrome (ARDS). The patient also developed disseminated intravascular coagulation and renal insufficiency (peak blood urea nitrogen: 62 mg/dL [normal: 7–18 mg/dL] and peak creatinine 2.9 mg/dL [normal: 0.5-1.4 mg/dL]). After 23 days in the hospital, including 16 days in intensive care, the patient was discharged with a diagnosis of ARDS and sepsis of uncertain etiology. During the 2 months preceding hospitalization, the patient, who resided in a house on four rural acres, had cleaned a mouse nest from a woodpile, observed mice in the basement, and trapped two mice under the kitchen counters. The patient's reported symptoms and exposure to rodents led to the collection of two serum specimens on April 6 and 17, which were submitted to CDC for hantavirus diagnostic testing. Using an enzymelinked immunosorbent assay, immunoglobin M (lgM), and immunoglobin G (lgG), antibodies to Sin Nombre virus were detected; these antibodies indicated recent hantavirus infection (3). During an onsite investigation conducted April 21 by the Vermont Department of Health, mice droppings were observed under the kitchen counter and in the cellar. In April and May, the wildlife services program of the U.S. Department of Agriculture trapped rodents within a 5-mile radius of the patient's house to estimate the prevalence of hantavirus infection in local rodent populations. After 1632 trapnights (i.e., number of traps times the number of nights), 46 rodents were captured, including six deer mice (*Peromyscus maniculatus*), 13 white-footed mice (*P. leucopus*), 21 woodland jumping mice (*Napaeozapus insignis*), one meadow jumping mouse (*Zapus hudsonius*), four chipmunks (*Tamias striatus*), and one vole (*Microtus* sp.). Because cases of hantavirus infection are new among humans and the rodent reservoir is not well described, especially in the northeast, most of these rodents were tested serologically at CDC for hantaviral antibodies. Among 43 rodents tested, two of five deer mice were positive for hantaviral antibodies; all other rodents were negative. Reported by: W Craig, MD, Plainfield Health Center, Plainfield; K Cook, MD, J Carney, MD, S Schoenfeld, MSPH, B Wilcke, PhD, Vermont Dept of Health. T Algeo, Wildlife Svcs Program, Animal and Plant Health Inspection Svc, US Dept of Agriculture. Special Pathogens Br, Div of Viral and Rickettsial Diseases, National Center for Infectious Diseases, CDC. Editorial Note: This report describes the first case of HPS acquired in New England; only 15 (5%) of the 284 cases confirmed by CDC have occurred east of the Mississippi River. Hantaviruses known to cause HPS in the United States include Sin Nombre, New York, Monongahela, Bayou, and Black Creek Canal viruses. Because rodent species that host one or more viruses are found throughout the contiguous United States, sporadic cases may occur anywhere on the mainland (4). Among approximately 115 (75%) of 153 patients with documented exposure to rodents or rodent droppings, exposure had Hantavirus Pulmonary Syndrome — Continued occurred in and around the house. In Vermont, the primary rodent reservoirs of these hantaviruses are likely to be the deer mouse (*P. maniculatus*) and the white-footed mouse (*P. leucopus*). Other rodent species known to carry HPS-associated hantaviruses include the rice rat (*Oryzomys palustris*) and cotton rat (*Sigmodon hispidus*) (5,6). Although it was not reported in the 1993 outbreak (2), renal impairment is a component of disease associated with Sin Nombre viral infection and related viruses, as indicated in the case in this report. Renal impairment also has been predominant in disease caused by Black Creek Canal and Bayou viruses. Another component recognized since the first outbreak is disease accompanied by frank hemorrhage (7). The case described in this report demonstrates the importance of considering hantavirus infection when diagnosing an unexplained acute respiratory distress syndrome or bilateral interstitial pulmonary infiltrates (8). Although the Vermont patient had symptoms unrelated to hantavirus infection (e.g., a nontender lymph node and knee pain), other signs, symptoms, and environmental circumstances suggested HPS. When patients may have been exposed to rodents or rodent droppings, especially in and around the house, clinicians should request serologic testing to detect hantavirus-specific IgM and IgG. Information about testing is available from local or state health departments, and testing is available at CDC. Additional information about hantaviruses and HPS is available at http://www.cdc.gov/ncidod/diseases/hanta/hantvrus.htm; telephone (877) 232-3322 or (404) 639-1115. #### References - 1. Nichol ST, Spiropoulou CF, Morzunov S, et al. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 1993;262:914–7. - 2. Duchin JS, Koster FT, Peters CJ, et al. Hantavirus pulmonary syndrome: a clinical description of 17 patients with a newly recognized disease. N Engl J Med 1994;330:949–55. - 3. Feldmann H, Sanchez A, Morzunov S, et al. Utilization of autopsy RNA for the synthesis of the nucleocapsid antigen of a newly recognized virus associated with hantavirus pulmonary syndrome. Virus Res 1993;30:351–67. - 4. Wilson DE, Ruff S. Smithsonian book of North American mammals. Washington, DC: Smithsonian Institute, 1999. - 5. Young JC, Mills JN, Enria DA, et al. New World hantaviruses. Br Med Bull 1998;54:659-73. - 6. Rhodes LV, Huang C, Sanchez AJ, et al. Hantavirus pulmonary syndrome associated with Monongahela virus, Pennsylvania. Emerg Infect Dis 2000;6:616–21. - 7. Shefer AM, Tappero JW, Bresee JS, et al. Hantavirus pulmonary syndrome in California: report of two cases and investigation. Clin Infect Dis 1994;19:1105–9. - 8. CDC. Case definitions for infectious conditions under public health surveillance. MMWR 1997;46(no. RR-10):16. FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals ending July 14, 2001, with historical data ^{*} No measles cases were reported for the current 4-week period yielding a ratio for week 28 of zero (0). TABLE I. Summary of provisional cases of selected notifiable diseases, United States, cumulative, week ending July 14, 2001 (28th Week) | | | Cum. 2001 | | Cum. 2001 | |----------------|------------------------------|-----------|--|-----------| | Anthrax | | - | Poliomyelitis, paralytic | - | | Brucellosis* | | 35 | Psittacosis* | 7 | | Cholera | | 3 | Q fever* | 10 | | Cyclosporiasis | * | 61 | Rabies, human | 1 | | Diphtheria | | 1 | Rocky Mountain spotted fever (RMSF) | 213 | | Ehrlichiosis: | human granulocytic (HGE)* | 45 | Rubella, congenital syndrome | - | | | human monocytic (HME)* | 25 | Streptococcal disease, invasive, group A | 2,111 | | Encephalitis: | | 1 | Streptococcal
toxic-shock syndrome* | ´ 33 | | | eastern equine* | 1 | Syphilis, congenital [¶] | 84 | | | St. Louis* | - | Tetanus | 12 | | | western equine* | - | Toxic-shock syndrome | 65 | | Hansen diseas | | 39 | Trichinosis | 11 | | | Imonary syndrome*† | 4 | Tularemia* | 42 | | | mic syndrome, postdiarrheal* | 47 | Typhoid fever | 131 | | HIV infection, | | 98 | Yellow fever | - | | Plague | 1 | 2 | | | [†] Ratio of current 4-week total to mean of 15 4-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals. ^{-:} No reported cases. *Not notifiable in all states. [†] Updated monthly from reports to the Division of HIV/AIDS Prevention — Surveillance and Epidemiology, National Center for HIV, STD, and TB Prevention (NCHSTP). Last update June 26, 2001. Updated from reports to the Division of STD Prevention, NCHSTP. TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending July 14, 2001, and July 15, 2000 (28th Week) | | | | | | | | | | coli O157:H7 | | |--|---|--|---|--|--|---|---|---|---|--| | | Cum. | DS
Cum. | Chlan
Cum. | nydia [†]
Cum. | Cryptos
Cum. | poridiosis
Cum. | NET
Cum. | Cum. | PHI
Cum. | LIS
Cum. | | Reporting Area | 2001⁵ | 2000 | 2001 | 2000 | 2001 | 2000 | 2001 | 2000 | 2001 | 2000 | | UNITED STATES NEW ENGLAND Maine N.H. Vt. Mass. R.I. Conn. | 19,145
746
20
17
10
411
53
235 | 20,040
1,197
16
17
17
763
48
336 | 348,088
11,945
642
675
315
5,573
1,431
3,309 | 365,240
12,197
741
545
287
5,179
1,344
4,101 | 874
42
4
2
13
12
3
8 | 849
51
9
5
13
14
2
8 | 900
123
12
14
4
47
6
40 | 1,494
151
9
10
15
70
8
39 | 651
69
12
10
2
28
4
13 | 1,385
167
14
15
20
67
9
42 | | MID. ATLANTIC
Upstate N.Y.
N.Y. City
N.J.
Pa. | 3,974
322
1,996
960
696 | 4,819
538
2,608
985
688 | 39,927
6,894
15,718
5,303
12,012 | 34,740
564
14,756
6,638
12,782 | 99
44
47
4
4 | 154
38
87
6
23 | 75
54
4
17
N | 171
108
12
51
N | 52
33
6
13 | 123
38
8
46
31 | | E.N. CENTRAL
Ohio
Ind.
III.
Mich.
Wis. | 1,408
237
165
665
261
80 | 2,013
289
188
1,191
254
91 | 50,103
7,148
7,700
13,597
15,840
5,818 | 62,578
16,650
6,825
18,071
12,398
8,634 | 270
55
31
1
72
111 | 198
23
12
31
33
99 | 201
55
36
44
26
40 | 304
50
36
85
47
86 | 134
40
18
28
26
22 | 239
64
39
63
40
33 | | W.N. CENTRAL
Minn.
Iowa
Mo.
N. Dak.
S. Dak.
Nebr.
Kans. | 454
85
47
218
1
18
39
46 | 480
86
52
225
1
4
31
81 | 18,009
3,412
1,858
6,616
501
957
1,681
2,984 | 20,523
4,189
2,731
7,012
477
950
1,971
3,193 | 86
32
25
9
3
5
12 | 66
11
22
10
5
5
10
3 | 107
30
22
21
1
8
15 | 188
40
34
54
7
10
29 | 100
47
7
26
9
5
-
6 | 233
73
38
52
13
17
30 | | S. ATLANTIC
Del.
Md.
D.C.
Va.
W. Va.
N.C.
S.C.
Ga.
Fla. | 6,167
116
751
465
501
49
402
350
757
2,776 | 5,299
94
597
388
358
31
311
409
605
2,506 | 64,675
1,550
6,405
1,663
9,386
1,249
8,692
5,896
11,996
17,838 | 67,623
1,537
7,284
1,728
8,493
1,128
11,727
5,037
13,590
17,099 | 158
1
27
9
9
1
17
-
56
38 | 128
4
6
5
4
3
12
- | 91
1
7
-
23
3
26
2
13
16 | 112
1
13
-
24
8
20
6
15
25 | 44
3
1
U
18
-
11
2
2
7 | 118
-
1
U
28
4
32
7
20
26 | | E.S. CENTRAL
Ky.
Tenn.
Ala.
Miss. | 977
201
293
224
259 | 966
113
381
255
217 | 26,051
4,730
7,752
7,474
6,095 | 26,379
4,306
7,608
7,887
6,578 | 21
3
4
7
7 | 26
2
6
10
8 | 42
15
18
8
1 | 57
19
21
5
12 | 36
20
14
-
2 | 50
17
25
4
4 | | W.S. CENTRAL
Ark.
La.
Okla.
Tex. | 2,058
104
472
107
1,375 | 1,837
101
318
161
1,257 | 54,362
3,942
8,984
5,815
35,621 | 54,935
3,392
10,035
4,496
37,012 | 18
3
7
6
2 | 44
1
9
4
30 | 35
4
2
12
17 | 144
36
10
9
89 | 52
23
14
15 | 176
30
26
7
113 | | MOUNTAIN
Mont.
Idaho
Wyo.
Colo.
N. Mex.
Ariz.
Utah
Nev. | 714
12
15
1
140
56
295
63
132 | 725
9
13
6
157
86
224
62
168 | 19,074
1,015
890
432
2,400
3,066
7,769
906
2,596 | 21,391
802
1,002
410
6,384
2,662
6,777
1,322
2,032 | 60
5
7
1
18
12
3
12
2 | 42
8
3
5
12
2
2
8
2 | 104
6
14
6
44
7
12
9
6 | 151
16
19
9
60
4
25
15 | 55
-
1
26
5
9
13 | 121
-
14
6
45
5
21
24
6 | | PACIFIC
Wash.
Oreg.
Calif.
Alaska
Hawaii | 2,647
290
112
2,204
13
28 | 2,704
275
88
2,252
10
79 | 63,942
7,252
2,023
51,273
1,440
1,954 | 64,874
6,848
3,770
51,067
1,315
1,874 | 120
N
11
106
-
3 | 140
U
9
131
- | 122
29
20
64
2
7 | 216
80
36
90
2
8 | 109
31
15
60
-
3 | 158
90
40
20
1
7 | | Guam
P.R.
V.I.
Amer. Samoa
C.N.M.I. | 9
580
2
-
- | 13
516
21
-
- | 1,540
53
U
88 | 257
U
-
U
U | -
-
-
U
- | -
-
U
U | N
-
-
U
- | N
5
-
U
U | U
U
U | U
U
U | N: Not notifiable. U: Unavailable. -: No reported cases. C.N.M.I.: Commonwealth of Northern Mariana Islands. *Individual cases can be reported through both the National Electronic Telecommunications System for Surveillance (NETSS) and the Public Health Laboratory Information System (PHLIS). † Chlamydia refers to genital infections caused by *C. trachomatis*. Totals reported to the Division of STD Prevention, NCHSTP. † Updated monthly from reports to the Division of HIV/AIDS Prevention — Surveillance and Epidemiology, National Center for HIV, STD, and TB Prevention. Last update June 26, 2001. TABLE II. (Cont'd) Provisional cases of selected notifiable diseases, United States, weeks ending July 14, 2001, and July 15, 2000 (28th Week) | | WCCK3 CI | liuling July | | | iy 13, 20 | 700 (20 | T T | Lyme | | | |--|--|--|--|---|--|--|---|---|--|--| | | Gono | rrhea | Hepati
Non-A, | | Legione | llosis | Listeriosis | | me
ease | | | Reporting Area | Cum.
2001 | Cum.
2000 | Cum.
2001 | Cum.
2000 | Cum.
2001 | Cum.
2000 | Cum.
2001 | Cum.
2001 | Cum.
2000 | | | UNITED STATES | 158,995 | 181,909 | 1,198 | 1,815 | 405 | 424 | 224 | 2,346 | 6,160 | | | NEW ENGLAND
Maine
N.H.
Vt.
Mass.
R.I.
Conn. | 3,287
70
84
39
1,707
360
1,027 | 3,430
44
58
32
1,373
328
1,595 | 14
-
-
6
8
- | 15
1
-
3
8
3 | 20
1
5
4
5
1
4 | 25
2
2
2
11
3
5 | 37
-
1
-
14
1
21 | 724
-
66
3
149
109
397 | 1,548
-
36
12
645
78
777 | | | MID. ATLANTIC
Upstate N.Y.
N.Y. City
N.J.
Pa. | 19,255
4,269
6,603
2,584
5,799 | 19,479
3,572
6,149
3,796
5,962 | 46
32
-
-
14 | 391
17
-
349
25 | 45
28
6
5
6 | 107
31
16
9
51 | 30
13
5
7
5 | 1,035
823
1
84
127 | 3,504
965
141
1,565
833 | | | E.N. CENTRAL
Ohio
Ind.
III.
Mich.
Wis. | 27,005
4,254
3,185
8,414
9,210
1,942 | 36,750
9,668
3,161
11,015
9,229
3,677 | 105
7
1
10
87 | 141
4
-
15
122
- | 111
56
12
-
29
14 | 110
39
20
11
21
19 | 25
6
4
-
13
2 | 86
43
2
-
-
41 | 431
23
10
24
13
361 | | | W.N. CENTRAL
Minn.
Iowa
Mo.
N. Dak.
S. Dak. |
7,478
1,091
428
3,962
16
144 | 8,938
1,684
580
4,361
37
145 | 416
2
-
409
-
- | 315
5
1
302
- | 31
7
6
10
1
2 | 25
1
5
13
- | 6
-
3
- | 83
49
17
12
- | 66
26
3
22
- | | | Nebr.
Kans. | 555
1,282 | 746
1,385 | 1
4 | 2
5 | 4
1 | 1
4 | 1
2 | 2
3 | 2
13 | | | S. ATLANTIC
Del.
Md.
D.C.
Va.
W. Va.
N.C.
S.C.
Ga.
Fla. | 39,845
887
3,433
1,468
5,010
327
7,854
4,229
6,520
10,117 | 47,138
874
4,835
1,228
5,171
359
9,531
4,807
8,462
11,871 | 58
-
10
-
-
6
10
4
-
28 | 49
2
6
2
2
9
13
1
2
12 | 85
2
23
2
11
N
5
3
6
33 | 76
4
25
-
12
N
8
2
4
21 | 35
-
4
-
5
4
2
3
8
9 | 329
22
205
7
61
8
10
2 | 499
99
310
2
57
10
13
2 | | | E.S. CENTRAL
Ky.
Tenn.
Ala.
Miss. | 16,677
1,835
5,128
5,769
3,945 | 18,737
1,816
5,939
6,164
4,818 | 120
4
37
2
77 | 261
18
58
7
178 | 34
8
16
8
2 | 13
6
4
2
1 | 10
4
3
3 | 14
5
6
3 | 22
5
13
2
2 | | | W.S. CENTRAL
Ark.
La.
Okla.
Tex. | 26,295
2,438
6,256
2,609
14,992 | 28,630
1,821
7,036
1,949
17,824 | 161
3
74
3
81 | 498
4
264
4
226 | 5
-
2
3
- | 18
-
7
1 | 5
1
-
1
3 | 7
-
1
-
6 | 34
2
3
-
29 | | | MOUNTAIN
Mont.
Idaho
Wyo.
Colo.
N. Mex.
Ariz.
Utah
Nev. | 5,448
53
39
32
1,671
487
2,152
79
935 | 5,532
26
49
30
1,681
560
2,302
136
748 | 199
1
1
159
13
10
9
1 | 38
2
3
2
6
10
11
- | 31
-
1
3
9
1
11
4
2 | 19
-
4
-
6
1
3
5 | 23
1
1
3
6
6
1
5 | 8
-
3
3
1
-
-
1 | 4
-
1
2
-
-
-
1 | | | PACIFIC
Wash.
Oreg.
Calif.
Alaska
Hawaii | 13,705
1,577
295
11,309
201
323 | 13,275
1,192
490
11,167
180
246 | 79
16
8
55
- | 107
16
20
69
-
2 | 43
6
N
33
- | 31
11
N
20 | 53
3
1
48
-
1 | 60
2
5
51
2
N | 52
3
3
45
1
N | | | Guam
P.R.
V.I.
Amer. Samoa
C.N.M.I. | 423
6
U
5 | 26
283
-
U
U | 1
-
U
- | 2
1
U
U | 2
-
U | -
-
U
U | -
-
-
- | N
U | N
U
U | | N: Not notifiable. U: Unavailable. -: No reported cases. TABLE II. (Cont'd) Provisional cases of selected notifiable diseases, United States, weeks ending July 14, 2001, and July 15, 2000 (28th Week) | | TVCCKS (| eks ending July | | oi, and J | Salmonellosis* | | | | | | | | |--|---|---|---|--|---|---|--|--|--|--|--|--| | | Ma | laria | Rabio | es, Animal | NE | TSS | | PHLIS | | | | | | Donoutina Avoc | Cum. | | | | | Reporting Area UNITED STATES | 2001
495 | 2000
661 | 2001
3,089 | 2000
3,525 | 2001
14,842 | 2000
17,208 | 2001
11,756 | 2000
15,345 | | | | | | NEW ENGLAND
Maine
N.H.
Vt.
Mass.
R.I.
Conn. | 33
3
2
-
10
3
15 | 32
4
1
2
11
5 | 318
36
7
37
110
29 | 385
78
8
36
122
17 | 1,348
110
97
36
627
66
412 | 1,068
76
69
62
634
45
182 | 987
83
103
38
460
82
221 | 1,118
61
75
60
626
79
217 | | | | | | MID. ATLANTIC
Upstate N.Y.
N.Y. City
N.J.
Pa. | 92
25
42
19
6 | 152
30
81
21
20 | 478
359
11
88
20 | 616
378
5
83
150 | 1,577
531
442
419
185 | 2,473
561
639
612
661 | 1,841
479
597
344
421 | 2,559
652
661
479
767 | | | | | | E.N. CENTRAL
Ohio
Ind.
III.
Mich.
Wis. | 52
12
12
1
19
8 | 81
12
4
41
17
7 | 42
14
1
4
17
6 | 47
11
-
4
23
9 | 2,121
661
233
548
396
283 | 2,426
562
282
784
454
344 | 1,535
483
188
302
357
205 | 1,497
548
292
1
474
182 | | | | | | W.N. CENTRAL
Minn.
Iowa
Mo.
N. Dak.
S. Dak.
Nebr.
Kans. | 19
6
3
6
-
2
2 | 36
13
1
9
2
-
5
6 | 182
19
42
16
24
21
4
56 | 315
49
46
17
74
62
-
67 | 866
211
148
253
14
70
60
110 | 1,106
242
149
364
27
37
102
185 | 901
306
95
325
32
50 | 1,270
342
176
424
42
53
81
152 | | | | | | S. ATLANTIC
Del.
Md.
D.C.
Va.
W. Va.
N.C.
S.C.
Ga.
Fla. | 145
1
59
9
30
1
6
4
8
27 | 142
3
46
12
30
2
11
1
4
33 | 1,134
18
138
-
228
69
315
73
174
119 | 1,242
20
238
-
321
66
303
71
157
66 | 3,557
44
379
39
589
53
518
368
546
1,021 | 3,058
51
383
31
413
74
404
292
512
898 | 2,064
43
366
U
495
59
272
291
351
187 | 2,642
66
366
U
440
75
444
245
775
231 | | | | | | E.S. CENTRAL
Ky.
Tenn.
Ala.
Miss. | 11
2
6
3 | 22
6
5
10
1 | 109
11
71
27 | 99
14
53
32 | 885
160
248
273
204 | 888
181
207
229
271 | 614
101
242
211
60 | 762
132
352
233
45 | | | | | | W.S. CENTRAL
Ark.
La.
Okla.
Tex. | 6
3
1
1 | 38
1
6
4
27 | 503
19
-
42
442 | 521
1
35
485 | 1,187
254
249
138
546 | 2,126
252
372
166
1,336 | 1,079
92
344
132
511 | 1,289
207
281
134
667 | | | | | | MOUNTAIN
Mont.
Idaho
Wyo.
Colo.
N. Mex.
Ariz.
Utah
Nev. | 27
2
3
-
13
1
3
3 | 24
1
2
-
11
-
3
3
4 | 126
20
2
20
5
76
2 | 132
34
1
34
-
13
47
2 | 1,000
39
71
32
278
123
279
110
68 | 1,326
58
75
37
399
118
307
199
133 | 705
-
4
22
236
100
216
104
23 | 1,246
66
31
377
114
321
204
133 | | | | | | PACIFIC
Wash.
Oreg.
Calif.
Alaska
Hawaii | 110
4
5
93
1
7 | 134
12
23
92
-
7 | 197
-
-
161
36
- | 168
-
2
142
24 | 2,301
227
106
1,754
22
192 | 2,737
230
169
2,209
29
100 | 2,030
358
159
1,332
2
179 | 2,962
331
213
2,285
23
110 | | | | | | Guam
P.R.
V.I.
Amer. Samoa
C.N.M.I. | 3
-
U | -
4
-
U
U | 61
-
U
- | -
41
-
U
U | 302
-
U
6 | 17
299
-
U
U | U
U
U
U | U
U
U
U | | | | | N: Not notifiable. U: Unavailable. -: No reported cases. * Individual cases can be reported through both the National Electronic Telecommunications System for Surveillance (NETSS) and the Public Health Laboratory Information System (PHLIS). TABLE II. (Cont'd) Provisional cases of selected notifiable diseases, United States, weeks ending July 14, 2001, and July 15, 2000 (28th Week) | | <u>weeks e</u> | | | <u>01, and Jւ</u> | <u>ıly 15, 20</u> | 000 (28th V | Veek) | | |-------------------------------|-------------------|----------------|----------------------|-------------------|-------------------|------------------------|----------------------|-------------------| | | NET | | llosis* | PHLIS | | philis
& Secondary) | Tube | rculosis | | B A | Cum. | Reporting Area UNITED STATES | 2001 7,040 | 2000
10,682 | 2001
3,349 | 2000 5,907 | 2001 2,870 | 2000
3,241 | 2001
6,102 | 2000 7,314 | | NEW ENGLAND | 133 | 187 | 102 | 184 | 27 | 48 | 222 | 209 | | Maine
N.H. | 5
2 | 5
4 | 1 2 | 7 | 1 | 1 | 7
11 | 8
7 | | Vt. | 3 | 2 | 2 | - | 2 | - | 2 | 3 | | Mass.
R.I. | 72
8 | 134
12 | 63
12 | 123
18 | 16
3 | 32
3 | 117
21 | 120
23 | | Conn. | 43 | 30 | 22 | 36 | 5 | 11 | 64 | 48 | | MID. ATLANTIC
Upstate N.Y. | 595
321 | 1,501
431 | 461
64 | 937
156 | 260
19 | 161
6 | 1,173
164 | 1,198
142 | | N.Y. City
N.J. | 179
40 | 663
274 | 232
100 | 428
229 | 139
51 | 68
36 | 601
269 | 642
286 | | Pa. | 55 | 133 | 65 | 124 | 51 | 51 | 139 | 128 | | E.N. CENTRAL
Ohio | 1,215
633 | 2,263
148 | 535
274 | 670
123 | 480
45 | 669
42 | 627
101 | 693
153 | | Ind. | 126 | 837 | 20 | 100 | 99 | 219 | 49 | 74 | | III.
Mich. | 199
155 | 631
453 | 117
109 | 2
409 | 116
204 | 241
136 | 326
116 | 311
106 | | Wis. | 102 | 194 | 15 | 36 | 16 | 31 | 35 | 49 | | W.N. CENTRAL
Minn. | 776
217 | 1,038
275 | 514
252 | 862
300 | 34
17 | 42
5 | 213
108 | 258
85 | | lowa
Mo. | 239
144 | 239
387 | 85
103 | 192
269 | 1
8 | 10
22 | 18
55 | 23
94 | | N.
Dak. | 13 | 4 | 6 | 4 | - | - | 3 | 2 | | S. Dak.
Nebr. | 84
37 | 2
37 | 48 | 3
37 | - | 2 | 8
21 | 9
11 | | Kans. | 42 | 94 | 20 | 57 | 8 | 3 | - | 34 | | S. ATLANTIC
Del. | 1,113
5 | 1,300
8 | 301
4 | 497
10 | 1,056
7 | 1,067
5 | 1,283
9 | 1,485
7 | | Md.
D.C. | 58
29 | 71
20 | 33
U | 37
U | 125
21 | 156
21 | 109
15 | 137
11 | | Va. | 106 | 210 | 56
6 | 183 | 64 | 69 | 124 | 144 | | W. Va.
N.C. | 5
203 | 3
65 | 78 | 3
43 | 243 | 2
305 | 16
185 | 18
206 | | S.C.
Ga. | 143
121 | 65
125 | 48
57 | 54
104 | 142
158 | 114
199 | 117
235 | 150
305 | | Fla. | 443 | 733 | 19 | 63 | 296 | 196 | 473 | 507 | | E.S. CENTRAL
Ky. | 747
284 | 499
144 | 315
135 | 310
47 | 325
25 | 483
51 | 385
6 9 | 495
58 | | Tenn.
Ala. | 48
146 | 217
29 | 51
113 | 237
23 | 179
64 | 299
64 | 128
140 | 191
165 | | Miss. | 269 | 109 | 16 | 3 | 57 | 69 | 48 | 81 | | W.S. CENTRAL
Ark. | 991
360 | 1,741
108 | 683
155 | 513
40 | 361
21 | 433
57 | 660
73 | 1,095
111 | | La. | 108 | 162 | 106 | 92 | 69 | 105 | - | 71 | | Okla.
Tex. | 20
503 | 63
1,408 | 10
412 | 23
358 | 37
234 | 67
204 | <i>7</i> 5
512 | 85
828 | | MOUNTAIN | 424 | 477 | 236 | 319 | 122 | 115 | 208 | 273 | | Mont.
Idaho | 19 | 4
31 | - | 22 | - | 1 | 4 | 6
4 | | Wyo.
Colo. | 2
82 | 2
86 | -
65 | 2
42 | 23 | 1
5 | 1
60 | 1
39 | | N. Mex.
Ariz. | සි
199 | 51
190 | 40
99 | 29
126 | 10
78 | 10
93 | 11
82 | 39
28
113 | | Utah | 27 | 36 | 24 | 42 | 7 | 1 | 15 | 25 | | Nev.
PACIFIC | 32
1,046 | 77
1,676 | 8
202 | 56
1,615 | 4
205 | 4
223 | 35
1,331 | 57
1,608 | | Wash. | 97 | 320 | 119 | 289 | 32 | 35 | 119 | 135 | | Oreg.
Calif. | 34
883 | 102
1,224 | 55
- | 64
1,239 | 4
163 | 8
179 | 48
1,055 | 47
1,289 | | Alaska
Hawaii | 4
28 | 6
24 | 1
27 | 3
20 | -
6 | -
1 | 25
84 | 64
73 | | Guam | - | 24 | U | U | - | 2 | - | 32 | | P.R.
V.I. | 6 | 19 | U
U | U
U | 111 | 99 | 54
- | 70 | | Amer. Samoa
C.N.M.I. | U
4 | U
U | Ŭ
U | Ŭ
U | U
- | U
U | U
19 | U
U | N: Not notifiable. U: Unavailable. -: No reported cases. *Individual cases can be reported through both the National Electronic Telecommunications System for Surveillance (NETSS) and the Public Health Laboratory Information System (PHLIS). TABLE III. Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending July 14, 2001, and July 15, 2000 (28th Week) | | U :=#. | | T L | epatitis (V | iral\ By Ty | | VVEC | K, | Mose | les (Rubec | vla) | | |--|---------------------------|-------------------------|-------------------------|--------------------------|------------------------|-------------------------|--------|------------------|-------------|------------------|------------------|--------------------| | | | <i>ienzae,</i>
isive | | epatitis (v | нан, ву гу
В | pe | Indige | nous | Impo | | Tota | | | Reporting Area | Cum.
2001 [†] | Cum.
2000 | Cum.
2001 | Cum.
2000 | Cum.
2001 | Cum.
2000 | 2001 | Cum.
2001 | 2001 | Cum.
2001 | Cum.
2001 | Cum.
2000 | | UNITED STATES | 772 | 738 | 4,799 | 6,785 | 3,247 | 3,677 | | 43 | - | 200 i
27 | 70 | <u>55</u> | | NEW ENGLAND
Maine
N.H. | 42
1
- | 59
1
9 | 223
5
8 | 190
10
16 | 57
5
11 | 60
5
11 | - | 4 - | -
-
- | 1
-
- | 5
-
- | 3 - | | Vt.
Mass. | 1
32 | 4
29 | 6
66 | 5
78 | 2 | 5
6 | - | 1
2 | - | -
1 | 1
3 | 3 | | R.I. | 2 | 1 | 11 | 7 | 12 | 9 | - | - | - | - | - | - | | Conn. | 6 | 15 | 127 | 74
724 | 24 | 24 | - | 1 | - | - | 1 | - | | MID. ATLANTIC
Upstate N.Y.
N.Y. City
N.J. | 93
40
24
26
3 | 136
50
38
28 | 415
144
169
70 | 724
124
266
123 | 441
76
258
64 | 631
64
300
104 | - | 2
1
-
1 | - | 5
4
-
1 | 7
5
-
1 | 20
9
10
- | | Pa.
E.N. CENTRAL | 100 | 20
111 | 32
534 | 211
876 | 43
406 | 163
390 | - | - | - | 10 | 1
10 | 1
6 | | Ohio | 47 | 36 | 125 | 146 | 62 | 66 | U | - | U | 3 | 3 | 2 | | Ind.
III. | 28
10 | 12
41 | 50
146 | 29
380 | 23
56 | 28
60 | - | - | - | 4
3 | 4
3 | 3 | | Mich.
Wis. | 5
10 | 7
15 | 175
38 | 271
50 | 265
- | 218
18 | -
U | - | -
U | - | - | 1 - | | W.N. CENTRAL
Minn. | 36
20 | 34
16 | 211
16 | 461
123 | 111
13 | 167
19 | - | 4
2 | - | - | 4
2 | 1
1 | | lowa | - | - | 18 | 46 | 13 | 16 | - | - | - | - | - | - | | Mo.
N. Dak. | 10
4 | 11
2 | 58
2 | 203
2 | 57
- | 90
2 | Ū | 2 | Ū | - | 2 | - | | S. Dak.
Nebr. | -
1 | 3 | 1
27 | 20 | 1
14 | -
25 | - | - | - | - | - | - | | Kans. | 1 | 2 | 89 | 67 | 13 | 15 | U | - | U | - | - | - | | S. ATLANTIC
Del. | 236 | 173
- | 1,089 | 690
10 | 706
- | 623
8 | - | 3 | - | 1
- | 4 | - | | Md.
D.C. | 55
- | 50 | 146
22 | 81
14 | 85
9 | 75
17 | - | 2 | - | 1 | 3 | - | | Va. | 18 | 28
4 | 6 8 | 82 | 80 | 79 | - | - | - | - | - | - | | W. Va.
N.C. | 8
31 | 15 | 7
77 | 45
92 | 16
110 | 6
141 | - | - | - | - | - | - | | S.C.
Ga. | 5
60 | 7
47 | 34
444 | 30
112 | 15
176 | 5
98 | - | 1 | - | - | 1 | - | | Fla. | 59 | 22 | 291 | 224 | 215 | 194 | - | - | - | - | - | - | | E.S. CENTRAL
Ky. | 56
2 | 33
12 | 177
37 | 260
31 | 215
17 | 254
53 | - | 2
2 | - | - | 2
2 | - | | Tenn.
Ala. | 28
25 | 14
5 | 75
57 | 94
33 | 110
49 | 113
26 | - | - | - | - | - | - | | Miss. | 1 | 2 | 8 | 102 | 39 | 62 | - | - | - | - | - | - | | W.S. CENTRAL
Ark. | 29 | 42 | 604
40 | 1,243
95 | 354
54 | 565
61 | - | 1 | - | - | 1 | - | | La. | 3
26 | 12 | 46
85 | 45
153 | 28
60 | 83
70 | - | - | - | - | - | - | | Okla.
Tex. | - | 28
2 | 433 | 950 | 212 | 351 | Ū | 1 | Ū | - | 1 | - | | MOUNTAIN | 107 | 75 | 445 | 462 | 311 | 266 | - | - | - | 1 | 1 | 12 | | Mont.
Idaho | 1 | 3 | 6
47 | 2
18 | 2
7 | 3
4 | - | - | - | 1 | 1 | - | | Wyo.
Colo. | 13
23 | 1
15 | 21
40 | 4
110 | 28
62 | -
46 | - | - | - | - | - | 2 | | N. Mex.
Ariz. | 23
13
42
6 | 16
31 | 17
233 | 42
220 | 78
98 | 86
90 | - | - | - | - | - | - | | Utah
Nev. | 6
9 | 6 | 41
40 | 31
35 | 14
22 | 14
23 | - | - | - | - | - | 3
7 | | PACIFIC | 73 | 75 | 1,101 | 1,879 | 646 | 721 | - | 27 | - | 9 | 36 | 13 | | Wash.
Oreg. | 1
16 | 3
21 | 55
46 | 159
123 | 67
42 | 44
59 | - | 13
3 | - | 2 | 15
3 | 3 | | Calif.
Alaska | 16
32
3 | 29
4 | 987
12 | 1,575
11 | 521
4 | 604
6 | - | 8 | - | 4 | 12 | 7
1 | | Hawaii | 21 | 18 | 1 | 11 | 12 | 8 | - | 3 | - | 3 | 6 | 2 | | Guam
P.R. | -
1 | 1
3 | -
54 | 1
170 | -
98 | 9
143 | U
- | - | U
- | - | - | 2 | | V.I.
Amer. Samoa | Ū | Ū | Ū | Ū | Ū | Ū | U
U | Ū | U | Ū | Ū | Ū | | C.N.M.I. | - | Ŭ | - | Ŭ | 20 | Ŭ | - | - | - | - | - | Ŭ | N: Not notifiable. U: Unavailable. -: No reported cases. *For imported measles, cases include only those resulting from importation from other countries. † Of 157 cases among children aged <5 years, serotype was reported for 71, and of those, 11 were type b. TABLE III. (Cont'd) Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending July 14, 2001, and July 15, 2000 (28th Week) | and July 15, 2000 (28th Week) | | | | | | | | | | | | | |-------------------------------|--------------|------------------|--------|--------------|--------------|---------|--------------|--------------|--------|--------------|--------------|--| | | Dise | jococcal
ease | | Mumps | | | Pertussis | | | Rubella | | | | Reporting Area | Cum.
2001 | Cum.
2000 | 2001 | Cum.
2001 | Cum.
2000 | 2001 | Cum.
2001 | Cum.
2000 | 2001 | Cum.
2001 | Cum.
2000 | | | UNITED STATES | 1,367 | 1,373 | 1 | 101 | 203 | 40 | 2,297 | 3,039 | 2 | 15 | 95 | | | NEW ENGLAND | 78 | 83 | - | - | 3 | 4 | 246 | 835 | - | - | 11 | | | Maine
N.H. | 1
10 | 6
9 | - | - | - | 4 | -
25 | 14
62 | - | - | 2 | | | Vt.
Mass. | 4
44 | 2
48 | - | - | -
1 | - | 24
181 | 157
561 | - | - | -
8 | | | R.I. | 2 | 6 | - | - | 1 | - | 2 | 11 | - | - | - | | | Conn. | 17 | 12 | - | - | 1 | - | 14 | 30 | - | - | 1 | | | MID. ATLANTIC
Upstate N.Y. | 114
43 | 152
40 | - | 5
1 | 13
5 | 4
4 | 146
106 | 255
136 | - | 4
1 | 8
1 | | | N.Y. City
N.J. | 28
33 | 32
27 | - | 4 | 5
- | - | 23
8 | 42 | - | 2
1 | 7 | | | Pa. | 10 | 53 | - | - | 3 | - | 9 | 77 | - | - | - | | | E.N. CENTRAL | 168 | 237 | | 12 | 17 | 2 | 271 | 346 | | 3 | 1 | | | Ohio
Ind. | 57
27 | 51
30 | U | 1
1 | 7
- | U
1 | 167
24 | 178
36 | U | -
1 | - | | | III.
Mich. | 20
33 | 61
71 | - | 8
2 | 5
4 | 1 | 29
27 | 28
39 | - | 2 | 1 | | | Wis. | 31 | 24 | Ū | - | 1 | Ū | 24 | 65 | Ū | - | - | | | W.N. CENTRAL | 100 | 91 | - | 5 | 10 | 1 | 117 | 147 | - | 2 | 1 | | | Minn.
Iowa | 15
20 | 7
21 | - | 2 | -
5 | - | 31
16 | 65
23 | - | -
1 | - | | | Mo.
N. Dak. | 38
5 | 46
2 | -
U | - | 2 | 1
U | 51 | 28
1 | Ū | - | - | | | S. Dak. | 4 | 5 | - | - | - | - | 3 | 3 | - | - | - | | | Nebr.
Kans. | 9
9 | 4
6 | Ū | 1
2 | 1
2 | Ū | 3
13 | 4
23 | Ū | -
1 | 1 | | | S. ATLANTIC | 262 | 195 | - | 18 | 29 | 5 | 119 | 219 | _ | 3 | 50 | | | Del.
Md. | 2
31 | -
19 | - | -
4 | -
6 | - | -
18 |
5
55 | - | - | - | | | D.C. | - | - | - | - | _ | - | 1 | 1 | - | - | - | | | Va.
W. Va. | 28
8 | 33
8 | - | 2 | 5
- | - | 12
1 | 28
1 | - | - | - | | | N.C.
S.C. | 55
24 | 29
15 | - | 1
1 | 4
9 | - | 40
22 | 51
19 | - | 2 | 42
6 | | | Ga. | 36 | 36 | - | 7 | 2 | 1 | 7 | 20 | - | - | - | | | Fla. | 78 | 55 | - | 3 | 3 | 4 | 18 | 39 | - | 1 | 2 | | | E.S. CENTRAL
Ky. | 94
16 | 98
20 | - | 3
1 | 4 | 6 | 54
11 | 61
31 | 1
- | 1
- | 4
1 | | | Ténn.
Ala. | 41
29 | 40
28 | - | - | 2
2 | 3
3 | 23
17 | 16
11 | 1 | 1 | 3 | | | Miss. | 8 | 10 | - | 2 | - | - | 3 | 3 | - | - | - | | | W.S. CENTRAL | 165 | 147 | - | 7 | 22 | - | 157 | 138 | - | - | 6 | | | Ark.
La. | 10
54 | 8
3 4 | - | 1
2 | 1
4 | - | 7
2 | 14
8 | - | - | 1
1 | | | Okla.
Tex. | 21
80 | 21
84 | Ū | -
4 | -
17 | Ū | 1
147 | 9
107 | Ū | - | -
4 | | | MOUNTAIN | 73 | 61 | - | 7 | 14 | 16 | 904 | 401 | 1 | 1 | 2 | | | Mont. | 3 | 1 | - | - | 1 | - | 10 | 11 | - | - | - | | | ldaho
Wyo. | 7
6 | 6 - | - | 1 | -
1 | 1
- | 166
1 | 41
1 | - | - | - | | | Colo.
N. Mex. | 25
10 | 20
6 | - | 1
2 | -
1 | 1
1 | 160
61 | 223
70 | 1 | 1 | 1 | | | Ariz. | 11 | 19 | - | 1 | 3 | - | 460 | 37 | - | - | 1 | | | Utah
Nev. | 7
4 | 6
3 | - | 1
1 | 4
4 | 13
- | 37
9 | 12
6 | - | - | - | | | PACIFIC | 313 | 309 | 1 | 44 | 91 | 2 | 283 | 637 | - | 1 | 12
7 | | | Wash.
Oreg. | 45
21 | 33
36 | N | 1
N | 3
N | 2 | 79
27 | 197
60 | - | - | 7 | | | Calif. | 237 | 227 | 1 | 25
1 | 70 | - | 158
2 | 345 | - | - | 5 | | | Alaska
Hawaii | 2
8 | 5
8 | - | 17 | 7
11 | - | 17 | 11
24 | - | 1 | - | | | Guam | - | - | U | - | 10 | U | - | 3 | U | - | 1 | | | P.R.
V.I. | 3 | 7
- | Ū | - | - | Ū | 2 | 4
- | Ū | - | - | | | Amer. Samoa
C.N.M.I. | U
- | U
U | U | U
- | U | U
- | U
- | U
U | U
- | U
- | U
U | | N: Not notifiable. TABLE IV. Deaths in 122 U.S. cities,* week ending July 14, 2001 (28th Week) | | July 14, 20 | | | | | | | i (28th wee | /VEEK/ | | | | | | | |--|--|---|---|---|---|--|--|--|---|--|--|--|---|--|---| | | | All Cau | ıses, By | Age (Y | ears) | | P&I⁺ | | | All Cau | ıses, By | Age (Y | ears) | | P&I⁺ | | Reporting Area | All
Ages | ≥65 | 45-64 | 25-44 | 1-24 | <1 | Total | Reporting Area | All
Ages | ≥65 | 45-64 | 25-44 | 1-24 | <1 | Total | | NEW ENGLAND Boston, Mass. Bridgeport, Conn Cambridge, Mass Fall River, Mass. Hartford, Conn. Lowell, Mass. Lynn, Mass. New Bedford, Ma New Haven, Conn Providence, R.I. Somerville, Mass Springfield, Mass Waterbury, Conn. Worcester, Mass. MID. ATLANTIC Albany, N.Y. Allentown, Pa. Buffalo, N.Y. Camden, N.J. Elizabeth, N.J. | . 17
30
U
18
8
sss. 24
. 25
U
2
. 42 | 315
89
26
16
24
U
15
6
15
21
U
2
32
23
46
1,530
42
23
50
50 | 33
5
1
6
0
2
2
5
1
0
7
7
2
8
454
9
2
1
12
12
12
12
12
14
15
16
16
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | 33
14
4
-
-
-
-
-
3
1
1
U
-
2
2
6
1
188
1
10
2
2 | 9 8 | 3
 | 38 18 1 1 4 U 1 - 2 2 U - 2 3 4 112 8 1 8 2 1 | S. ATLANTIC Atlanta, Ga. Baltimore, Md. Charlotte, N.C. Jacksonville, Fla Miami, Fla. Norfolk, Va. Richmond, Va. Savannah, Ga. St. Petersburg, F Tampa, Fla. Washington, D.G. Wilmington, D.G. E.S. CENTRAL Birmingham, Al. Chattanooga, Te Knoxville, Tenn. Lexington, Ky. Memphis, Tenn. Mobile, Ala. Montgomery, A | 80
58
60
57
Fla. 69
192
C. 199
l. 10
780
a. 175
nnn. 79
110
58
110
54 | 876
966
1322
75
1022
335
34
55
1422
1266
5
527
117
53
79
35
69
43
33 | 299
21
54
20
34
22
16
13
16
12
32
54
5
160
38
17
22
27
9 | 122
15
31
6
14
11
5
11
2
2
13
12
5
5
7
7
7 | 32
7
5
4
2
3
1
1
4
1
-
1
2
5
7
3
2
2
3
1
1
4
1
2
2
7
1
2
1
2
1
1
2
1
2
1
2
1
2
1
2
1 | 21
2
2
1
3
1
1
1
4
-
3
3
-
14
1
1
2
1
6
- | 77
17
9
8
12
3
4
2
5
11
6
-
65
14
8
14
8
14 | | Erie, Pa.§ Jersey City, N.J. New York City, N.Y. Newark, N.J. Paterson, N.J. Philadelphia, Pa. Pittsburgh, Pa.§ Reading, Pa. Rochester, N.Y. Schenectady, N.Y. Scranton, Pa.§ Syracuse, N.Y. Trenton, N.J. Utica, N.Y. Yonkers, N.Y. | 46
40
40
41
1,187
21
376
41
18
112
22
22
25
83
24
20
U | 32
20
830
U
11
229
27
11
79
19
35
66
19
13
U | 8
10
232
U
6
90
8
5
22
2
8
9
3
6
U | 88
98
U 1
44
3 2
8 1
4 4
1 1
U | 2
2
15
U
1
8
1
-
2
-
2
3 | 4

11
U
2
5
2
-
1
-
1
1
-
U | 2
47
U -
18
2
1
8
2
4
6
2
U | Nashville, Tenn. W.S. CENTRAL Austin, Tex. Baton Rouge, La Corpus Christi, 1 Dallas, Tex. El Paso, Tex. Houston, Tex. Houston, Tex. Little Rock, Ark. New Orleans, La San Antonio, Te Shreveport, La. Tulsa, Okla. | 141
1,460
79
42
Tex. 65
198
66
117
413
51
. 79
x. 235
30
85 | 94
882
57
21
43
106
46
70
219
28
41
164
24
63 | 26
324
11
15
47
14
31
95
11
20
51
3 | 12
137
5
5
2
30
5
9
48
5
11
9 | 6
77
5
2
3
9
1
4
37
2
7 | 3
40
1
3
2
6
3
14
5
4 | 15
70
3
3
5
9
16
4
16
6
5 | | E.N. CENTRAL Akron, Ohio Canton, Ohio Canton, Ohio Chicago, III. Cincinnati, Ohio Cleveland, Ohio Columbus, Ohio Dayton, Ohio Detroit, Mich. Evansville, Ind. Fort Wayne, Ind. Gary, Ind. Grand Rapids, Mi Indianapolis, Ind. Lansing, Mich. Milwaukee, Wis. Peoria, III. Rockford, III. South Bend, Ind. Toledo, Ohio Youngstown, Ohi W.N. CENTRAL Des Moines, Iowa Duluth, Minn. Kansas City, Kans Kansas City, Kans Kansas City, Mo. Lincoln, Nebr. Minneapolis, Min Omaha, Nebr. St. Louis, Mo. St. Paul, Minn. Wichita, Kans. | 199
57
125
47
60
41
82
0 60
838
41
41
41
. 64
U | 1,175
23
32
U 84
92
120
88
127
34
46
9
28
136
40
95
33
43
U 22
150
67
74
74
71
115 | 7 10 U 19 322 4417 555 9 7 2 6 6 3513 17 8 8 6 6 13 10 143 6 7 13 U 8 29 13 6 18 | 127
2 U 11
923 7 7 7 3 9 6 3 16 2 8 1 5 3 1 1 65 4 1 6 U 2 21 5 13 6 7 | 48 1 · U 4 3 6 4 5 1 4 1 1 7 2 2 2 2 3 1 · 1 12 1 · · · U · 1 · 5 2 3 | 41 U 5 5 1 1 1 10 - 3 3 - 6 5 5
- 3 3 1 2 2 U - 1 1 - 6 6 - 2 | 119 24 U 13 7 16 11 13 3 4 · 3 10 3 9 7 4 4 4 4 2 52 2 1 5 U 5 17 8 · 2 12 | MOUNTAIN Albuquerque, N Boise, Idaho Colo. Springs, C Denver, Colo. Las Vegas, Nev. Ogden, Utah Phoenix, Ariz. Pueblo, Colo. Salt Lake City, U Tucson, Ariz. PACIFIC Berkeley, Calif. Fresno, Calif. Glendale, Calif. Honolulu, Hawa Long Beach, Cali Los Angeles, Cal Pasadena, Calif. Portland, Oreg. Sacramento, Cal San Diego, Calif. Santa Cruz, Calif. Seattle, Wash. Spokane, Wash. Total | 46 olo. 48 119 181 31 181 26 tah 99 177 1,555 12 91 22 ii 84 if. 50 iif. 398 iif. 210 alif. U 5. 4136 | 658
51
32
29
79
124
24
103
21
66
130
1,054
8
55
18
60
36
279
18
77
137
U U
U 32
88
37
7,624 | 187
20
6
10
21
38
5
34
5
18
30
30
4
3
21
15
10
67
4
32
5
4
32
5
15
10
67
4
32
5
4
4
5
5
10
10
10
10
10
10
10
10
10
10
10
10
10 | 102
11
5
8
15
12
28
10
12
120
1
11
5
13
4
5
8
15
18
U U 5
7
7
1
9
9
948 | 26
3 3 - 2
11 - 2
2 42 - 2 - 1
3 10
1 1 1 5 9
1 U - 5
4 1
3 12 | 22 2 1 2 5 - 5 4 3 3 - 8 8 2 1 1 5 5 5 U U 3 3 - 2 2 1 4 | 51
6
- 1
8
13
2
7
2
5
7
123
- 4
1
7
5
28
2
5
7
19
0
0
4
6
6
9
9
7
9
7
9
7
9
7
9
7
9
7
9
7
9
7
9 | U: Unavailable. -:No reported cases. *Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of ≥100,000. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included. ¹Pneumonia and influenza. ^{*}Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks. *Total includes unknown ages. # Contributors to the Production of the MMWR (Weekly) ### Weekly Notifiable Disease Morbidity Data and 122 Cities Mortality Data Samuel L. Groseclose, D.V.M., M.P.H. State Support Team Robert Fagan Jose Aponte Gerald Jones David Nitschke Scott Noldy Jim Vaughan Carol A. Worsham #### **CDC Operations Team** Carol M. Knowles Deborah A. Adams Willie J. Anderson Patsy A. Hall Mechele Hester Felicia J. Perry Pearl Sharp #### Informatics T. Demetri Vacalis, Ph.D. Michele D. Renshaw Erica R. Shaver The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format and on a paid subscription basis for paper copy. To receive an electronic copy on Friday of each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr-toc. Electronic copy also is available from CDC's World-Wide Web server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://ftp.cdc.gov/pub/Publications/mmwr. To subscribe for paper copy, contact Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone (202) 512-1800. Data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Address inquiries about the MMWR Series, including material to be considered for publication, to: Editor, MMWR Series, Mailstop C-08, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333; telephone (888) 232-3228. All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated. Director, Centers for Disease Control and Prevention Jeffrey P. Koplan, M.D., M.P.H. Deputy Director for Science and Public Health, Centers for Disease Control and Prevention David W. Fleming, M.D. Director, Epidemiology Program Office Stephen B. Thacker, M.D., M.Sc. Editor, MMWR Series John W. Ward, M.D. Acting Managing Editor, *MMWR* (Weekly) Teresa F. Rutledge Writers-Editors, MMWR (Weekly) Jill Crane Desktop Publishing Lynda G. Cupell Morie M. Higgins David C. Johnson ☆U.S. Government Printing Office: 2001-633-173/48245 Region IV