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Supplemental Information for Appendix B
As discussed in Appendix B on page 32, special considerations must be made when applying regression techniques to 
spatially structured data. Once global clustering statistics determine if there are patterns of clustering within the study 
area, local clustering methods can identify likely clusters within that area of concern. Local cluster detection methodologies 
and scan statistics are useful for pinpointing the most likely geographic locations of those clusters. In cases where there 
is a known point-source, focused tests can be considered. Regression analysis can then be used to adjust for confounding 
factors such as latency in cases, mobility and demographic variables (such as age and race). Below are some general steps 
and underlying logic of spatial regression, drawing primarily from Waller & Gotway1 and Fotheringam & Rogerson2.

1. Model the relationship between covariates and outcome data, assuming no spatial relationship. It is possible 
that all of the important covariates were included in the model, and that their spatial distribution sufficiently accounts 
for spatial structure in the outcome.

2. Check for residual spatial variation. Use techniques described above (e.g. tests for spatial autocorrelation, including 
Moran’s I) to see if there is significant spatial variation in the residuals, which are the differences between the 
model-predicted outcome and the observed data. If the model’s residuals display no spatial variation, there’s no need 
to make any adjustments to your model! If the model residuals are autocorrelated, the included covariates did not fully 
account for spatial variation in outcome. There are a few interesting properties of the model that can generate this 
pattern in the residuals: (1) There are predictive factors omitted from the model, and including them as covariates would 
sufficiently reduce spatial structure in the residual values. This scenario is likeliest, and the selection of covariates 
measured at an appropriate spatial scale for the modeled relationship is critical.1,3 (2) The outcome variable itself is 
spatially autocorrelated. This is an expected quality of propagating phenomena, e.g., infectious disease spread, but 
less so of something that is expected rarely and at random, like cancer. (3) The model’s “goodness-of-fit,” or its ability 
to describe the relationship between covariates and observations, is spatially structured. This can come from spatially 
structured differences in sampling design (i.e., differences in sampling techniques or mismatch between the scale at 
which a covariate is sampled and the scale at which it interacts with the response).1,3

3. Accounting for residual spatial variation in your model. There are many options within the family of spatial 
regression models, and we suggest consulting with a statistician to choose the optimal approach for your data and goals. 

a. Spatial autoregressive models: 

I. Residual structure reflects spatial autocorrelation of response values: Spatial structure in the response is 
partly due to local interactions at a fine scale. To reflect this, the mean outcome of nearby neighbors is added 
to the model as a covariate (called a “spatially lagged variable”). The definition of “nearby” in this approach 
is flexible, and can be used to correct for mismatches of scale between observations and their predictors1,4 or 
to explore alternative concepts of neighborhoods, such as groups of workers at certain facilities regardless of 
residence location.3,4

II. Residual structure reflects spatial autocorrelation of error: Spatial error structure is added to the variance- 
covariance of the model.1,2 Helpful variance-covariance adjustments require a solid understanding of a model’s 
sources of error, and cancer epidemiological researchers should proceed with caution here.1 Cancer case data 
typically deal in very small values relative to the population, cases tend to be underreported, and individuals may 
go undiagnosed for long periods of time. The latency between exposure events and cancer symptom progression 
gives the exposed population ample time to move around, so cancer outcomes may never get mapped near their 
exposure and healthy immigrants further dilute the signal. Models with community cancer data will have a lot of 
“unknown unknowns” that probably limit the usefulness of variance-covariance adjustments.
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b. Spatial mixed models: a random effect term is included to account for correlated observations. Examples include 
a random effect (intercept or slope) for county that would group census tracts into counties. For linear regression  
(a less common example when dealing with health outcomes) the semivariogram can be used to assess residual 
spatial variance which can then also be used to model the residual spatial covariance structure and regression 
inference based on generalized least squares.5

c. Spatial GEE methods: For generalized linear regression models (e.g. logistic and Poisson regression) the method of 
generalized estimating equations (GEE) can be an alternative for providing regression inference in the presence of 
residual spatial variation.5

d. Geographically weighted regression (GWR): Broadly, GWR models spatial variance in the covariate/response 
relationship. Rather than adjusting one model to account for spatial dependency in the response at all locations, 
GWR fits the model at each data point—the implication here is that small scale, local processes are critical to 
explaining patterns on a wider scale, and the distinguishing assumption of GWR is that the covariates effects on the 
outcome are dependent on location.6,7

e. Bayesian models infer the probability of model parameters given prior information and the data, rather than the 
probability of the data fitting a known “true” distribution.1, ,8 9 Bayesian hierarchical models use spatially correlated 
random intercepts to borrow information from neighboring regions to improve precision within small areas.

As described in Appendix B (on pages 30, 31, and 33) the following table presents spatial clustering methods, conditions 
for which the spatial clustering method are appropriate, software in which these methods can be performed, and additional 
notes relative to these methods and their performance. This table is not meant to be a comprehensive review of applications 
or a list of recommended applications but rather provides initial guidance for available tools both free and proprietary. 

Global clustering statistics

Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Besag-Newell R No Yes point
ClusterSeer 

R SpatialEpi/besag.newall

Detects, locates and estimates the extent and 
intensity of circular clusters. Does not control 
for multiple testing problem; requires setting of 
several tuning parameters. 

Difference of 
k-function

Yes Yes point R Ecespa/k1k2

Compares the overall spatial patterns at a 
range of spatial scales of a case and control 
dataset (e.g. cancer cases and demographically 
linked at-risk control population). Assumption: 
Stationarity, independence.

Geary's C No No
point, 

polygon

GeoDa

R Spdep/geary.test

ESRI ArcGIS

SAS proc variogran

A measure of spatial autocorrelation (local or 
global). Values range from 0–2. 0=positive 
autocorrelation; 1= none; 2=negative. inversely 
related to Moran's I.

Getis-Ord G No No
point, 

polygon

GeoDa

R Spdep/globalG.test

ESRI ArcGIS

The Hot Spot Analysis tool: calculates the 
statistic for each feature. The z-scores and 
p-values indicate statistical significance of 
clustering. Not reliable with less than 30 
features; all features should have at least 1 
neighbor; no feature should have all other 
features as neighbors.

Continued on the next page 



Supplemental Information for Appendix B

3

Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Global Moran's I No No
point, 

polygon

GeoDa

R ape.Moran.I

ESRI ArcGIS

SAS proc variogran

Use spatial autocorrelation to evaluate 
clustering. Test under a normality assumption. 
Tends to underestimate autocorrelation for 
small samples. Does not account for population 
heterogeneity.

Bivariate Moran’s I Unclear No
point, 

polygon
GeoDa

Measures the influence of one variable has 
on occurrence of over another close variable. 
Interpret with caution—can overestimate the 
spatial correlation. Assumption of normality. 

k-function (Ripley's) Yes Yes point

ClusterSeer

R spatstat/Kest

SAS

Overall testing of spatial pattern of point data. 
Able to simultaneous account for multivariate 
(categorial) data sets. Assumptions: 
Stationarity, independence.

Knox test No No point R Surveillance.Knox M.test

Does not distinguish between shifting 
populations or increased disease scenarios 
(depending on time period). Corrected with 
Knox-Mantel test. Distance/scale for cluster 
detection must be specified up front.

Oden's Ipop10 Yes Yes polygon GeoDa
Adapted Moran's I to consider population size. 
Accounts for differences in population size 
across areas.

Potthoff and  
Whittinghill test11 Yes Yes polygon R Dcluster/pottwhitt

Checks the ratio of the variance to the 
expected number of cases. If >1, the data 
are determined over-dispersed relative to the 
Poisson distribution.

Space-time k 
function12 No No point R splancs/stkhat

Compares the observed spatial-temporal point 
pattern a similar space-time pattern that does 
not have space-time interaction.

Local clustering statistics—Local indicators of spatial association (LISA)

Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Aneslin Moran's I Unclear Unclear
point, 

polygon

ClusterSeer 

GeoDa 

R spdep/localmoran

ESRI ArcGIS

Local spatial autocorrelation statistic that 
identifies local clusters or local outliers. 
Significance testing of local Moran statistics 
can be somewhat problematic. Doesn't 
conform to a common distribution.

Besag-Newell R No Yes point
ClusterSeer 

R SpatialEpi/besag.newall

Calculates I (the local statistic) the number of 
regions required to reach a certain number of 
cases (k) and the probability that the k cases 
form a cluster.

Getis-Ord Gi* Yes No
point, 

polygon

GeoDa 

R spdep/localG

ESRI ArcGIS

Calculates the Getis-Ord Gi* statistic for each 
feature. Provides significance of cluster (hot or 
cold) using z-scores and p-values

Continued on the next page 
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Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Local Geary's C No No
point, 

polygon

GeoDa 

R usdm/lisa

ESRI ArcGIS

A measure of spatial autocorrelation. Values 
range from 0–2. 0=positive autocorrelation; 
1= none; 2=negative. inversely related to 
Moran's I.

Focused clustering statistics

Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Lawson and Waller 
Focused Test13 Yes No polygon R spatstat/WallerLawson.test

Evaluates disease incidence relative to 
exposure based on distance.

Bithell's Linear Risk 
Score

No No polygon R spatstat/Bithell.test Sensitive to excess risk near a point-source.

Diggle's Method No No polygon R spatstat/DiggleETAL.test

Fits a model using maximum likelihood 
about a focus. The model parameters have 
associated significance that indicates 
potential increased risk.

Stone Maximum 
Likelihood Ratio Test

No No polygon R spatstat/Stone.test
Identifies trend (descending) in risk with 
distance from the point-source 

Tango's Focused Test No No polygon R spatstat/TangoF.test
Different tests that depend on the trend with 
distance from the point-source (decline trend 
or a peak-decline trend).

Scan clustering statistics

Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Bonferroni Locally 
Adjusted Spatial 
Scan Statistic 
(BLASS)

No No
point, 

polygon
—

Similar to GLASS, but utilizes a Bonferroni 
distribution rather than a Gumbel distribution. 

FlexScan Yes Unclear polygon R rflexscan
Using Monte-Carlo method to test the spatial 
clusters. Results include a table and a map of 
clusters 

Gumbel Locally 
Adjusted Spatial 
Scan Statistic 
(GLASS)

No No
point, 

polygon
R Scanstatistics/

Also called the extreme value type I 
distribution. Used to find a maximum extreme 
value., Models the distribution of the max (or 
the min) of a number of samples of multiple 
distributions. Data must be organized to have 
Max and Min in separate bins

Kulldorf space and 
time scan statistic

Yes Yes
point, 

polygon
—

Spatial scan statistic based on likelihood ratio 
associated with the number of cases inside and 
outside a scan window.

Kulldorf spatial scan 
statistic14 Yes Yes

point, 
polygon

ClusterSeer

R Dcluster.Nagarwalla.test
See above

Continued on the next page 
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Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Multivariate Bayesian 
Scan Statistic (MBSS)

No No
point, 

polygon
R BenjaK/

A stream-based event surveillance network; 
Detects and characterizes events when 
provided multiple data streams.

ClustR Yes Yes point R ClustR A space-time cluster analysis R package. 

Regression Models

Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Bayesian geoadditive 
model

No No point R R2BayesX/bayesx —

Emperical Bayes 
Index (EBI)

No No point R spdep/EBImoran —

Hierarchical Bayes 
Spatial Modeling 
(HBSM)

No No point R CARBayes —

Generalized additive 
mixed models

No No
point, 

polygon
R MASS/gamm —

Geographic weighted 
regression

No No
point, 

polygon
R spgwr/gwr —

Joinpoint regression 
model

Yes Yes point R JPSurv/joinpoint —

Lee/Lawson Poisson 
Log-Linear Model

Unclear Unclear polygon R CARBayesST/ST.cluster —

Local generalized 
additive regression 
models

Unclear Unclear point R gam/gam.control —

Ordinary Least 
Squares Regression

Yes No point R caTools/OLS —

Penalized Likelihood 
Estimate

No No point R pmlr —

Poisson regression Yes No point R glm —

Spatial error model No No point R spatialreg/Gmerrorsar —

Spatial lag regression 
models

No No point R spatialreg/lagmess —

Srandom effects 
model (linear)

No No point R FRK/sre —

Structured additive 
regression models

Yes Yes point R R2BayesX/bayesx —
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Non-spatial elevated case analysis

Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Causal SIR (new form 
of SIR)

Yes Yes
point, 

polygon
—

SIR analysis can help determine if the number 
of observed cancer cases in a geographic 
area is higher (SIR >1) or lower (SIR <1) than 
expected. Requires population data and age 
distribution for the area of interest. Also needs 
a reference population that has comparable 
demographics 

Choropleth maps 
(purely descriptive)

Yes Yes polygon R sp/spplot
A map where each color represents a category 
(can be a range of values for continuous data)

Heat map (purely 
descriptive)

Yes Yes
point, 

polygon
R heatmap Descriptive and mostly visual

Other Methods (classification, hierarchical, non-parametric)

Spatial Clustering 
Methods (by type)

Small 
Area OK

Small 
Number 

OK

Data 
Type Application/Software Notes

Cuzick-edwards kNN 
test

Yes Yes point R mc30/spatclustrkNN

Nearest neighbor test. Samples cases and 
controls from a common spatial distribution. 
The nearest neighbor to a case in a cluster is 
often another case.

Jacquez k nearest 
neighbor

Yes Yes point R Jacquez.test —

Kernel density 
estimation

Yes Yes point R kdensity/kde —

M statistic Test Unclear Unclear point R rstatix/box_m —

Mantel test Unclear Unclear
two 

matrices
R Mantel.test —

Q statistics Yes Yes point R gamlss/Q.stats —

Rogerson's Test Yes Yes polygon
ClusterSeer

R npst
—

Ward's Method Yes Yes point R stats/hclust —
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